EFFICACY OF SEED-DRESSING FUNGICIDES ON GERMINATION AND GRAIN YIELD OF WHEAT (TRITICUM AESTIVUM)

Muhammad Ilyas Khaleeq & Sultan Mahmood Khan*

Regional Agricultural Research Institute, Bahawalpur *Department of Plant Pathology, University of Agriculture, Faisalabad

The test fungicides significantly enhanced the germination and grain yield of wheat cultivars. Highly significant differences were obtained between years, cultivars and fungicidal treatments. Fertex and Granosan-M proved good in enhancing the germination and grain yield, giving statistically similar results. Generally, gemination correlated with yield, the increase in germination gave significantly higher yield. Vitavax enhanced the germination and lowered the yield whereas Granosan-M gave the vice versa results.

INTRODUCTION

Seed dressing fungicides have received a considerable attention for the last two decades and have proved inexpensive. The technique is also relatively simple method of controlling many seedborne pathogens like Septoria nodorum (Verma, 1983), Puccinia graminis tritici (Rakotondradon and Line, 1984), P. recondita and P. striiformis (Rakotondradon and Linc, 1984), Ustilago tritici and Urocystis agroperion (Kausar, 1955), Tilletia spp. (Iren et al., 1982), Mycosphaerella graminicola (Brown, 1984), Fusarium gramiearum (Diehl and Reis, 1983) and protects germinating seeds and seedlings against most of soil borne pathogens.

However, the importance of seed treatment as a method of controlling plant diseases has not been adequately practised in Pakistan. There was, therefore, need for evaluating seed treatment for eliminating seedborne organisms, preventing seed decay and ultimate yield.

MATERIALS AND METHODS

The experiment was initiated at Regional Agricultural Research Institute, Bahawalpur during the year 1981-85 using wheat cultivars viz., Lyallpur 73, Chenab 70, Blue Silver and PARI 73. Four treatments i.e. Fertex @ 2.4, Vitavax @ 2.4, Granosan-M @ 0.7 g kg⁻¹ and untreated control were tested. Seeds were dressed 24 hours before sowing. The experiment was planted at the end of November every year in split plot design with four replications having a plot size of 13 x 3.6 m and 0.47 kg seed and 12 rows plot⁻¹. Seed count plot⁻¹ was taken.

Observations in respect of germination percentage were recorded by counting the seedlings one week after the emergence. Grain yield was obtained by harvesting and threshing 8 central rows of each plot. The data were analysed by using the method of Little and Hills (1972), considering the years as main plots (A), treatments subplots (B) and cultivars sub-subplots (C).

Source	df	Mean sq	uares	LSD	
variation		Germination	Yield	Germination	Yield
Years (y)	3	6130.00	29.24	2.66**	0.08**
Error (a)	9	44.17	0.0375	- .	-
Treatment (F)	3	1624.19	5.19	4.58**	0.82**
y x F	9	133.83	0.3687	9.16NS	0.3NS
Error (b)	36	162.96	0.2606	-	-
Cultivars (V)	3	1373.20	12.95	1.32**	0.12**
vxV	9	312.16	1.377	2.63**	0.24**
FxV	9	79.85	0.366	2.63**	0.26**
y x F x V	27	63.34	0.210	5.26**	0.47**
, Error (c)	144	14.43	0.116	-	-

Table 1. Analysis of variance in respect of germination and yield

Table 2. Zero order interactions (means of 64 observations)

	Ycar			Cultivar			Treatment	
 Year	Germination	Yield	 Cultivar	Germination	Yield	Treatment	Germination	Yield
1981-82	72.2 b	3.8 b	Blue Silver	66.3 c	3.0 c	Untreated	61.5 b	2.9 c
1982-83	63.7 c	3.0 c	Chenab 70	73.4 b	3.8 a	Fertex	72.9 a	3.5 a
1983-84	79.4 a*	3.9 a*	Lyalipur 73	75.4 a	3.6 b	Granosan-M	69.5 a	3.6 a
1984-85	61.7 c	2.8 b	PARI 73	62.9 d	2.7 d	Vitavax	70.4 a	3.2 b

*Means followed by same letter(s) do not differ significantly at 5% level of probability in each column.

