
Pak. J. Engg. Appl. Sci. Vol. 23 July, 2018 (p. 55–65)

55

Towards a Universal Framework for Visual
Programming Languages

Muhammad Idrees, Faisal Aslam
*
, Khurram Shahzad, Syed Mansoor Sarwar

Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan

 Corresponding Author: Email: faisal.aslam@pucit.edu.pk

Abstract

A Visual Programming Language (VPL) can help programmers quickly develop robust

programs using simple drag-and-drop of visual elements, without worrying about the syntactic

details of a programming language. In contrast to the textual programming languages, a VPL is

usually designed for a specific domain such as to teach programming to beginners or to develop

engineering models. Therefore, it is highly likely that numerous VPLs will be developed in future for

different tasks and domains. Presently, each new VPL being developed is either created from

scratch, or in some cases a newly developed VPL has used codebase of only a single existing VPL.

Consequently, significant effort is required for developing a new VPL. This paper highlights the

need of a universal framework to drastically reduce the time and effort required to develop a new

VPL, and to enhance reusability of an existing VPL codebase. The framework offers a layered

approach to VPL development. The layered approach offers an opportunity to generate a VPL layer

by combining components from the corresponding layers of existing VPLs while writing minimal

new components of the layer when required.

Keywords: Visual programming languages, VPL, VisFra, VPL evolution

1. Introduction

Typically, computers are programmed using

programming languages that require typing code

manually; such programming languages are called

Textual Programming Languages (TPLs). Writing

code in a textual language entails understanding

the programming concepts and strictly following

the syntax of that programming language [1]. That

is, each line should be written carefully and even a

minute syntactic mistake can result in generating

multiple compilation errors. Due to the inherent

difficulty in writing code using TPLs [2, 3],

programing has been limited to few experts who

have mastered the art of textual programming over

several years. In order to make programming

accessible to masses, it is desirable to significantly

reduce the effort of typing a program so that a

programmer can focus on the logic of a program to

solve the problem at hand rather than wasting

resources on the intricacies of the programming

language syntax [4]. To this end, many Visual

Programming Languages (VPLs) have been

introduced.

A VPL allows a programmer to develop the

logic for a program by simply dragging-and-

dropping a visual element on a canvas and

subsequently connecting that visual element with

other elements [5, 6]. A visual element hides the

syntactic complexities of the programming

language from the programmer while the

connections between elements represent the logic

of the program.

A new VPL is usually developed keeping in

mind the needs of a specific domain. For instance,

since 2011 more than 15 domain-specific VPLs

have been developed [7-32]. This trend may

continue in future, leading to the development of

numerous VPLs, each designed to fulfill the need

for performing a specific task in a domain.

Presently, each new VPL being developed is either

created from scratch, without using any of the

existing VPLs' codebase, or, in some cases, a VPL

has used codebase of only a single existing VPL.

Consequently, significant effort is required for

developing a new VPL. To address this issue, this

paper makes the following main contributions:

♦ Using a rigorous process, we choose 40 VPLs,

developed from 1983 to-date and analyze the

relationships between these VPLs. We have

identified three types of relationships between

these 40 VPLs, which include based-on,

similar-to, and refers-to relationships.

♦ Given the insights developed from the

analysis of relationships between VPLs, we

have divided the existing VPLs into two

generations. Form the analysis of

relationships, we deduce the design limitations

of the existing VPLs of the two generations.

♦ Finally, building on the lessons learned from

the capabilities of existing VPLs, we envision

Pak. J. Engg. Appl. Sci. Vol. 23, July, 2018

56

the next generation of VPLs. The third

generation (i.e., future) VPLs should be based

on a universal framework, which supports a

layered-based approach to the development of

a VPL. The use of our proposed framework

will significantly reduce the time to develop a

third generation VPL and will make it easier

to reuse.

The rest of the paper is organized as

follows. In Section 2, we outline the three types of

relationships that a VPL may have with other

VPLs. Section 3 divides VPLs in two generations

and discusses the shortcomings of each generation.

Section 4 presents the third generation VPLs and

lists the salient features of the layered universal

framework. Finally, we conclude the paper and

present future work in Section 5.

