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Abstract 

Mosquitoes are considered to be among the biggest disease spreading flying insects causing worldwide 

health hazards.  In Pakistan, Malaria and Dengue fever are among the most dangerous infectious viral 

diseases transmitted through the bite of infected Anopheles and Aedes mosquitoes. Manual identification 

of these mosquitoes is hard and dangerous leading to severe health risks. This paper presents an 

automated system based on audio analysis and IoT sensors to identify and classify mosquito species 

including Aedes (transmits dengue), Anopheles (transmits Malaria), and Culex (transmits viral diseases 

including avian malaria) species using the acoustic recordings of their wingbeat frequency. 

Computational analysis of these audio signals leads to inter-species classification and behavioral study 

of different mosquito species under varying environmental conditions.  We demonstrate the proposed 

approach on a standard dataset and compare it to human annotations, with promising results. 
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1. Introduction

Mosquitoes are considered to be among the 

biggest disease spreading flying insects causing 

worldwide health hazards. They are dangerous due 

to their capability to transmit viruses and parasites 

causing devastating diseases. According to a recent 

research survey [1], mosquitoes kill at least 725,000 

people per year around the world. More specifically, 

dengue, transmitted through Aedes mosquito, kills 

50 to 100 million people per year; malaria, 

transmitted through Anopheles mosquito, kills 

400,000 people; while culex mosquito (aka common 

house mosquito [C.pipens]), is responsible for 

transmitting viral diseases including, West Nile 

encephalitis, Japanese encephalitis, Usutu virus, and 

St. Louis encephalitis), causing more than 10,000 

deaths per year worldwide. In Pakistan, Malaria and 

Dengue fever are among the most dangerous 

infectious viral diseases transmitted through the bite 

of infected Anopheles and Aedes mosquitoes. 

Insects produce sounds to communicate, 

finding mates, or isolate species [2]. Theses sounds 

are produced by various mechanisms including 

wing-beating, chewing, or flying. This study 

demonstrates the use of acoustic signals, caused by 

wing-beat frequency, to identify and classify three 

of the most important disease-transmitting 

mosquito’s species in Pakistan: Aedes, Anopheles, 
and Culex. The research reveals that there is a 

difference in the acoustic signals produced by male 

and female mosquito species. This will enable the 

proposed system to differentiate between male and 

female mosquito sounds that will not only lead to 

early detection of disease vectors but also open up 

new opportunities of research on inter-species 

classification, as well as behavioural study of 

different mosquito species under varying 

environmental conditions and changing climate. 

In this paper, we present a smart mosquito 

surveillance device comprising of mobile phone as 

acoustic sensor to record mosquito wingbeat sounds 

and analyse the relationship between their 

population and behaviour in varying climate 

conditions using IoT sensors to measure 

temperature, humidity, and air quality. For this, we 

developed an unsupervised machine learning API 

that takes mosquitoes’ wing-beats audio files as 

input, normalize, and transform the data into lower 

dimension with high variability and calculates the 

pair-wise similarity matrix depicting the 

relationship between mosquitoes’ wing-beat 

sounds. The similarity matrix was used into the web 

services API to generate the online interactive 

graphical visualisations in order to observe the 

relationship between different mosquito sounds that 

revealed interesting results. We observed between-

species and within-species sound variation 

produced by different mosquitoes’ species. 

Timely identification and classification of 

disease-carrying mosquitoes is a vital step towards 

taking actions to eradicate them. This system might 
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be used as a step towards developing remote, non-

destructive, and smart automated acoustic traps for 

eliminating disease transmitting mosquitoes. It 

might be used for continuous long-term unattended 

monitoring and automated logging for estimating 

population density of mosquitoes at a specific 

location. In case of mosquito detection, an alert may 

be generated to inform relevant authorities to take 

further action before the outbreak of any disease. 

