STUDIES ON THE VARIETAL RESISTANCE OF CHICKPEA. AGAINST HELICOVERPA ARMIGERA (HB.)

Amjed Parvez, Muhammad Aleem Alam & Muhammad Bashir Ilyas'

Departments of Agricultural Entomology and Plant Pathology, University of Agriculture, Faisalabad

Studies on the varietal resistance of 20 test lines of chickpea against gram pod borer, *Helicoverpa armigera* (Hb.) showed that only one cultivar i.e. 1230 was resistant to *H. armigera* (Hb.). Three cultivars viz. 932, 1084 and 4001 were moderately resistant to the pest attack. while rest of the cultivars were moderately susceptible. Though a cultivar, C-44. was found to be moderately to susceptible but it gave the maximum mean yield despite considerable pod damage. This was probably due to its high potential for

•• Key words: chickpea.Helicoverpa armigera, varietal resistance

INTRODUCTION

Gram *iCicer arietinum* L.) is Pakistan's foremost pulse crop but its yield (538 kg/ha) is extremely low (Anonymous. 1994-95). The gram pod borer *Helicoverpa* (= *Heliothis*) armigera (Hb.) and gram semi-looper *Autographa nigrisigna* (Wlk.) are the most serious pest-insects of chickpea (Ahmad *et al.*. 1989). Total dependence on chemicals for insect control. has given rise to insect resistance problems. This situation prompts the workers to divert their efforts to Integrated Pest Management (IPM) which includes the use of resistant varieties. means of biological. cultural and chemical control of *H. armigera* (Lal *et al.*, 1986).

In the present studies efforts were directed to screen chickpea germplasm for the identification of resistance sources against *Heticoverpa armigera* (Hb.) under natural pest infestation in an insecticide free field.

MATERIALS AND METHODS

Twenty chickpea germplasm lines including a susceptible check line i.e. 1114 were screened against Helicoverpa armigera (Hb.) for varietal resistance at the Experimental University of Agriculture Faisalabad. The germplasm were obtained from the Department of Plant Breeding and Genetics. University of Agriculture, Faisalabad and were sown block design randomized complete replications. The net plot size was 6.6 x 4.02 m with plant to plant and row to row distances of 10 cm and 30 cm, The level of resistance/susceptibility -- on each of the test entries was assessed by recording larval number and percent pod damage on 5 plants selected randomly from each test line. Grain yield (g) per plot was also recorded. The data recorded were subjected to statistical analysis. The level of resistance/susceptibility of each test entry was determined by using the following pest resistance/susceptibility rating scale designed by Lateef and Sachan (1990).

Pest resistance percentage	Relative resistance/ susceptibility rating		
100%	ı		
76 to 99	2)	Increasing resistance	
51 to 75	31		
26 to 50	4)		
II to 25	51		
-9 to 10	6	Equal to check	
-24to-IO	7 I	Increasing	
-49 to -25	8 I	susceptibility	
-50 to less	9 l		

RESUL TS AND DISCUSSION

Depending on the palatability and genotypes of the test lines. the larval population of H, armigera (Hb.) and pod damage varied from 11.27 to 24.43 larvae and 19.53 to 40.83% pod damage per 5 plants. respectively (Table I). The most susceptible/palatable cultivars were found to be 1114 (Check), 992. 1034. 1128. 1130. 1265. 4008 and 4012 because there were 24.40. 24.20. 22.67. 23.87. 23.70. 24.03. 22.70 and 24.43 larvae and 40.09.40.67,33.50.40.40.39.96.40.83. 37.83 and 40.11 % pod damage per 5 plants, respectively.

These cultivars were statistically at par with each other and for grade 6 (Tables I & 2). The susceptible/palatable cultivar was only one i.e. the cultivar 1230 which supported 11.27 larvae and 19.53 % pod damage Cultivars 932, 1064 and per 5 plants and rated as 3 (resistant). 400 I were rated as moderately resistant and the remaining eight cultivars viz. 925. 930. C-44. 1049. 1117, 1126, 1129 and 4005 behaved as moderately susceptible. The results were highly significant, and were in agreement with those of early workers but the range of damage recorded by them varied greatly i.e. 12-34% (Ahrnad and Hashmi, 1976).5 to 32% (Chaudhry et al.. 1982) and 19.53 to 40.67% (Parvez et al.. 1996).

Table I. Studies on the varietal resistance of chick Pea against Helicover Pa armi gera (Hb.)

