INFLUENCE OF PLAN'YPOPULATION ON PLANT HEIGHT. GRAIN YIELD AND ITS COMPONENTS IN WHEAT

Mehnaz Jabeen, Khurshid Alam, Razia Riaz & M.Aslam Chowdhry Department of Plant Bre:eding & Genetics, University of Agriculture, Faisalabad

Two wheat varieties were sown at 4, 8 and 15 cm inter-plant spacings and in 15 and 23 cm apart rows in a randomized complete block design in factorial arrangement. As the population density increased, there was a decrease in number of tiller plant'l. The plants sown at 15 cm inter-plant and 23 cm inter-row spacing produced more number of grains spike", 1000-grain weight and grain yield. Interactions among varieties, inter-row and inter-plant distances were found significant for grain yield plant 1,

INTRODUCTION

Plant population spaced within and between the rows is an important variable which affect the yield and its components. Higher crop densities induce competition while spacing more than normal is simply the wastage of land. Grain yield reaches a maximum with increasing density, after which a further increase in density leads to a decline in grain yield. However, spacings and their interactions have no effect on plant height (Ram et al., 1962; Beuerlein and Lafever, 1989). Likewise, row spacing had no effect on grain yield and grain weight (Bani, 1987). Plants grown at high sowing densities tillered less freely than those grown at low sowing densities (Leverton, 1990; Yoon et al., 1991) .. The higher densities are associated with lower 1000-grain weight and reduction in number of grains ear-I (Mlinar, 1983). Joseph et al. (1985) found that grain number ear'! and grain weight decreased with increasing seeding rate.

MATERIALS AND METHODS

Two spring wheat strains namely: LV-31 and 5039 henceforth called varieties were

planted on November 18, 1992 in the Research Area of the Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad with varied population density by planting at 4, 8 and 15 cm interplant and 15 and 23 cm inter-row spacings. Individual plot consisted of three IOWS each of 5 m length. By using a randomized complete block design in three replications with factorial arrangement. Two seeds Were planted hill-! which were thinned after germination to single seedling site-to Five guarded plants were selected from each plot and data were recorded on plant height, number of tillers planr i, number of grains spikel, 1000-grain weight and grain yield plant-to The data collected wcre analysed according to Steel and Torrie (1980) and mean comparisons were made by using Duncan's new multiple range test ...

RESULTS AND DISCUSSION

Analysis of variance for various plant traits and their statistical significance is presented in Table 1.

Differences for almost all traits between varieties and among various plant and row distances were highly significant (P~O.Ol). Differences for plant height between varieties and among inter-plant spacings were highly significant whereas the row spacings and interactions among these three were non-significant. Maximum plant height was produced in 5039 with a measurement of 99.2 cm while LV-31 attained 75.3 cm height. The plants sown at higher densities (4 cm inter-plant distance) were tall than those planted at lower plant densities.

spacing and vasicity interaction and interaction, between inter-row and inter-plant distances were highly significant for differences in number of tillers planr i. Variety LV 31 with a mean number of 24.53 produced maximum number of branches planr'! at 15 cm inter-row and 15 cm inter-plant distances while minimum tillers (9.26 planr 1) were obtained in 5039 at 4 cm inter-plant and 15 cm inter-row distances.

Table 1. Mean squares for the analysis of variance for plant height, grain yield and its components in spring wheat

Source of variation	Of	Mean squares					
		- ···· - ·· - · ·Plant height	Number of tillers plant!	Number of grains planr	lOOO-grain weight (g)	Grain yield plant!- (g)	
Replications	2	0,101NS	6.674**	0.527 ^{NS}	1.273 ^{NS}	0,595NS	
Variety (V)	ì	5128.947**	245.444**	1049.760**	Hi75.265 **	117,578**	
Inter-row distance (R)	1	3,547NS	6.760*	33.640**	12.273**	20.100**	
Inter-plant distance (P)	2	19.639**	356.968**	295.688**	11,751**	837.842**	
VxR	1	0.903 ^{NS}	4,551NS	5.138 ^{NS}	4.396 ^{NS}	19.907**	
VxP	2	1,530NS	10.574**	31,823**	27.827**	32.896**	
RxP	2	3.089NS	13.143**	4.663 ^{NS}	34.176**	7.794**	
VxRxP	2	$0.0n^{NS}$	3.168 ^{NS}	29.768**	33.338**	12.173**	
Error	22	1,199	1,138	1,468	1,089	0.641	

., •• Significant at 0.05 and 0.01 probability levels, respectively. NS = Non-significant.

It is apparent from the data that differences for number of tillers plant'! were highly significant (P~O.Ol) between varieties and inter-plant distances while inter-row spacings was significant for this trait. Plant

For number of grains spikc'"; the differences between varieties and row and plant densities were highly significant whereas variety X inter-plant densities and variety X inter-row X inter- plant distances

interaction for grain yield plant".