RESULTS AND DISCUSSION

Years, cultivars, treatments and year versus cultivars, cultivars versus treatments and year x cultivars x treatments interactions gave significantly different results. Interaction between year and treatments was non-significant in respect of germination and yield (Table 1). The effectiveness of seed dressing fungicides in improving seed germination or seedling emergence and enhanced yield in wheat has also been reported by Verma (1983), Barros et al. (1983) and Barros and Salgado (1983).

In the year 1981-82, Fertex gave more germination and grain yield of Blue Silver,

	Yea	ar x Cultivar			Treatment X	Cultivar	<u> </u>
Interaction		Germination	Yield	***********	Interaction	Germination	Yield
Blue Silver	1981-82	66.7 cf	3.3 e	Blue Silver	Untreated	69.6 d	3.35 cd
Chenab 70	1981-82	79.3 b	4.48 ab	Blue Silver	Fertex	73.4 c	3.68 bc
Lyallpur 73	1981-82	81.5 ab	4.18 c	Blue Silver	Granosan-M	71.0 cd	3.58 b
PARI 73	1981-82	65.1 ef	3.1 ef	Blue Silver	Vitavax	73.7 c	3.45 bc
Blue Silver	1982-83	64.4 f	2.73 g	Chenab 70	Untreated	74.8 bc	3.70 bc
Chenab 70	1982-83	66.9 ef	3.23 e	Chenab 70	Fertex	80.1 a	3.78 b
Lyallpur 73	1982-83	64.3 ſ	3.23 e	Chenab 70	Granosan-M	76.8 b	4.35 a
PARI 73	1982-83	59.3 g	2.45 h	Chenab 70	Vitavax	69.6 d	3.35 cd
Blue Silver	1983-84	75.8 c	3.78 d	Lyallpur 73	Untreated	69.0 d	3.30 cd
Chenab 70	1983-84	79.8 b	4.63 a*	Lyallpur 73	Fertex	67.8 de	3.18 d
Lyallpur 73	1983-84	83.6 a*	4.35 bc	Lyallpur 73	Granosan-M	66.0 de	3.08 d
PARI 73	1983-84	78.6 b	2.93 fg	Lyallpur 73	Vitavax	65.2 e	3.03 d
Blue Silver	1984-85	58.4 g	3.25 e	PARI 73	Untreated ¹	63.8 e	2.93 de
Chenab 70	1983-84	67.6 e	2.68 g	PARI 73	Fertex	63.0 e	2.68 e
Lyallpur 73	1983-84	72.3 d	2.70 g	PARI 73	Granosan-M	58.3 f	2.43 ef
PARI 73	1983-84	48.7 h	2.35 h	PARI 73	Vitavax	55.2 h	2.30 f

 Table 3.
 First order interaction (means of 16 observations)

I

*Means followed by same letter(s) do not differ significantly at 5% level of probability in each column.

Chenab 70, PARI 73 and more germination but less yield of Lyallpur 73 than Granosan-M. In the year 1982-83, there was more yield with Granosan-M than Fertex; Fertex enhanced the germination and yield of Blue Silver and Lyallpur 73 while less germination and yield of Chenab 70 and less germination but more yield of PARI 73 than Granosan-M. Seed treatment produced more yield and less germination with Granosan-M than that with Fertex. In the year 1983-84, Fertex gave more germination but less yield of Blue Sil-

ver and Lyallpur but less germination as well as yield of Chenab 70 and PARI 73 than with Granosan-M. There was more germination as well as yield with Granosan-M than that with Fertex during 1984-85; Vitavax gave more germination but less yield in all the cultivars than that with Fertex and Granosan-M.

Germination correlated with the yield for all the cultivars except PARI 73. Blue Silver, Chenab 70. Lyallpur 73 gave the highest germination as well as yield during

