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Abstract 

The strength parameters such as unconfined compressive strength (UCS) and Modulus of 

Elasticity (E) of rocks are important for design of foundations. Both the parameters are determined in 

laboratory after rigorous and destructive testing. In this study Artificial Neural Network (ANN) 

models are developed for prediction of UCS and E from index test parameters such as Unit Weight (γ), 

porosity (n) and point load index Is(50). Multi variable regression models are also developed to 

compare the accuracy of prediction from different models. Coefficient of determination (R2), Root 

Mean Squared error (RMSE) and Standard Error of Estimate (SEE) has been used as the controlling 

factor to determine the prediction accuracy of both ANN and multivariable regression. The ANN 

models increased the R2 values from 0.53 to 0.72 and 0.51 to 0.75 for UCS and E respectively. The 

variation between experimental and predicted values of UCS and E for ANN model are ± 23% and ± 

29% and for regression model are ± 40% and ± 31% respectively. 

Key Words:  Artificial neural network, multivariable regression, unconfined compressive strength, 

Modulus of Elasticity 

 

1. Introduction 

Foundation of various civil engineering 

structures such as roads, bridges, tunnels, dams, 

harbors and high rise buildings are constructed up to 

natural rock beds. Therefore, it becomes important to 

analyze the behavior of rocks under the loads 

transferred from various structures on them. 

Unconfined compressive strength (UCS) and 

Modulus of Elasticity (E) are obligatory parameters 

for geotechnical design and evaluation of rock 

behavior. These measurement necessitates the 

recovery of high quality core specimen from the 

field. In laboratory rigorous and destructive tests are 

performed on the test specimens. At prefeasibility 

and preliminary design stages, these procedures are 

costly and time consuming. Therefore, it is preferred 

that indirect test methods may be used for the 

prediction of UCS and E. Artificial Neural Network 

(ANN) is being used as an alternate of statistical 

analysis for prediction of unknown geotechnical 

parameters. Its prediction accuracy is higher and it 

models real time complex field problems. ANN is 

mathematical models consisting of neurons in different 

layers. ANN is similar to biological neurons in human 

brain, which are interconnected with other neurons in 

subsequent layers [1]. The neurons communicate with 

each other by sending a signal over a large array of 

interconnected neurons having biased and weighted 

connections. A typical neural network model consists 

of input layer, hidden layer and output layer. Each of 

the layers consists of different number of neurons and 

has its own weights and biases. The weights and biases 

are adjusted during the training of ANN [2]. Various 

researchers [3], [4], [5], [6], [9], [13] and [15] have 

proposed empirical models to predict UCS and E 

from index test parameters. 

Neural Network model is developed using feed 

forward back propagation algorithm with four layers, 

input layer of 4 neurons, two hidden layers of 20, 30 

neurons and one output layer of 2 neurons [3]. The 

outputs from multivariable regression equation are 

compared with outputs of neural network. It is noted 

that neural network predicted regression coefficients 

of 0.96 for E and 0.93 for UCS of gypsum rock from 

input parameters of slake durability index, point load 

index, effective porosity and Schmidt hammer 

hardness. The performance indices such as root mean 

square error (RMSE) and variance account for (VAF) 

are 2.65, 2.28 and 92, 91 for UCS and E, 

respectively. In other study carbonate rock samples 

are collected from various stone processing plants in 

Turkey [4]. The laboratory tests were carried for the 

development of prediction models for UCS from 

Schmidt hammer test. In the comparative analysis of 



Empirical Estimation of Unconfined Compressive Strength and Modulus of Elasticity Using ANN 

 99 

results obtained from regression analysis and neural 

network model coefficient of determination (R2), 

RMSE, VAF indices are 0.39, 46.51, 12.45 for 

regression and 0.96, 7.92, 95.84 for neural network 

model. It shows the prediction accuracy of ANN is 

significantly better than the regression analysis. 