2. Relationships between VPLs

One of the contributions of this paper is to

identify the evolution of VPLs over the years, in

order to understand the relationships between

them. The understanding of relationships will help

us to ascertain whether a VPL has influenced other

VPLs and when a VPL codebase has benefited the

development of other VPLs. We propose that three

types of relationships are possible between a pair

of VPLs. These relationships are based-on,

similar-to, and refers-to. In general, a relationship

between two visual languages L1 and L2 is

represented by L1  L2. This implies that L2 has a

relationship with L1 and L1 precedes L2 in terms of

date of origin. The three types of relations between

VPLs are formally described below:

♦ Based-on: A relationship between two VPLs

is called based-on when L2 is either developed

using the codebase of L1, or in the publication

of L2 it is explicitly declared that L2 is based

on L1. A solid line between L1 and L2

represents this relationship. For example,

BlockPy is based-on Blockly because BlockPy

uses the codebase of Blockly and BlockPy

also explicitly acknowledges that "BlockPy
owes much of its power to Blockly" [7]. Thus,

we can say that BlockPy—Blockly. Of the

three types of relationships between VPLs,

based-on is the strongest form of relationship

between VPLs, among the three types of

relationships.

♦ Similar-to: A relationship between two VPLs

is called similar-to, if the both VPLs look the

same and provide a similar programming

interface. A thin line between L1 and L2
represents this relationship. For example,

Pencil Code is similar-to Scratch due to

several reasons including both VPLs are block

based, and have various similar visual

elements to represent loops, conditions, and

drawing procedures. Thus, we can say that

Pencil Code—Scratch. We have identified this

relationship with the consent of at least two

independent programmers who have

developed multiple programs in both VPLs.

Similar-to relationship is a weaker type of

relationship than based-on.

♦ Refers-to: The weakest type of relationship

between two VPLs is called refers-to. This

relationship represents the fact that the

publication of L2 has referred to L1, thus

indicating that the creators of L2 were aware

of the existence of L1. This relationship

between L1 and L2 is represented by a dotted

line. For example, Progranimate has referred-

to relationship with FLINT as the publication

of Progranimate has made a reference to

FLINT. Thus, we can say that

Progranimate····FLINT.

3. Evolution of VPLs in Two
Generations

In this section, we first provide an overview

of the systematic and rigorous protocol to identify

a comprehensive set of VPLs. Subsequently, we

outline the procedure adopted to reliably mark all

possible relationships between the VPLs. Finally,

we classify these VPLs into two generation based

on the relationships and deduce the design

limitations of each generation of VPLs.

3.1 Protocol of Identifying VPLs

We employed a systematic and rigorous

protocol to identify a comprehensive set of VPLs

[8]. The protocol includes formally defined

inclusion criteria, a systematic procedure to apply

the criteria, and a cross-validation of the

characteristics of the VPLs under consideration.

According to the criteria, a VPL is shortlisted if:

a) it allows implementing basic programming

constructs such as if-condition and loops,

b) these constructs can be implemented using

drag-and-drop, instead of typing textual code,

and

c) enough information about the VPL is

available to evaluate the strengths of its

various characteristics.

The procedure entails generating of a list of
candidate VPLs and screening them to identify the

VPLs that meet the inclusion criteria. As a result

Towards a Universal Framework for Visual Programming Languages

57

of the application of this procedure, 40 VPLs were

identified [9-81]. Table 1 lists these 40 VPLs with

their dates of origin and domains.

Finally, to cross-validate the characteristics

of each VPL five researchers independently

reviewed the documentations of these VPLs and,

whenever possible, developed visual programs in

these VPLs to extract their various characteristics.

The protocol to identify VPLs and gather their

characteristics via cross-validation is depicted in

Fig. 1.

3.2 Identifying Relationships
between VPLs

After identifying 40 VPLs using the

protocol summarized above, we employed a

systematic procedure to mark the three types of

relationship among these VPLs.