Pak. J. Agri. Sei., Vol. 31, No. 3, 1994

were also high significant, variety LV-31 produced highest number of grains spike'! with a mean value of 68.73 when row and plant distances both wcre 15 cm. Minimum number was given by the line 5039 producing 48.46 grains at 8 cm inter-plant and 23 cm row spacings. It is evident from the data (Table 1) that the differences between varieties, row and plant densities were highly significant. Interaction of variety with interplant distances between inter-row and interplant distances and among all the three factors were highly significant while variety x row spacing was non-significant.. Heaviest grains were obtained for strain 5039 with a weight or 52.10 g 1000-grains.¹ while the maximum grains were produced by the variety LV 31, the mean values being 35.25 g. The plant spaced at 15 cm within the rows and plants produced the heaviest grains (52,10 g) as compared to other row and plant densities. •

row and inter-plant distances. All first order and second order interactions were also highly significant for grain yield planrⁱⁿ, Variety LU 31 at 15 cm inter-row and 4 cm inter-plant distances produced maximum grain yield planr! (37.52 g) while minimum yield of 18.74 g was produced at 4 cm inter-plant and 15 cm inter-row distances.

Results obtained from these studies indicated that with the increase in density, there was a decrease in number of tillers plant", number of grains spike", 1000-grain weight and grain yield plant'! while plant height increased with an increase in population density the expression of characters was decreased as a result of increased competition. Tall variety 5039 and, dwarf variety LV 31 responded similarly for grain weight spike" whereas the varieties have variation in their expression for all other traits. Interaction between variety x inter-row distances show non-significant differences for plant

Table 2.	Mean values for 1)[I,"t height, yield and its components of two wheat varieties	
	planted ut two inter-row and three inter-plant dlstunces	

Genotype	Plant height	Number of tillers planr!	Number of grains spikc- ¹	HXX)-grain weight (g)	Grain yield plant'!
Varieties LV-31 5039	75.34 b 99.21 a	20.60 a 19.93 b	64.72 a 53.92 b	37.70 b 51.34 a	31,77 a 28.15 b
Inter-row dis 15 cm 23 cm	tance 86.96 87,59	20.06 b 20.46 a	58.35 b 60.28 a	43.94 b 45.11 a	29.21 b 30.71 a
Inter-plant d 4cm 8cm 15 cm	listance 88.70 a 86.92 b 86.21 b	10.80 c 18.05 b 21,48 a	54,50 c 59.05 b 64,41 a	45.47 a 43.05 b 44.60 a	20.67 c 32.34 b 36.86 a

There were highly significant differences for yield plant"! among varieties, interheight, number of tillers plant", number of grains spike"! and 1000-grain weight while

highly significant for grain yield plant-to Va- . riety X inter-plarit spacings interaction was , significant for all other traits except plant , height while interaction of inter-row x interplant spacings showed non-significant differences for plant height and number of grains spike"! whereas significant for all other traits. Second order interaction among three factors was non-significant for plant height and number of tillers planet while significant for other' characters under study. Similar results have also been reported by Ram et al. (1962), Beuerlein and Lafcver (1989), Yoon et al. (1991) and Joseph et al. (1985). The results indicate that increased row and plant spacings resulted in higher grain yield. Wider spacings between plants and within the rows resulted in lesser competition. So, by providing the 23 cm row and 15 cm plant spacings the plants may express their full potential. .

REFERENCES

- Bari, V.D.1., 1987. Durum wheat in continuous cropping. The effects of sowing date and row spacing. Institute spenimentale Agronomieo, 18: 83-94.
- Beuerlein, J.E. and N.H. Lafever. 1989. Yield of soft red winter wheat as affected by row spacing and sowing rate. App. Agri, Res. 4 (1): 47-50.

- Joseph, K.D.S.M., M.M. Alley, D.E. Brann and W.D. Gravelle. 1985. Row spacing and seeding rate effects on yield and yield components of soft red winter wheat., Agron, J. 77 (2): 211-214.
- Leverton, R. 1990. Effect of competition and water availability on tillering and growth in wheal. Dissertation Abst, 1nl. B, Sci. & Engg. 51 (5): 2128 B.
- Mlinar, R. 1983. Productive tillering and yield components in various wheat genotypes, in relation to sowing density. Poljoprivredna Znamstvcna Smotra, 60: 5-26.
- Ram, A., T.D. Sinha and R.P.R. Sharma.
 1962. Effect of different spacings on growth and yield of wheat under dibbling method of sowing. Madras Agri.
 J. 49 (9): 299-306.
- Steel, R.G.D. and J.H. Torrie. 1Q80. Principles and Procedures of Statistics: A Biornetrical Approach. McGraw Hill Book Co. Inc., New York, USA.
- Yoon, E.B., V.H. Yoon, V.U. Kwon, K.B. Youn and M.G. Skin. 1991. Studies on fertilizer level, row spacing and sowing rate using the plot drill seeder in winter wheat., Res. Reports of the Rural Dev. Admn., Upland and Industrial Crops, 33 (2): 65-71.