Carbonate rock travertine and limestone from the 

villages in Kaklik, Kocabas, Honaz in Danzili Basin, 

Turkey for the study are collected [5]. A neural feed 

forward propagation model is developed having 

network architecture of input layer 5 neurons, hidden 

layer 2 neurons and output layer 2 neurons. UCS and 

E parameters are predicted from five rock properties 

namely dry unit weight, effective porosity, Schmidt 

hardness rebound number, p-wave velocity and slake 

durability cycles. Multi regression models are also 

developed for comparison. Results showed that R2 is 

0.55 for regression model and 0.66 for ANN model 

predicting UCS. R2 is 0.66 for regression and 0.72 for 

ANN model predicting E. The neural network model 

gave precise values as average performance indices 

are higher than regression model. Neural Network 

model with feed forward back propagation training 

algorithm for prediction of UCS of rocks is 

developed [6]. Rock samples are collected from 

various coal fields in Iran and the standard cores are 

extracted to perform laboratory tests. The 93 number 

dataset including Schmidt hardness, density, porosity 

and UCS parameters is developed from laboratory 

test. The ANN model R2, VAF and mean absolute 

error (Ea) and mean relative error (Er) are calculated 

as 97.25%, 95.65,%, 0.0942 MPa, 1.1127% 

respectively, 89.88%, 91.61%, 0.1117 MPa, 2.3422 

are calculated for regression model. The ANN 

models performance indices indicate better results 

than the models developed from the regression. In 

 

 

 

 

 

 

 

 

 

 

 

this study effort has been made to develop predictive 

models for the estimation of UCS and E from rock 

type (RN), unit weight (γ), porosity (n) and point load 

index Is(50) 

2. Sampling Location 

The Kohala hydro power project is located in 

Muzaffarabad district, and the dam site is on 

Jhelum River. The area has large formations of 

sedimentary rocks. It mainly includes Sand stone 

and Shale rock. The Basha dam site is located in 

northern area in Kohistan, Pakistan. The sampling 

location is shown in Figure 1. At dam site the rock 

formation are of mafic intrusive rocks which 

include mainly two types of rock i.e. Gabbronorite 

and Ultramafic Association. In order to determine 

strength characteristics of rock formations a 

detailed in-situ and laboratory testing plan is 

proposed. The UCS, E and other index test 

parameters are determined in laboratory by the test 

procedures outlined by American Society of 

Testing and Materials [8]. Numerical description 

of rock type is given in Table 1 and the database of 

143 dataset is presented in Table 2. Pictorial view 

of rock samples and testing is shown in Figure 2. 

Table 1 Numerical description of rock samples; 

(Gul, 2015) 

Rock 

Number 
Rock Type (RN) 

Unit Weight 

(kN/m3) 

1 Ultramaffic Association 27.37 – 34.14 

2 Gabbronorite 26.87 – 33.45 

3 Sand Stone 22.46 – 28.45 

4 Shale 24 – 24.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1   Sampling Location at Diamer Basha dam and Kohala hydro power station sites; (Munir, 2014) 
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Table 2   Continued 

Table 2    Dataset prepared from laboratory tests; (Gul, 2015) 

Sr. 

No. 

Sample 

number 
Rock type Depth (m) ã (kN/m3) n (%) 

Is(50) 

(MPa) 

UCS 

(MPa) 

E 

(GPa) 