2. Relevant Research 

One of the most crucial input for appropriate 

and timely control of mosquito-borne diseases is 

the direct monitoring of mosquito populations in 

the field settings. Manual monitoring of mosquito 

populations is cost-intensive, time consuming, 

requires extensive labor, and needs an expert to 

accurately identify the mosquito species that can   

raise safety issues for humans. In the literature, 

there are frequent attempts of automatic 

surveillance of crop insect-pests, but very less work 

has been done on that of mosquito species. Most of 

the existing work on automated mosquito 

surveillance used visual stimuli, and a very few 

used acoustic signals as input. 

Fuchida et al. classified mosquito species 

based on vision-based stimuli by extracting their 

morphological features such as colour, length of 

body and legs. They used SVM to recognise 

mosquito species among other bugs such as flies [3]. 

Favret and Sieracki, used sparse processing 

technique and support vector machine for 

classifying large number of closely related 

mosquito species, on a dataset containing images of 

72 species of fruit flies and 76 species of 

mosquitoes [4]. Similarly, Wang et al. used 

Artificial Neural Networks and SVM on mosquito 

images and achieved 93% accuracy on the dataset 

of very clear images that might not be possible to 

capture in field settings [5]. Rose et al. used 

machine learning techniques to classify male and 

female mosquitos’ species, and they pointed out 

that the acoustic recordings nearby mosquito traps 

(such as BG-Counter [6]) are not long enough to be 

used for automated surveillance [7]. BG-Counter is 

an insect trap that measures population density of 

insects but could not differentiate between insect 

species. 

As compared to visual stimuli, acoustic 

tracking has the potential to be used as a relatively 

cheap method to monitor behavioural activity of 

mosquitoes. Sound sensors are generally cheaper 

than image sensors and there is no additional 

lighting equipment required. Also, the amount of 

incoming data is smaller compared to image 

tracking [8]. Differences in wingbeat frequencies 

can be used to classify individual mosquitoes to 

species complex level; however, overlap in 

frequencies does occur [9]. Mukundarajan et al. in 

[10] used commercially available mobile phones as 

powerful sensors to acquire acoustic data of 

mosquito wingbeat sounds. They attached sensitive 

microphones with mobile phones and adjust signal-

to-noise ratio depending on the noise level at a 

public place. Similarly, Rama et al. detected insect 

fight sounds in the field and found that by 

combining information from the first four 

harmonics improved the detection rate and reducing 

the false positives [11]. Ouyang et al., used a 

recording device consisting of a set of infrared 

emitters and receivers to count wing-beat of 

mosquitoes that enter the device. They used 

expectation-maximization algorithm (EM-GMM), 

and compared it with ANN and the nearest neighbor 

model, on living male and female Aedes albopictus, 

Aedes aegypti and Culex quinquefasciatus [12]. 

A few papers studied the effect of climate 

change on mosquito population density using 

manual observations in laboratory settings, such as 

[13,14,15].  The evaluations were done in the lab 

settings at varying temperatures that might be 

different from field settings. 

To the best of our knowledge, none of the 

existing solutions records location and 

environmental conditions to study the relationship 

between mosquito behavior and population density 

with environmental and climate conditions in the 

region. Also, there has been no attempt to 

automatically create and update real time 

infographics to monitor and track the presence of 

disease vector mosquito anywhere in the country. 

This would be useful tool for early prediction of a 

potential outbreak of mosquito-borne diseases 

including dengue and malaria. 

For an experimental evaluation, we identified 

a lack of comprehensive dataset of mosquito sounds 

specially in relation with varying environmental 

conditions to be used as a standard for automated 

systems. The audio recordings in most of the 

existing dataset are too short to be used for mosquito 

acoustic tracking and it is hard to compare the 

results that has been tested on different datasets 

most of those are recorded in laboratory settings 

with controlled background noise. 