Table 1: VPLs and their purpose

 Sr. No. Year VPL Domain/Purpose

First Generation of VPLs

1 1983 Marten (Prograph) General purpose

2 1986 DRAKON Teach Programming basics

3 1986 LabVIEW Data acquisition and visualization

4 1991 Agent Sheets Kid’s education

5 1992 BACCII/BACCII++ Teach Programming basics

6 1992 Analytica Analytical modeling

7 1996 EToys Kids programming

8 1998 Alice Turtle graphics, Games

9 1999 FLINT Teach Programming basics

10 2001 The SFC Editor Teach Programming basics

11 2001 SIVIL Teach Programming basics

12 2004 Raptor Teach Programming basics

13 2004 Larp Teach Programming basics

14 2004 Visual Logic Teach Programming basics

Second Generation VPLs

15 2005 Iconic Programmer Teach Programming basics

16 2005 Scratch Kids games, Animations

17 2006 B# Teach Programming basics

18 2006 Microsoft VPL Robotics

19 2006 Lego Mindstorms Software Robotics

20 2008 StarLogo TNG Turtle graphics

21 2009 Progranimate Teach Programming basics

22 2009 devFlowcharter Teach Programming basics

23 2009 GameSalad Games, Animations

24 2009 Kudo Turtle graphics, Games

25 2010 App Inventor for Android Teach Programming basics

26 2011 Flowcharts Interpreter Teach Programming basics

27 2011 Snap Kids Games

28 2011 Stencyl Kid’s education, Games

29 2011 Touch Develop General purpose, Mobile

30 2012 Blockly General purpose

31 2013 CODE Kids programming

32 2013 Open Roberta Robotics

33 2013 MBlock Robotics, IoT

34 2013 Pencil Code Turtle graphics, Education

35 2013 Dynamo 3D modeling, Art

36 2014 Flowgorithm Teach Programming basics

37 2014 Tynker Kid’s education, Games

38 2015 VIPLE Robotics, IoT

39 2015 Beetle Blocks Turtle graphics 3D

40 2017 BlockPy General purpose, Scientific

Pak. J. Engg. Appl. Sci. Vol. 23, July, 2018

58

Fig. 1: Summary of the Protocol used to identify VPLs and gather their characteristics

The understanding of these relationships

helped us to ascertain whether a VPL has

influenced other VPLs and when a VPL codebase

has benefited the development of other VPLs. The

relationship marking procedure consists of two

steps. In the first step, we formed a team of two

researchers with expertise in using VPLs. Each

researcher worked independently to perform two

tasks. That is, locate the documentation and

publication of each VPL and, whenever possible,

develop example programs in a VPL. Based on the

documentation and the development experience,

each researcher marked a relationship between

VPLs. In the second step, each researcher

reviewed the relationship markings as well as the

underlying rationale of the other researcher. In

conclusion, the relationships included in this study

were developed on a mutual consensus, based on

the interpretation of the available literature and the

experience of using VPLs.

3.3 Evolution of VPLs

As a result of the marking procedure

discussed above, we identified 50 relationships

between the VPLs. These include 10 based-on, 3

similar-to, and 37 refers-to relationships. The list

of all the relationships is presented in Table 2.

The table lists all the individual

relationships between VPLs, however the

evolution of VPLs could not be understood

without depicting these relationships in the context

of time. To this end, in Fig. 2 we have sorted all

the VPLs with respect to the date of their origin

and drawn the relationship between them. In the

Fig. 2, a small solid circle represents a VPL and a

line between VPLs depicts relationships between

them. Note that a solid circle is placed

corresponding to the year of origin of a VPL and

VPLs are sorted with respect to the time of their

origin.

The depiction of relationship provides

valuable insights about the evolution of VPLs. We

observe that there is only a single based-on

relationship till 2004. In contrast, from 2005

onwards multiple VPLs have developed several

based-on relationships between them. Using this

insight, we define two generations of VPLs. The

first generation includes all the VPLs developed

till 2004 whereas the second generation contains

VPLs developed from 2005 onwards. These two

generations of VPLs are represented by different

color schemes in Fig. 2. In the following

subsections, we reflect on the two generations of

VPLs.

Table 2: Relationships of VPLs

Relationship Type Relationships between VPLs

Based-on Marten (Prograph) → Lego Mindstorms Software; Scratch → Snap, Stencyl, MBlock;

Microsoft VPL →VIPLE; Snap → Blockly, Beetle Blocks; Blockly → CODE, Open

Roberta, BlockPy;

Similar-to BACCII/BACCII++ → Iconic Programmer; FLINT → Raptor; Scratch → Pencil Code;

Refers-to LabVIEW → Dynamo; BACCII/BACCII++ → FLINT, Raptor, Scratch, Progranimate;

EToys → Scratch; Alice → Scratch, StarLogo TNG, GameSalad, App Inventor for

Android, Touch Develop, Kudo, CODE; FLINT → The SFC Editor, Raptor,

Progranimate; The SFC Editor → Progranimate; Raptor → Progranimate; Visual Logic

→ B#, Progranimate; Iconic Programmer → Progranimate; Scratch → Kudo,

GameSalad, Touch Develop, Blockly, CODE, Open Roberta; B# → App Inventor for

Android; Microsoft VPL → Lego Mindstorms Software; Lego Mindstorms Software →

Kudo, App Inventor for Android; devFlowcharter → GameSalad; Kudo → CODE; App

Inventor for Android → Touch Develop, Pencil Code; Blockly → Pencil Code; CODE

→ Pencil Code;

Pak. J. Engg. Appl. Sci. Vol. 23 July, 2018 (p. 55–65)

59

3.3.1 First Generation of VPLs

Fig. 2 shows that the first generation VPLs

were developed independently of each other. This

can be inferred from the fact that VPLs of the first

generation have mostly refers-to relationship

between them and only a couple of similar-to

relationships. This indicates that the development

of a new VPL of the first generation did not

benefit from the codebases of existing VPLs. We

argue that there are two possible reasons for this

scarcity of strong relationships between VPLs.