1 G-35 UMA 27.68-28.12 32.08 3.430 2.55 60 29.39 

2 G-36 UMA 30.72-30.90 30.21 2.760 2.19 30 17.91 

3 G-40 UMA 39.40-39.57 29.04 2.110 9.21 87 78.41 

4 G-41 UMA 45.57- 46.04 32.96 1.500 1.98 62 26.53 

5 G-42 UMA 55.00-55.63 32.96 1.150 3.16 61 33.42 

6 G-43 UMA 58.17-58.50 31.10 1.100 4.39 58 40.01 

7 G-44 UMA 65.43-65.90 32.77 1.430 3.07 46 28.23 

8 G-45 UMA 65.00-65.25 32.08 2.000 2.63 45 25.23 

9 G-46 UMA 66.92-67.10 34.14 2.170 2.33 15 14.13 

10 G-47 Gabbronorite 73.08-73.48 27.76 0.650 6.95 102 69.25 

11 G-48 UMA 75.00-75.14 32.08 5.940 2.3 34 19.82 

12 G-49 UMA 79.53-79.89 33.65 2.020 3.92 75 42.40 

13 G-50 Gabbronorite 96.32-96.84 31.98 3.350 7.67 102 73.65 

14 G-51 Gabbronorite 103.64-104.33 32.18 2.920 11.85 62 86.81 

15 G-52 UMA 106.17-106.55 32.37 0.510 7.54 70 62.96 

16 G-53 Gabbronorite 110.07 -110.35 33.16 2.600 2.67 50 27.03 

17 G-54 Gabbronorite 117.00-117.46 33.45 1.180 5.84 96 60.62 

18 G-55 UMA 34.23-34.53 30.51 2.350 11.26 112 73.62 

19 G-56 UMA 34.65-34.80 31.20 0.790 1.71 75 28.90 

20 G-57 UMA 29.23-29.60 34.04 1.460 2.61 53 27.59 

21 G-58 Gabbronorite 117.99-118.33 32.47 2.330 5.47 53 45.06 

22 G-59 UMA 107.25-107.55 32.77 1.620 2.32 96 39.63 

23 G-61 Gabbronorite 30.00 - 30.30 29.53 0.812 9.21 106 67.6 

24 G-62 Gabbronorite 49.27 - 49.53 29.18 2.390 9.05 95 58 

25 G-63 Gabbronorite 51.75 - 52.00 28.56 1.570 6.48 128 38.3 

26 G-64 Gabbronorite 127.53 - 127.65 28.01 1.310 7.85 94 58 

27 G-65 Gabbronorite 49.65 - 50.00 27.55 0.850 11.54 120 72 

28 G-66 Gabbronorite 35.08 - 35.35 27.76 2.640 9 94 93.2 

29 G-67 Gabbronorite 51.78 - 52.09 27.95 2.140 11.2 103 98.1 

30 G-68 Gabbronorite 30.50 - 30.74 28.34 2.870 11.69 108 101 

31 G-69 Gabbronorite 95.50 - 95.76 28.27 1.970 7.03 117 59.5 

32 G-70 Gabbronorite 95.76 - 96.00 28.54 1.640 5.23 116 41.3 