3. Datasets 

For testing and evaluation of our proposed 

methods, we have used a dataset containing 

mosquito wing-beat frequency sounds publicly 

available at Dryad Digital Repository [10]. This 
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dataset contains wing-beat frequency sounds of 

medically important mosquitoes including Aedes 

aegypti, Aedes albopictus, Aedes mediovittatus, 
Aedes sierrensis, Anopheles albimanus, Anopheles 

arabiensis, Anopheles atroparvus, Anopheles dirus, 

Anopheles farauti, Anopheles freeborni, Anopheles 
gambiae, Anopheles merus, Anopheles minimus, 

Anopheles quadriannulatus, Anopheles 

quadrimaculatus, Anopheles stephensi, Culex 
pipiens, Culex quinquefasciatus, Culex tarsalis, 

Culiseta incidens. The live mosquito specimens 

were collected from the field and recorded in 

different labs and facilities to create a curated 

database of species. Later, field acoustic data was 

collected from different locations, including homes 

and gardens, using mobile phone recorders during 

free flight or captured in a ziplog bag. The field data 

was annotated by comparing with lab recordings of 

the sound of specific species. The wingbeat 

frequency data from each species was isolated for 

each 20 ms sample window using a peak finding 

routine on the spectrogram. For complete 

description of the dataset, please refer to [10]. 

4. Methodology 

The whole process of mosquito species 

identification is divided into two sub processes. The 

first subprocess is focused on data cleaning, 

normalisation, feature extraction, and 

dimensionality reduction. In the second process, the 

web services used for visualisation have been 

developed. Both processes are combined as a 

standalone aggregated service that is able to cluster 

mosquito species and visualise relationship within 

and between-species mosquito audio recordings. 

4.1 Feature Extraction 

We extracted the short-term and mid-term 

features of each audio recording using the approach 

similar to [10]. First, each audio signal is split into 

time windows (frames). In the literature, the most 

widely accepted short-term frame (time window) 

size is 20 to 100msecs. We used a frame size of 

50msec and a frame step of 25msec using 

overlapping framing. For each frame, 34 short-term 

features (same set of features as used in [10]) are 

extracted. As a result, each frame is represented as a 

feature vector of 34 elements each.  

Once the short-term features are extracted, 

the mid-term features are computed by calculating 

the two statistics of each short-term feature. The 

following statistics are computed: (a) the average 
value (μ), (b) the standard deviation (σ2). As a result, 

each frame is represented as a 68 dimensional 

feature vectors, where the first half of the values (in 

each frame) corresponds to the average value, while 

the second half to the standard deviation of the 

respective short-term feature. A long-term average 

is calculated with respect to all frames resulting in a 

one feature vector for each audio recording.  Each 

of these long-term averages of mid-term feature 

vectors is fed into the dimensionality reduction 

technique to extract the most varying features out of 

the whole audio signal. 

4.2 Dimensionality Reduction 

A 68-dimensional feature vector has been 

computed for each audio recording. The number of 

feature vectors depend on the number of audio 

recordings. Each feature vector is normalised to 0-

mean and 1-standard deviation. To improve the 

efficiency of the algorithms, the first step is to find 

a simplified representation of high-dimensional data 

in order to visualise and understand the relationships 

among multiple variables. Generally, in a 

multivariate dataset there is more than one variable 

measuring the same kind of behaviour. The problem 

may be simplified by replacing such redundant 

groups of variables by a single new variable. 

A standard technique to model data variation 

and analyse sets of datapoints in high dimensional 

spaces is Principal Component Analysis (PCA) 

[16]. PCA finds a new set of variables, called 

principal components (PCs), by identifying a linear 

transformation (translation, rotation, and scaling) of 

the original variables in the dataset. All principal 

components are mutually orthogonal, such that 

ideally there is no redundant information. In this 

case, no redundancy means that the principal 

components are uncorrelated with each other. Each 

component accounts for a maximal amount of 

variance in the observed variables that was not 

accounted for by the preceding components and is 

therefore uncorrelated with all of the preceding 

components. The principal components are 

statistically independent to each other only for 

normal (Gaussian) random variables [16]. As a 

whole, the set of principal components form an 

orthogonal basis for the space of the original dataset. 

The resultant basis has maximum variance of the 

dataset along the first basis vector, and successively 

less variance amongst the following basis vectors. A 

scree graph was generated to select the suitable 

number of principal components in order to 

transform the data into low dimensional space while 

preserving the variation in the data.  