These are, a) lack of modularity in the codebase of

VPLs, and b) the absence of proper documentation

about the underlying design of the VPLs. For

instance, no VPL of this generation has provided

easy to reuse components, which a VPL being

developed could import in order to reduce the time

and effort of its development. One exception is

LabVIEW, whose codebase was used in the

development of Lego Mindstorms Software.

However, it should be noted that the same

organization (i.e., National Instruments) was

involved in the development of Lego Mindstroms

Software and LabVIEW [77]. Thus, we argue that

this based-on relationship does not truly reflect

that Lego Mindstroms has benefited from

LabVIEW due to modularity of its software.

3.3.2 Second Generation of VPLs

Fig. 2 also shows that many second

generation VPLs have based-on, the strongest

form of relationship, with other VPLs of this

generation. We argue that the emergence of

abundant relationships of the strongest form was

caused by two factors: 1) the improved modularity

in the design and code of these VPLs, and 2) the

user-friendly documentation of the VPLs in this

generation. Scratch and Blockly are the two

prominent modular-VPLs in this generation. These

VPLs provide useful pointers for the developers’

community to extend and/or reuse their

functionality. For instance, Blockly has a set of

visual blocks supporting a wide range of

functionalities. Thus, a developer interested in

creating his own VPL could import some of the

blocks provided by Blockly to his VPL by writing

a few lines of code. Furthermore, Blockly also

provides a developers’ tool to create new blocks or

modify the functionality of its existing blocks.

This enabled creation of many languages that have

based-on relationship with Blockly. Although, the

VPLs of the second generation advanced

significantly from the first generation, however,

the VPLs of second generation still benefited from

existing VPL codebase in a limited way. In the

next section, we explain the limitations of the

second generation VPLs and envision future

VPLs.

4. The Third Generation of Future
VPLs

The VPLs of the second generation

advanced significantly from the first generation.

However, the VPLs of second generation had

many limitations. In this section, we present these

limitations and suggest how these limitations

could be overcome in the third generation of

VPLs.

4.1 Need to learn codebase of VPLs

Unlike the first generation of VPLs, the

VPLs of the second generation, such as Scratch

and Blockly, had structured their codebase into

modules. Due to this underlying structure, a

developer of a new VPL does not necessarily

require complete understanding of an existing

VPL codebase to reuse it. Instead, the developer

can change code of a few selected modules and

write new modules to develop a new VPL. This

implies that the developer has to partially

understand codebase of an existing VPL

depending upon the modules he/she wants to reuse

in developing the new VPL. For example, Blockly

uses JavaScript and HTML. Thus, one has to first

learn JavaScript and HTML, and then partially

understand Blockly codebase before reusing it. We

argue that understanding code of an existing VPL,

even partially, still hinders rapid development of

new VPLs.

Ideally, a new VPL developer should be

able to reuse an existing VPL codebase and write

his VPL's new components, without writing a

single line of code in a textual language. This can

be accomplished in two steps. First, identify all the

tasks that need to be performed in order to create a

new VPL. Second, provide a graphical user

interface to accomplish those tasks via drag-and-

drop. Although, one still has to manually type

some of the properties and names but a VPL

development can be done without writing code in

any textual programming language. In this paper,

we propose creation of a universal framework,

VisFra, which defines all the tasks that need to be

accomplished in order to create a VPL. Once this

has been achieved, one can write a GUI to perform

the required tasks using drag-and-drop and create

a new VPL.

Pak. J. Engg. Appl. Sci. Vol. 23, July, 2018

60

4.2 Incompatibility of VPLs

Incompatibility between VPLs is another

key reason that hinders the reuse of VPLs in

developing a new VPL. For instance, two modular

VPLs, which were either developed using two

different TPLs or provide different kind of

modules, cannot be reused simultaneously in the

creation of a new VPL, due to their

incompatibility. This may be the reason why there

does not exist any one-to-many correspondences

between the second generation VPLs, that is, the

reusability is restricted to one-to-one

correspondences (see Fig. 2).

We argue that if multiple compatible VPLs

are provided then a new VPL can reuse many

existing VPLs simultaneously, creating one-to-

many correspondences between VPLs and starting

a new era of reusability. Thus, the VPLs

developed using VisFra, will be mutually

compatible.

4.3 Dependency of VPLs

There are several dependencies associated

with VPLs including, operating system on which

they run, the user interfaces provided by them, and

the textual language(s) in which the textual code

of the VPLs are generated. This means that

changing one of the dependencies requires

significantly rewriting the codebase for the VPL.