varieties/genotypes	Mean values per 5 plants			Mean grain yield
	Number of larva	Pod damage(%)	Pest resistance. (%)	per plot (g) (6.6x4.02 m)
T114 Check 925 930 932 992 C-44 1034 1049 1084 1117 1126 1128 1129 1130 1230 1265 4001 4005 4008 4012	24.40A* 19.33 HI 19.97 GHI 16.60 NOP 24.20 A 16.200P 22.67 D 20.70 EFG 17.00MNO 21.40 E 20.036 HI 23.87 AB 20.97 EFG 23.70 ABC 11.27 W 24.03 AB 16.27 OP 20.27 FGH 22.70 D 24.43 A	40.09A* 32.91 D 31.13' E 25.56 G 40.67 A 27.91 F 33.50 D 33.56 CD 25.53G 31.45 E 34.72 C 40.40 A 32.26 DE 39.96 A 19.53 NO 40.83 A 24.36 GH 32.99 D 37.83 B 40.11 A	0.00 17.89 22.35 36.22 '-1.462 16:41 8.713 16.24 36.31 21:53 13.36 -0.81 19.16 0.313 51:28 -1:874 39.21 17.67 5.59 -3.855	126.66 EF* 123.33 EF 145.00 CDEF 191.67 BC 135.00 DEF 256.66 A 110.00 EF 131,66 DEF 180.00 BCD 125.00 EF 135.00 DEF 125.00 EF 160.00 BCDE 145.00 CDEF 206.67 B 116.67 EF 116.67 EF 126.66 EF

^{*}Any two means not sharing a common letter differ significantly at 5% level of significance.

Table 2. Response of chickpea germplasm against Helicoverpa armigera: (Hb.) Response of genotypes to pest attack Relative pest resistance! Name of chickpea varieites/genotypes susceptibility rating scale Immune Highly resistant 2 Resistant 1230 3 Moderately resistant 932. 1084,4001 4 Moderately susceptible 925, 930, C-44, 5 1049,1117,1126,1129,4005 Susceptible 1114 (check), 992 1034, 1128, 1130, 1265,4008,4012

Kotikal and Panchabhavi (1992) studied the response of 8 genotypes of chickpea to *Helicoverpa armigera* (Hb.) without any plant protection schedule and reported that the least attacked varieties (pod damage 12.9% and pest resistance rating 2) gave the highest yield (80 kg/ha). Similar results were also obtained in the present studies and the varieties/lines responded as resistant/moderately resistant gave the highest yields (Table 1) except the cultivar C-44 which gave a good mean yield of 256.66 g per plot (6.6 x 4.02 m) despite exhibiting a considerable damage and its response was rated as moderately susceptible. This high yielding response was probably due to its ability to withstand damage and exhibit high yielding potential. Bhalani *et al.* (1987) also reported that in the screening of 16 chickpea genotypes for resistance to *H: armigera* (Hb.) in pesticide free field, three genotypes (P65,

B6242 and Dohad yellow) gave good mean yield, despite considerable damage.

The value of correlation coefficient (0.642) worked out between pest resistance percentage and grain yield of the data in Table 1 indicated significant positive correlation between these two variables. These findings are in line with those of Sehgal (1990) who reported significant positive correlations between yield reduction and percent pod damage.

REFERENCES

Ahmad, K., F. Khalique and M. Afzal. 1989. Effect of agronomic factors on the incidence of *Helicoverpa armigera* (Hb.) and its parasite *Compoietis chloridae* (U.) in chickpea field. Pak. 1, Sci. Ind. Res. 32(10):694-697.

- Ahmad, M. and A.A. Hashmi. 1976. Assessment of pod borer *IHeliothis armigera* (Hb.] damage to different: varieties of chickpea in the Punjab. J. Agri.. Res. 14(2):82-86.
- Anonymous. 1994-95. Agricultural Statistics of Pakistan. Govt. of Pak. Ministry of Food, Agri. and Livestock, Islamabad.
- Bhalani. P.A.. G.J. Parsana and J.P. Yadavendera 1987. Susceptibility of chickpea genotypes to *Helicoverpa armigera* (Hb.) under tield conditions. Int. Chickpea Newsletter, 16: 7 (Rev. Appl., Entomol., A, 76(6): 3423, 1988).
- Chaudhry, J.P., L.S. Yadav and K.B. Rustogi. 1982. Imensity of attack of *Helicoverpa armigera* (Hb.) on gram in Haryana. Ind. J. Entomol.. 44(2): 191-192 (Rev. Appl. Entornol. A, 71(8): 5683. 1983).
- Kotikal, Y.K. and K.S. Panchabhavi. 1992. Reaction of selected genotypes of chickpea [Cicer arietinum (L.») to gram pod borer Helicoverpa armigera (Hb.), Ind. J. Agri. Sci. 62 (9):623-624 (Rev. Agri. Entomol. 81(10): 9983, 1993).

- Lal, 5.S., C.P. Yadava and J.N. Sachan. 1986. Strategies for the development of an integrated approach to control gram ped borer, *Helicoverpa armigera* (Hb.) infesting chickpea. Pesticides, 20(5): 39-51 (Rev. Appl. Entomol. A, 75(7): 3475, 1987).
- Lateef, S.S. and J.N. Sachan. 1990. Pest resistance percemage and relative resistance/susceptibility rating scale. Pesticides, 31(4):21-24 (Rev. Agri. Entomol. 81(IQ): 4740. 1991).
- Parvez, A. M.A. Alam and M.B. Ilyas. 1996. Screening of chickpea germplasm against *Helicoverpa armigera* (Hb.) for the sources of esistance. Pak. Entomol. 180-2):70-72.
- Sehgal, V.K. 1990. Damage/yield relationships due to Helicoverpa armigera (Hb.) larvae in chickpea. Proc. Second Int. Workshop on Chickpea Improvement. Patancheru, India. ICRI5AT: 177-179.