observations)
4
5
ž
<u>R</u>
Ĕ
5
2
ē
Ξ.
ă.
5
ž
5
ð.
2
-
ě.
8
2
_
4
÷.
1
Ê

		Year x Cultiva	-			Ĥ	reatment X	Cultivar	
	Interaction		Germination	Yield		Interaction		Germination	Yield
					;	C0 +00+	1-1-1	40 9 itlmn	3.4 klmno
Blue Silver	1981-82	Untreated	61.6 pqrstuv	3.31 mnop	Blue Silver	79-1961	LCIICX		
Blue Silver	1981-82	Granosan-M	67.8 kimno	3.31 mnop	Blue Silver	1981-82	Vitavax	6/.8 Kimno	
Blue Silver	1982-83	Untreated	59.0 rsturw	2.3 stuv	Blue Silver	1982-83	Fertex	65.1 mnopqr	3.0 mnopqr
Blue Silver	1982-83	Granosan-M	67.11 mnop	2.9 opqrst	Blue Silver	1982-83	Vitavax	64.6 nopqr	z./ grstu
Blue Silver	1983-84	Untreated	63.5 nopqrst	3.1 mnopq	Blue Silver	1983-84	Fertex	78.4 cfgh	4.0 tghij
Blue Silver	1983-84	Granosan-M	87.8 bc	4.3 cdefg	Blue Silver	1983-84	Vitavax	73.7 ghijk	3.7 hijkl
Blue Silver	1984-85	Untreated	48.9 z	2.0 v	Blue Silver	1984-85	Fertex	56.6 uvwx	2.8 pqrst
Blue Silver	1984-85	Granosan-M	55.6 WW	2.2 tuv	Blue Silver	1984-85	Vitavax	72.3 hijkl	2.0 v
Chenah 70	1981-82	Untreated	70.6 iiklm	4.1 efghi	Chenab 70	1981-82	Fertex	85.9 bcd	4.6 cde
Chenah 70	1981-87	Granosan-M	80.9 def	5.2 ab	Chenab 70	1981-82	Vitavax	79.8 efg	4.0 fghi
Chenah 70	1987-83	Untreated	58.8 stuvw	3.1 mnopq	Chenab 70	1982-83	Fertex	74.3 ghij	2.8 pqrst
Chenah 20	1087-83	Granosan-M	63.7 noparst	3.9 fehilk	Chenab 70	1982-83	Vitavax	71.0 ijklm	3.7 hijkl
Chenab 70	1083-84	l intreated	75 & fohii	4.1 efehi	Chenab 70	1983-84	Fertex	86.1 bcd	4.8 bc
Chenab 70	1083-84	Granosan-M	76.8 efehi	5.5* a	Chenab 70	1983-84	Vitavax	80.5 def	4.1 fghi
Chenab 70	1084-85	l'Intreated	58.8 sturw	2.5 rstuv	Chenab 70	1984-85	Fertex	74.3 ghij	2.9 pqrs
Chenab 70	1084-85	Grenosan-M	62.7 oporstu	2.8 parst	Chenab 70	1984-85	Vitavax	76.1 fg	2.5 rstuv
Luchau 73	1081-87	Untreated	72.2 hiikl	3.8 iiki	Lvallpur 73	1981-82	Fentex	87.3 bc	4.3 cdefg
I unifier 73	1081-87	Granocan-M	85.9 hcd	4.4 cdef	Lyallpur 73	1981-82	Vitavax	80.7 def	4.2 def
Lyaupur //	1087-83	lintreated	58.2 tuvwx	3.0 nopar	Lvallpur 73	1982-83	Fertex	65.1 mnopqr	3.5 jklmn
Lyaupur 1 vallaur 73	1087-83	Granocan-M	67.21 mnop	3.0 nopgr	Lyallpur 73	1982-83	Vitavax	66.8 lmnopq	3.4 kimno
1	1023-24	l'intrested	76 9 efvhi	4.0 fehii	Lvallour 73	1983-84	Fertex	88.7 bc	4.4 cdef
Lyaupur 73	1083-84	Granosan-M	89.2 h	4.7 bcd	Lyallpur 73	1983-84	Vitavax	79.8 efg	4.3 cdefg
Lyaupur /2	1984-85	Untreated	53.6 WXVZ	2.6 grstuv	Lvallpur 73	1984-85	Fertex	58.1 tuvwx	2.6 grstuve
Lyanpur 73	1084-85	Granosn-M	52.3 xvz	3.0 nopqr	Lvallpur 73	1984-85	Vitavax	58.3 tuvwx	2.6 qrstuv
PARI 73	1981-82	Untreated	60.7 qrstuv	2.5 rstuv	PARI 73	1981-82	Fertex	67.8 klmno	3.6 ijklm
PARI 73	1981-82	Granosan-M	65.1 mnopqr	3.5 jklmn	PARI 73	1981-82	Vitavax	66.9 mnopq	2.8 pqrst
PARI 73	1982-83	Untreated	50.1 vz	2.1 uv	PARI 73	1982-83	Fertex	66.8 mnopq	2.9 pqrs
PARI 73	1987-83	Granosan-M	59.2 Istuw	2.6 grstuv	PARI 73	1982-83	Vitavax	61.3 pqrstuv	2.2 tuv
PARI 73	1983-84	Untreated	62.9 porst	2.5 rstuv	PARI 73	1983-84	Fertex	90.9° a	3.3 mnop
PARI 73	1983-84	Granosan-M	83.0 cde	3.31 mnop	PARI 73	1983-84	Vitavax	76.6 efghi	2.6 qrstuv
PARI 73	1084-85	Untreated	46.9 z	2.1 uv	PARI 73	1984-85	Fertex	50.4 yz	2.5 rstuv
PARI 73	1984-85	Granosan-M	39.4 z	2.7 qrstu	PARI 73	1984-85	Vitavax	50.0 yz	2.1 u
-Means shari	of the same l	etter(s) in each co	olumn do not dif	fer significant	tly at 5% level of	significance			
VICALLY SUALL	ing une same n	בוובו(ז) ווירמרוו רו				•			