For instance, in order to reuse a VPL in Linux that

was originally developed for Windows requires

significant rewriting of code. Similarly, using

VPLs that translate visual programs into Java code

requires significant rewriting of codebase if it is be

reused to translate code in C++. The presence of

these dependencies creates new challenges to the

reusability of VPLs.

To that end, another objective of VisFra is

to make VPLs independent of operating system,

GUI, and the textual language used to develop it.

More specifically, VisFra will employ a modular

and layered approach to divide each task of VPL

development into parts and layers. Hence, for

instance a VPL developer may be able to generate

code in multiple TPLs just by changing the

specific layer of a VPL provided by VisFra for the

TPL support, leaving rest of the VPL code

unchanged.

Fig. 2: The three types of relationship between VPLs

Towards a Universal Framework for Visual Programming Languages

61

Fig. 3 shows a typical VPL developed using

VisFra. This third generation of VPL has n layers.

Each layer has multiple blocks at a maturity level

represented by that layer. The next (higher) layer

builds on the blocks of the previous (lower) layer.

5. Conclusion

Fig. 4 shows the evolution of VPLs in three

generations. In the first generation, a VPL was

composed of a single layer and a single block. To

reuse code of such a VPL one had to adopt more-

or-less the whole codebase and change it to

develop a new VPL. For example, Lego

Mindstorms Software was developed by adopting

codebase of LabVIEW software, only. This kind

of based-on relationship can only exist if some of

the team members involved in the development of

the previous VPL are developing the new VPL

while using their knowledge of the codebase.

Therefore, in the first generation almost all the

VPLs (except one) have either refers-to or similar-

to relationships.

Fig. 3: A typical VPL of the third generation

Figure 4b, shows that VPLs of the second

generation provide blocks, leading to easy to reuse

codebase of VPLs in this generation. However, in

the second generation VPLs, there are three

shortcomings. Firstly, reusing a second generation

VPL requires understanding some of its code and

skills to program in a TPL, thus hindering the

reusability of that VPL. Secondly, the second

generation of VPLs does not provide layers,

therefore a functionality is not confined to a

specific layer designated to it. Hence any change

in their underlying structure, requires a major

revamping in different parts of such a VPL.

Finally, second generation of VPL are mutually

incompatible as their design is not based on a

common framework. Hence, a new VPL being

developed cannot reuse multiple incompatible

existing VPLs codebase.

Fig. 4c, shows that a third generation VPL

could reuse the codebase of several existing VPLs,

if these existing VPLs were developed using the

same universal framework, VisFra. VisFra

provides layers hence confines each functionality

to a specific layer designated to it. The layer

approach enables making a major change in an

existing VPL easy, without effecting other layers

providing different functionalities. Finally, VisFra

enables creating a new VPL using drag-and-drop

of different components thus eliminating the need

to write code in any TPL. The VPL-white in Fig.

4c uses many of the components of VPL-gray and

VPL-green at different layers of its development.

We are currently developing the universal

framework VisFra. It defines ten different layers at

different maturity levels. Based on this framework,

we plan to reproduce selected VPLs and produce

new VPLs to demonstrate its effectiveness. The

details of the framework will be discussed in a

future paper.

a) VPLs of the First Generation b) VPLs of the Second Generation c) VPLs of the Third Generation

Fig. 4: Evolution of VPLs Generations

Pak. J. Engg. Appl. Sci. Vol. 23, July, 2018

62

6. References

[1] McCracken, M., Almstrum, V., Diaz, D.,

Guzdial, M., Hagan, D., Kolikant, Y. B. D.

& Wilusz, T. (2001, December). A multi-

national, multi-institutional study of

assessment of programming skills of first-

year CS students. In Working group reports

from ITiCSE on Innovation and technology

in computer science education (pp. 125-

180). ACM.

[2] Jenkins, T. (2002, August). On the difficulty

of learning to program. In Proceedings of

the 3rd Annual Conference of the LTSN

Centre for Information and Computer

Sciences (Vol. 4, No. 2002, pp. 53-58).

[3] Chang, C. K. (2014). Effects of using Alice

and Scratch in an introductory programming

course for corrective instruction. Journal of

Educational Computing Research, 51(2),

185-204.

[4] Knuth, D. E., & Pardo, L. T. (1980). The

early development of programming

languages. In A history of computing in the

twentieth century (pp. 197-273).

[5] Chao, P. Y. (2016). Exploring students'

computational practice, design and

performance of problem-solving through a

visual programming environment.

Computers & Education, 95, 202-215.

[6] Weintrop, D., & Wilensky, U. (2017).

Comparing block-based and text-based

programming in high school computer

science classrooms. ACM Transactions on

Computing Education (TOCE), 18(1), 3.