33 G-71 Gabbronorite 101.62 - 101.90 27.82 1.240 7.01 90 69.2 

34 G-72 Gabbronorite 116.54-116.85 28.06 0.550 9.12 113 91 

35 G-73 Gabbronorite 130.40 - 130.65 28.17 0.870 5.68 129 50.6 

36 G-74 Gabbronorite 130.65 - 130.9 28.31 0.560 7 143 69 

37 G-75 Gabbronorite 58.33 - 58.58 26.87 1.271 5.91 117 49.7 

38 G-76 Gabbronorite 37.25 - 37.48 27.66 1.238 6.45 92 28.6 

39 G-77 Gabbronorite 37.48 - 37.75 27.76 1.206 7.8 109 73 

40 G78 Gabbronorite 99.67 - 99.95 27.62 1.173 6.82 90 79.1 

41 G-79 Gabbronorite 143.50 - 143.82 27.24 1.140 6.17 116 72.8 

42 G-80 Gabbronorite 30.35 - 30.61 27.57 1.107 5.8 72 30.1 

43 G-81 Gabbronorite 27.36 - 37.61 27.47 1.074 3.34 75 32.9 

44 G-82 Gabbronorite 130.02 - 130.62 27.68 1.041 3.71 63 37.8 

45 G83 Gabbronorite 50.93 - 51.20 27.76 1.008 7.54 95 53.7 

46 G-84 Gabbronorite 75.25 - 75.52 27.37 0.976 4.6 91 42 

47 G85 Gabbronorite 156.28 - 156.55 26.98 0.943 4.14 87 18.5 

48 G-86 Gabbronorite 156.55 - 156.83 27.80 0.910 3.36 71 20.4 

49 G-87 Gabbronorite 82.60 - 82.90 27.45 0.877 1.71 46 11.2 

50 G-88 Gabbronorite 35.60 - 35.85 27.11 0.844 3.1 69 3.7 

51 G-89 Gabbronorite 35.85 - 36.11 26.93 0.811 3.41 75 23.7 

52 G-90 Gabbronorite 59.30-59.78 28.25 0.426 7.26 123 77.58 

53 G-91 Gabbronorite 92.52-92.98 28.65 0.319 5.4 80 52.94 

54 G-92 Gabbronorite 68.50-68.85 28.25 1.230 6.76 80 68.3 

55 G-93 Gabbronorite 84.12-84.54 28.65 0.649 10.26 96 65 

56 G-94 Gabbronorite 100.01-100.37 28.84 0.369 14 148 98 

57 G-95 Gabbronorite 104.1-104.47 28.65 0.783 9.71 127 37.1 

58 G-96 Gabbronorite 152.78-153.13 28.74 0.679 10.29 133 88 

59 G-97 Gabbronorite 155.1-155.55 28.84 0.568 10.87 126 77 
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Table 2   Continued 

Table 2   Continued 

Sr. 
Sample 

number 
Rock type Depth (m) ã (kN/m3) n (%) 

Is(50) 

(MPa) 

UCS 

(MPa) 

E 

(GPa) 