215

the year 1983-84 whereas cultivar PARI 73 gave the highest germination in the year 1983-84 and the yield in the year 1981-82 (Table 2). The Fertex gave maximum germination followed by Vitavax, Granosan-M and untreated check whereas Granosan-M gave the highest yield followed by Fertex, Vitavax and untreated check (Table 3).

Thus, Fertex put the equal effect on germination and yield whereas Granosan-M enhanced the yield and Vitavax, though increased the germination but put bad effect on the yield. Cultivar Lyallpur 73 gave maximum germination (83.6%) during the year 1983-84 but was statistically dissimilar to Chenab 70 in the same year but similar during the year 1981-82. The Chenab 70 produced maximum yield (4.63 t ha⁻¹) which was statistically dissimilar to that of Lyallpur 73 during the year 1983-84 but similar with that of Chenab 70 for the year 1981-82 (Table 3). Chenab 70 gave maximum germination (80.1%) and yield (4.35 t ha^{-1}) with Granosan-M followed by Fertex and Vitavax for the same cultivar. The highest germination (90.9%) was recorded for cultivar PARI 73 with Fertex during the year 1983-84, followed by Lyallpur 73 with Granosan-M during the same year, whereas the higher yields (5.5 t and 5.2 t ha⁻¹) were recorded for cultivar Chenab 70 with Granosan-M during the year 1983-84 and 1981-82. Verma (1983) reported that seed treatment reduced the root rot severity in both the test cultivars of spring wheat. In all the 3 years, response was apparent in both the cultivars at all the test locations. Diehl et al. (1983) also reported the similar results. Brown (1984) obtained 28-62% reduction of infected plants of wheat with the application of seed-dressing fungicides.

REFERENCES

- Barros, B.C., C.L. Salgado and C.C. Lasca. 1983. Action of fungicides *in vitro* on the germination and microflora of wheat seeds. Summa Phytopathologica. 9: 112-127.
- Barros, B.C. and C.L. Salgada. 1983. Effect of wheat (*T. aestivum* L.) seed treatment on emergence and grain yield. Summa Phytopathologica. 9: 128-129.
- Brown, J.S. 1984. Effect of systemic fungicides applied as seed treatment on early foliar sprays on speckled leaf blotch of wheat. Crop Protec. 3: 59-65.
- Diehl, J.A., E.C. Picinini, J.F. Sartoria and J.M.C. Fernandes. 1983. Effect of seed dressing with fungicides on the control of common root rot of wheat. Fitopathologia Brasileira. 8: 65-71.
- Diehl, J.A. and E.M. Reis. 1983. Effect of wheat seed treatment with fungicides on the control of *Fusarium* gramiearum. Fitopathologia Brasileira. 8: 363-366.
- Kausar, A.G. 1955. Seed treatment for the control of seed borne diseases of wheat and barley in Pakistan. Agri. Pak. J. 6: 25-29.
- Little, T.M. and F.J. Hills. 1972. Statistical Methods in Agricultural Research. Ist Ed., Univ. California, Davis, CA, USA.
- Rakotondradon, R. and R.F. Line. 1984. Control of stripe rust and leaf rust of wheat with seed treatment and effects of treatments on the host plant. Plant Dis. 68: 112-117.
- Verma, P.R. 1983. Effect of triadimenol, imazolil and nuarimol seed treatment on common root rot and grain yields in spring wheat. Canadian J. Plant Pathol. 5: 174-176.

216