[7] Bart, A. C., & Kafura, D. (2017, March).

BlockPy Interactive Demo: Dual Text/Block

Python Programming Environment for

Guided Practice and Data Science. In

Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science

Education (pp. 639-640). ACM.

[8] Muhammad Idrees, Faisal Aslam, Syed

Mansoor Sarwar, and Khurram Shahzad.

"Contextual Ranking of Visual

Programming Languages." Manuscript

submitted for publication.

[9] Flowchart interpreter.

http://vardanyan.am/fi/. Accessed: 2016-08-

10.

[10] Rizvi, M., & Humphries, T. (2012,
October). A Scratch-based CS0 course for

at-risk computer science majors. In

Frontiers in Education Conference (FIE),

2012 (pp. 1-5). IEEE.

[11] Harvey, B., Garcia, D. D., Barnes, T.,

Titterton, N., Miller, O., Armendariz, D. &

Paley, J. (2014, March). Snap!(build your

own blocks). In Proceedings of the 45th

ACM technical symposium on Computer

science education (pp. 749-749). ACM.

[12] Rouly, J. M., Orbeck, J. D., & Syriani, E.

(2014, October). Usability and suitability

survey of features in visual ides for non-

programmers. In Proceedings of the 5th

Workshop on Evaluation and Usability of

Programming Languages and Tools (pp. 31-

42). ACM.

[13] Stencyl.-http://www.stencyl.com/.

Accessed: 2016-08-16.

[14] Horspool, R. N., & Tillmann, N. (2013).

TouchDevelop: programming on the go.

Apress.

[15] Tillmann, N., Moskal, M., de Halleux, J.,

Fahndrich, M., & Xie, T. (2012, April).

Engage your students by teaching computer

science using only mobile devices with

touchDevelop. In Software Engineering

Education and Training (CSEE&T), 2012

IEEE 25th Conference on (pp. 87-89).

IEEE.

[16] Touch develop.

https://www.touchdevelop.com/. Accessed:

2016-08-16.

[17] Touch develop export.

https://www.touchdevelop.com/docs/export-

toapp. Accessed: 2016-08-16.

[18] N Fraser et al. Blockly: A visual

programming editor. URL: https://code.

google. com/p/blockly, 2013.

[19] Marron, A., Weiss, G., & Wiener, G. (2012,

October). A decentralized approach for

programming interactive applications with

javascript and blockly. In Proceedings of the

2nd edition on Programming systems,

languages and applications based on actors,

agents, and decentralized control

abstractions (pp. 59-70). ACM.

[20] Code dot org. https://code.org/about.

Accessed: 2016-08-16.

[21] Kalelioğlu, F. (2015). A new way of

teaching programming skills to K-12

http://www.stencyl.com/

Towards a Universal Framework for Visual Programming Languages

63

students: Code. org. Computers in Human

Behavior, 52, 200-210.

[22] Ketterl, M., Jost, B., Leimbach, T., &

Budde, R. (2016). Tema 2: Open Roberta-A

Web Based Approach to Visually Program

Real Educational Robots. Tidsskriftet

Læring og Medier (LOM), 8(14).

[23] mblock. http://www.mblock.cc/. Accessed:

2016-08-16.

[24] Bau, D., Bau, D. A., Dawson, M., &

Pickens, C. (2015, June). Pencil code: block

code for a text world. In Proceedings of the

14th International Conference on Interaction

Design and Children (pp. 445-448). ACM.

[25] Open source graphical programming for

design. http://dynamobim.org/. Accessed:

2017-09-01.

[26] Flowgorithm. http://www.flowgorithm.org/.

Accessed: 2016-08-10.

[27] Díaz, M., & Luis, J. (2016). REMGRAFEE

TOOL: Herramienta para el estudio de los

sistemas basados en reglas mediante grafos

RETE.

[28] Kumar, D. (2014). Digital playgrounds for

early computing education. ACM Inroads,

5(1), 20-21.

[29] García-Peñalvo, F. J., Rees, A. M., Hughes,

J., Jormanainen, I., Toivonen, T., &

Vermeersch, J. (2016, November). A survey

of resources for introducing coding into

schools. In Proceedings of the Fourth

International Conference on Technological

Ecosystems for Enhancing Multiculturality

(pp. 19-26). ACM.

[30] Viple.

http://neptune.fulton.ad.asu.edu/VIPLE/.

Accessed: 2016-08-16.

[31] Chen, Y., & De Luca, G. (2016, May).

VIPLE: visual IoT/robotics programming

language environment for computer science

education. In 2016 IEEE International

Parallel and Distributed Processing

Symposium Workshops (IPDPSW) (pp.

963-971). IEEE.