60 G-98 Gabbronorite 166.44-166.81 28.84 0.565 7.84 88 45.7 

61 G-99 Gabbronorite 168.60-169.01 29.23 0.771 10.57 100 86.4 

62 G-100 UMA 27.29-27.63 28.06 1.402 11.06 125 95.6 

63 G-101 UMA 27.24-27.54 27.96 0.306 10.2 115 77 

64 G-102 UMA 33.92-34.14 27.37 1.270 8.08 115 85.8 

65 G-103 UMA 36.97-37,27 27.57 1.536 9.36 138 114 

66 G-104 UMA 39.47-39.74 27.76 0.442 10.87 104 55 

67 G-105 UMA 52.55-52.86 28.06 0.513 10.78 124 82 

68 G-106 UMA 54.50-54.78 29.14 0.196 11.64 126 84 

69 G-107 UMA 55.05-55.35 28.06 0.615 11.54 126 84 

70 G-108 UMA 56.72-57.01 28.74 0.503 12.6 124 101 

71 G-109 UMA 62.71-62.95 28.35 1.655 9.03 78 13.2 

72 G-110 UMA 117.66-118.00 32.67 0.351 9.66 113 73 

73 G-111 UMA 121.45-121.72 32.27 1.006 8.12 89 88.3 

74 G-112 UMA 107.47-107.78 32.18 1.615 6.35 80 76.3 

75 G-113 UMA 48.00-48.32 28.35 0.963 8.39 74 36.9 

76 G-114 UMA 44.64-45.00 32.08 0.589 10.31 111 57.8 

77 G-115 Gabbronorite 124.6-124.93 29.14 0.512 12.18 130 47 

78 G-116 Gabbronorite 162.14-162.42 28.65 0.441 9.52 110 66 

79 G-117 Gabbronorite 187.97-188.34 28.35 1.148 6.14 74 16.5 

80 G-118 Gabbronorite 77.64-78.00 28.65 0.743 6.35 58 13.5 

81 G-119 Gabbronorite 131.64-132.00 28.25 1.134 3.39 99 23 

82 G-120 Gabbronorite 138.00-138.35 28.45 0.926 5.93 81 40.3 

83 G-121 Gabbronorite 72.29-72.59 28.35 1.081 6.79 85 43.2 

84 G-122 Gabbronorite 43.58-43.95 28.55 0.317 10.78 108 73.6 

85 G-123 Gabbronorite 75.00-75.32 28.45 0.788 7.93 71 26.3 

86 G-124 Gabbronorite 107.85-108.15 28.65 0.821 7.26 86 59 

87 G-125 Gabbronorite 122.09-122.46 29.14 1.271 7.93 89 27.9 

88 G-126 Gabbronorite 144.38-144.72 28.65 1.025 5.62 47 42.4 

89 G-127 Gabbronorite 49.02-49.32 28.94 0.678 7.48 68 55.4 

90 G-128 Gabbronorite 96.03-96.32 28.94 0.669 11.79 158 114 

91 G-129 Gabbronorite 90.07-90.38 28.94 0.137 10.97 121 73 

92 G-130 Gabbronorite 90.64-90.93 29.04 0.312 11.24 161 106 

93 G-131 Gabbronorite 136.74-137.03 29.23 0.494 10.31 114 24.3 

94 G-132 Gabbronorite 145.10-145.43 29.23 0.535 7.48 121 51.3 

95 G-133 Gabbronorite 46.13-46.42 29.14 0.642 11.29 121 45 

96 G-134 Gabbronorite 70.95-71.29 28.45 0.626 10.47 74 27.5 

97 G-135 Gabbronorite 165.16-165.47 28.06 0.804 9.02 83 35.8 

98 G-136 Gabbronorite 79.71-79.99 28.06 0.335 9.97 148 56.9 

99 G-137 Gabbronorite 37.67-38.02 28.65 0.403 10.95 92 56.9 

100 G-138 Gabbronorite 34.51-34.82 28.55 0.388 10.63 91 55.1 

101 G-139 Gabbronorite 49.28-49.59 28.74 0.335 12.44 128 85 

102 BH2-1 Sand Stone 61.60 24.15 3.300 5.00 21.56 32.46 

103 BH2-3 Sand Stone 65.00 24.65 2.400 6.11 75.00 38.29 

104 BH2-8 Sand Stone 89.20 26.00 3.300 9.44 75.00 37.79 

105 BH2-10 Sand Stone 102.50 25.00 4.000 6.39 27.45 42.77 

106 BH15-3B Sand Stone 50.30 25.89 7.400 0.83 48.60 15.36 

107 BH15-3C Sand Stone 50.50 26.00 3.500 2.78 61.00 47.07 

108 BH15-4 Sand Stone 55.70 26.34 6.100 3.61 74.20 40.25 

109 BH15-11 Sand Stone 89.20 26.76 4.200 6.11 52.00 31.63 

110 BH15-13 Sand Stone 105.10 27.00 5.400 5.00 31.60 35.56 

111 BH10-5 Sand Stone 31.00 27.12 6.000 4.86 45.57 39.03 

112 BCD1-1 Sand Stone 188.50 27.56 4.000 8.33 115.63 81.89 

113 BCD1-5 Sand Stone 264.30 28.12 4.800 3.61 38.55 29.22 

114 BCD1-5 Sand Stone 265.10 28.12 5.000 1.00 23.00 11.60 
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Fig. 2 Rock samples (a) Gabbronotite rock (b) UMA 

rock (c) Rock cores of Sand Stone and Shale 

(d) UCS test in progress on rock sample 

(Munir, 2014) 

Table 2   Continued 

Sr. 
Sample 

number 
Rock type Depth (m) ã (kN/m3) n (%) 

Is(50) 

(MPa) 

UCS 

(MPa) 

E 

(GPa) 