4.3 Calculating Similarity Matrix 

Cosine similarity has been used as a measure 

of similarity between two non-zero vectors of an 
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inner product space normalised by the product of 

their magnitudes that measures the cosine of the 

angle between them [17]. For any pair of real-valued 

vectors x and y, t is calculated as, 

SM(𝑥, 𝑦) = 1 −
𝑥. 𝑦

∥ 𝑥 ∥∥ 𝑦 ∥
 

In the past, cosine similarity has been used 

successfully for speaker clustering and verification 

[18-22]. Unlike Euclidean distance, cosine distance 

regards only to the “shape” of the pattern but not to 

its magnitude and gives a fair measure to the frames 

with relatively low power [23, 24]. We computed 

the pair wise cosine similarity between the 

transformed feature vectors to get a square-form 

similarity matrix for each audio recording. This 

similarity matrix was used in web services for online 

visualisation.  

5. Online Interactive Visualisation 

Extracting meaningful visualisation based on 

the relationships between data variables is useful, 

especially in large datasets. After transforming the 

audio signals to a lower-dimensional space, a 

similarity matrix is calculated based on the pairwise 

cosine distances of feature vectors in the training set. 

This similarity matrix was converted into JavaScript 

Object Notation (json) format [25] to be used in web 

services for online visualisation. Json is a light-

weight, text-based data interchange format that 

makes the similarity matrix language-independent. 

Based on the similarity matrix, an interactive chord 

diagram is generated using the powerful data-

driven-document (D3) approach to visualise 

similarity among birdsongs in the browsers. D3 

provides efficient scene transformation thus 

providing flexible animation, interaction, complex, 

and dynamic visualisations for the web [26]. 

A chord diagram is a graphical method of 

displaying the inter-relationships between entities 

based on a matrix of size 𝑛 ∗ 𝑛, where the matrix m 

represents a directed flow amongst a network of n 

nodes. Each element of the matrix, 𝑚[𝑖][𝑗] , 

represents the flow of the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node. 

𝑚[𝑖][𝑗] must be nonnegative, though it can be zero 

if there is no flow from node 𝑖 to node 𝑗. In our case, 

𝑚[𝑖][𝑗]represents similarity of birdsong content in 

the audio recording i to the audio recording 𝑗. 

The matrix is passed to d3.chord, that returns 

an array of chords. Each element of chord array 

represents bidirectional flow between two nodes 𝑖 
and 𝑗, and returns zero if there is no flow. Each cord 

is an object with two sub objects: source and the 
target. The source and target has the following 

properties: startAngle - the start angle in radians, 

endAngle - the end angle in radians, value - the flow 

value 𝑚[𝑖][𝑗], , index - the node index 𝑖 , and 

subindex - the node index 𝑗. The chords are then 

passed to d3.ribbon to display the network 

relationships using coloured ribbons. The returned 

array includes only the unique chords and the chord 

objects for which the value 𝑚[𝑖][𝑗] is non-zero [27]. 

6. Experimental Results 

We implemented our methods in Python with 

PyCharm IDE using the pyAudioAnalysis toolbox 

[28]. For visualization of mosquito species 

clustering based on their sounds similarities, d3js 

chord diagram representation has been used. Each 

node in the graph represents a single audio 

recording. Fig. 1 presents an interactive chordial 

graph, drawn on the basis of similarity measures of 

mosquito wingbeat frequency (Aegypti, albopictus, 

mediovittatus, anopheles atroparvus, anopheles 

merus), presenting identification of mosquito 

species. The sound visualization uses the open 

source AudioContext APIs to play an audio file, and 

AnalyzerNode to retrieve the frequency values [29]. 

The colours of the ribbons are based on the file 

names in the dataset. Similar file names generate 

similar colours. In the dataset, the name of file is 

based on the contents of the audio recording, for 

instance, aegypti.wav contains the audio recording 

of a aegypti wingbeat sounds. Each ribbon 

represents a relationship between the audio content 

at both ends. By aurally examining the overlapping 

ribbons between two different mosquito species, we 

found the reasons such as, some matching notes in 

the syllable, silence, or some kind of noise in both 

audio recordings. 