[32] Romagosa Carrasquer, B. (2016). From the

turtle to the beetle.

[33] Bart, A. C., Tilevich, E., Shaffer, C. A., &

Kafura, D. (2015, October). Position paper:

From interest to usefulness with BlockPy, a

block-based, educational environment. In

Blocks and Beyond Workshop (Blocks and

Beyond), 2015 IEEE (pp. 87-89). IEEE.

[34] Chin, J. M., Chin, M. H., & Van Landuyt,

C. (2013). A String Search Marketing

Application Using Visual Programming. e-

Journal of Business Education and

Scholarship of Teaching, 7(2), 46-58.

[35] S Mitkin. Drakon: The human revolution in

understanding programs. http://drakon-

editor.sourceforge.net/DRAKON.pdf, 2011.

[36] Travis, J., & Kring, J. (2007). LabVIEW for

everyone: graphical programming made

easy and fun. Prentice-Hall..

[37] Johnson, G. W. (1997). LabVIEW graphical

programming. Tata McGraw-Hill

Education.

[38] Wells, L. K., & Travis, J. (1997). LabVIEW

for everyone: graphical programming made

even easier. Upper Saddle River, NJ:

Prentice Hall PTR.

[39] What is labview? http://www.ni.com/en-

lb/shop/labview.html. Accessed: 2017-09-

01.

[40] Repenning, A. (2000). AgentSheets®: An

interactive simulation environment with

end-user programmable agents. Interaction.

[41] Agentsheets. http://www.agentsheets.com/.

Accessed: 2016-08-16.

[42] Calloni, B. A., & Bagert, D. J. (1994,

March). Iconic Programming in BACCII vs.

Textual Programming: which is a better

learning environment?. In ACM SIGCSE

Bulletin (Vol. 26, No. 1, pp. 188-192).

ACM.

[43] Calloni, B. A., Bagert, D. J., & Haiduk, H.

P. (1997, March). Iconic programming

proves effective for teaching the first year

programming sequence. In ACM SIGCSE

Bulletin (Vol. 29, No. 1, pp. 262-266).

ACM.

[44] Lawhead, P. B., Duncan, M. E., Bland, C.

G., Goldweber, M., Schep, M., Barnes, D.

J., & Hollingsworth, R. G. (2002, June). A

road map for teaching introductory

programming using LEGO© mindstorms

robots. In ACM SIGCSE Bulletin (Vol. 35,

No. 2, pp. 191-201). ACM.

[45] Kay, A. (2005). Squeak Etoys authoring &

media. Viewpoints Research Institute.

[46] Conway, M., Audia, S., Burnette, T.,

Cosgrove, D., & Christiansen, K. (2000,

Pak. J. Engg. Appl. Sci. Vol. 23, July, 2018

64

April). Alice: lessons learned from building

a 3D system for novices. In Proceedings of

the SIGCHI conference on Human Factors

in Computing Systems (pp. 486-493). ACM.

[47] Cooper, S., Dann, W., & Pausch, R. (2000,

April). Alice: a 3-D tool for introductory

programming concepts. In Journal of

Computing Sciences in Colleges (Vol. 15,

No. 5, pp. 107-116). Consortium for

Computing Sciences in Colleges.

[48] Alice. http://www.alice.org/. Accessed:

2016-08-10.

[49] Bhargava, H. K., Sridhar, S., & Herrick, C.

(1999). Beyond spreadsheets: tools for

building decision support systems.

Computer, 32(3), 31-39.

[50] Sfc website.

http://watts.cs.sonoma.edu/SFC/. Accessed:

2016-08-10.

[51] Ziegler, U., & Crews, T. (1999, March). An

integrated program development tool for

teaching and learning how to program. In

ACM SIGCSE Bulletin (Vol. 31, No. 1, pp.

276-280). ACM.

[52] Materson, T. F., & Meyer, R. M. (2001).

SIVIL: a true visual programming language

for students. Journal of Computing Sciences

in Colleges, 16(4), 74-86.

[53] Carlisle, M. C., Wilson, T. A., Humphries,

J. W., & Hadfield, S. M. (2005). RAPTOR:

a visual programming environment for

teaching algorithmic problem solving. Acm

Sigcse Bulletin, 37(1), 176-180.

[54] Nikunja Swain, P. E. (2013). Raptor-A

vehicle to enhance logical thinking. Journal

of Environmental Hazards, 7(4), 353-359.

[55] Raptor, a flowchart-based programming

environment.http://raptor.martincarlisle.com

/. Accessed: 2016-08-10.

[56] Perrin, E., Linck, S., & Danesi, F. (2012).

Algopath: A new way of learning

algorithmic. In in The Fifth International

Conference on Advances in Computer-

Human Interactions.

[57] Logic of algorithms for resolution of

problems (larp).

http://larp.marcolavoie.ca/en/default.htm.

Accessed: 2016-08-10.

[58] Visual logic. http://www.visuallogic.org/.
Accessed: 2016-08-10.

[59] Chen, S., & Morris, S. (2005, June). Iconic

programming for flowcharts, java, turing,

etc. In ACM SIGCSE Bulletin (Vol. 37, No.

3, pp. 104-107). ACM.

[60] Resnick, M., Maloney, J., Monroy-

Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., ... & Kafai, Y. (2009). The

magazine archive includes every article

published in Communications of the ACM

for over the past 50 years. Communications

of the ACM, 52(11), 60-67.

[61] Fincher, S., Cooper, S., Kölling, M., &

Maloney, J. (2010, March). Comparing

alice, greenfoot & scratch. In Proceedings of

the 41st ACM technical symposium on

Computer science education (pp. 192-193).

ACM.

[62] Maloney, J. H., Peppler, K., Kafai, Y.,

Resnick, M., & Rusk, N. (2008).

Programming by choice: urban youth

learning programming with scratch (Vol.

40, No. 1, pp. 367-371). ACM.

[63] Scratch. https://scratch.mit.edu/. Accessed:

2016-08-10.

[64] Koorsse, M., Cilliers, C., & Calitz, A.

(2015). Programming assistance tools to

support the learning of IT programming in

South African secondary schools.

Computers & Education, 82, 162-178.

[65] Greyling, J. H., Cilliers, C. B., & Calitz, A.

P. (2006, July). B#: The development and

assessment of an iconic programming tool

for novice programmers. In Information

Technology Based Higher Education and

Training, 2006. ITHET'06. 7th International

Conference on (pp. 367-375). IEEE.

[66] Microsoft vpl.

https://msdn.microsoft.com/enus/library/bb4

83088.aspx. Accessed: 2016-08-16.

[67] Klassner, F., & Anderson, S. D. (2003).

Lego MindStorms: Not just for K-12

anymore. IEEE Robotics & Automation

Magazine, 10(2), 12-18.

[68] Lawhead, P. B., Duncan, M. E., Bland, C.

G., Goldweber, M., Schep, M., Barnes, D.

J., & Hollingsworth, R. G. (2002, June). A

road map for teaching introductory

programming using LEGO© mindstorms

robots. In ACM SIGCSE Bulletin (Vol. 35,

No. 2, pp. 191-201). ACM.

[69] Resnick, M. (1996, April). StarLogo: an

environment for decentralized modeling and

Towards a Universal Framework for Visual Programming Languages

65

decentralized thinking. In Conference

companion on Human factors in computing

systems (pp. 11-12). ACM.

[70] Wang, K., McCaffrey, C., Wendel, D., &

Klopfer, E. (2006, June). 3D game design

with programming blocks in StarLogo TNG.

In Proceedings of the 7th international

conference on Learning sciences (pp. 1008-

1009). International Society of the Learning

Sciences.

[71] Scott, A., Watkins, M., & McPhee, D.

(2008, July). Progranimate-A Web Enabled

Algorithmic Problem Solving Application.

In CSREA EEE (pp. 498-508).

[72] Scott, A., Watkins, M., & McPhee, D.

(2008, April). E-Learning For Novice

Programmers; A Dynamic Visualisation and

Problem Solving Tool. In Information and

Communication Technologies: From

Theory to Applications, 2008. ICTTA 2008.

3rd International Conference on (pp. 1-6).

IEEE.

[73] Progranimate.

http://www.progranimate.com/. Accessed:

2016-08-10.

[74] Sourceforge devflowcharter.

http://devflowcharter.sourceforge.net/.

Accessed: 2016-08-16.

[75] DeQuadros, M. (2012). GameSalad

Beginner's Guide. Packt Publishing Ltd.

[76] Roy, K., Rousse, W. C., & DeMeritt, D. B.

(2012, October). Comparing the mobile

novice programming environments: App

Inventor for Android vs. GameSalad. In

Frontiers in Education Conference (FIE),

2012 (pp. 1-6). IEEE.

[77] MacLaurin, M. (2009, April). Kodu: end-

user programming and design for games. In

Proceedings of the 4th international

conference on foundations of digital games

(p. 2). ACM.

[78] MacLaurin, M. B. (2011, January). The

design of Kodu: A tiny visual programming

language for children on the Xbox 360. In

ACM Sigplan Notices (Vol. 46, No. 1, pp.

241-246). ACM.

[79] Roberts, R. (2011). Google App Inventor.

Packt Publishing Ltd.