Fig. 2 shows Zero crossing rate and energy of 

a sample audio recording of (a) Aedes aegypti, (b) 

Anopheles astroparvus, and (c) Culex pipiens. 

These results demonstrates that the mosquito 

wingbeat signals are weak and varies for each 

species.  The difference between the wingbeat 

frequency of two mosquito species that has been 

used for surveillance purposes. 

We compared the results of clustering and 

visualisation with the ground truth data by aurally 

examining each audio recording. In most 

occurrences, the similarity in the mosquito sounds 

from two different species is caused by the 

environmental noise. Since, the cosine similarity is 

computed on the mean-centered feature vectors, it is 

reduced to the measure of Pearson correlation 

coefficient 𝜌𝐴𝐵 [17]. Therefore, in our experiments, 

cosine similarly performs similarly to Pearson 
correlation and braycurtis distance measures and 
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perform better than sqEuclidean and Mahalanobis 

distance for birdsong clustering.

 

Fig 1: An interactive chordial graph, drawn on the basis of similarity measures of mosquito wingbeat 

frequency (Aegypti, albopictus, mediovittatus, anopheles atroparvus, anopheles merus), presenting 

identification of mosquito species 

 

(a) Aedes aegypti 

 

(b) Anopheles astroparvus 

 

(c) Culex pipiens 

The system can also generate infographics by 

indicating identification of specific mosquito 

species detected at a particular location on the map. 

Timely identification and classification of disease-

carrying mosquitoes is a vital step towards taking 

actions to eradicate them. This system might be used 

as a step towards developing remote, non-

destructive, and smart automated acoustic traps for 

eliminating disease transmitting mosquitoes. It 

might be used for continuous long-term unattended 

monitoring and automated logging for estimating 

population density of mosquitoes at a specific 

location.  
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7. Conclusions and Future Work 

This paper presents an online tool that cluster 

and classify mosquito species, and produce an 

interactive online visualisation tool on a 

geographical map. This tool is produced by 

aggregating the results obtained by an unsupervised 

machine learning technique with the web services 

APIs that takes mosquito wingbeat audio recordings 

as input and cluster them on the basis of the 

similarity among the audio features. By automatic 

analysis of these similarity patterns, different 

mosquito species are clustered together that was 

used for the classification of mosquito species. The 

standard machine learning techniques are combined 

with powerful data-driven-document visualisation 

technique based on JavaScript to visualise similarity 

between different sound recordings and their mutual 

relationship with each other. 

The variation in mosquito wingbeat 

frequency between and among species is common, 

but the visualisation graphs reveal some very 

interesting results showing some variations within-

species songs. By ‘understanding’ and 

differentiating between within-species and between-

species song and call variation, we may be able to 

detect and recognise their specific behaviour. An 

online tool detecting within-species song type 

variation opens up an exciting area of investigation 

for evolutionary and behavioural analysis of 

mosquito in varying environmental conditions. 

This paper describes the first step of an 

ongoing project aiming at developing smart 

machines for mosquito surveillance in the public in 

the presence of noises such as wind, leaves, rain, 

thunderstorm, and other animals; classify a 

mosquito species based on its wingbeat frequency; 

and take appropriate action if a disease carrying 

mosquito is detected.  

One of the biggest challenges in this area is 

the lack of annotated mosquito audio data, specially 

the data of disease carrying mosquitoes. Another 

problem is the external noise when the device is 

installed at a public place. We are working on 

developing techniques for removing background 

noise and improving the quality of input signals by 

various signal processing and machine learning 

algorithms. Human voices would be detected and 

removed before storing data into the database to 

avoid ethical issues. We are also working on 

developing an easy to use app that can be used by 

the community to record sound of mosquitoes in 

their regions. Entomologists from different 

organizations have been requested to annotate 

individual recording in the dataset. The dataset 

generated from this app would be stored on an 

online central repository that would be used as a 

standard for automatic mosquito surveillance 

systems. 
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