115 BCD2-1 Sand Stone 96.30 28.00 4.560 3.33 42.84 28.84 

116 BH4-9 Sand Stone 52.60 27.89 3.000 7.54 79.00 26.46 

117 BH5-5 Sand Stone 89.80 28.45 5.800 3.07 65.81 34.36 

118 BH21-1 Sand Stone 34.00 28.00 3.200 1.25 14.82 7.47 

119 BH23-2 Sand Stone 56.20 27.76 4.000 5.24 68.60 48.54 

120 BH28-1 Sand Stone 41.50 26.87 7.100 5.23 24.82 34.87 

121 BH31-1 Sand Stone 29.20 27.50 3.100 4.25 13.36 25.34 

122 BH09-1 Sand Stone 18.50 25.00 3.800 3.61 33.15 27.56 

123 BH09-7 Shale 28.10 24.07 6.100 5.55 73.00 31.49 

124 BH09-9 Sand Stone 37.80 27.14 2.500 3.05 92.59 42.47 

125 BH09-15 Sand Stone 70.20 27.34 3.600 6.39 61.00 25.54 

126 BH18A-1 Sand Stone 22.30 28.14 3.150 2.78 68.58 33.45 

127 BH18A-2 Sand Stone 35.80 25.00 5.500 4.44 33.72 32.80 

128 BH18A-5 Sand Stone 72.10 24.17 6.000 4.16 30.00 7.11 

129 BH18A-9 Sand Stone 78.20 24.11 7.200 2.50 58.00 13.24 

130 BH18A-15 Sand Stone 87.40 28.34 2.890 4.44 81.00 15.10 

131 BH26-1 Sand Stone 95.70 27.21 3.780 6.66 37.15 47.42 

132 BH26-2 Sand Stone 130.40 24.00 5.900 2.22 27.43 17.29 

133 BH26-6c Sand Stone 253.80 26.76 3.230 7.22 59.44 57.74 

134 BH26-14b Shale 338.80 24.00 6.230 10.00 71.00 61.46 

135 BH11-1 Sand Stone 22.20 26.50 4.210 3.37 40.00 20.23 

136 BH11-3 Sand Stone 29.50 23.74 5.400 6.18 34.28 43.60 

137 BH11-8 Sand Stone 48.40 26.14 4.560 11.80 113.51 102.43 

138 BH01-2 Sand Stone 33.50 23.50 2.890 1.62 11.21 8.62 

139 BH01-3 Sand Stone 39.20 26.00 5.000 2.34 36.00 31.19 

140 BH01-22 Sand Stone 106.30 23.24 3.400 3.03 18.00 21.61 

141 BH03-9 Sand Stone 60.60 23.12 6.400 4.13 18.00 11.97 

142 BH14-8 Sand Stone 167.30 22.46 5.470 2.48 27.00 51.68 

143 BH16-6 Sand Stone 51.30 23.00 7.000 3.58 22.00 17.16 
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3. Statistical Analysis of Dataset 

The maximum, minimum, average and standard 

deviation of the dataset are shown in        Table 3. 

The standard deviation between values of Is(50), UCS 

and E is 3.23 MPa, 35.24 MPa and 27.1 GPa, 

respectively. It shows that mechanical behavior of 

rock is variable due to geological conditions of 

individual project sites. However prediction accuracy 

of mathematical models increase when data is 

normally distributed and outlier values are less 

significant [10]. The histogram plots are shown in 

Figure 3. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Histogram plots of (a) Is(50) (b) UCS (c) E 

Table 3 Summary of statistical values of Inputs and 

Outputs parameters 

Statistical Analysis of Dataset (N=143) 

Para-

meters 

Ã 

(kN/m3) 

n 

 (%) 

Is(50) 

(MPa) 

UCS 

(MPa) 

E 

(GPa) 

Max. 34.14 7.40 14 161 114 

Min. 22.46 0.14 0.83 11.21 3.7 

Avg. 28.29 2.19 6.67 80.93 49.3 

St.dev. 2.39 1.90 3.23 35.24 27.1 

Range 
22.46 – 

34.14 

0.14 – 

7.40 

0.83 - 

14 

11.21 – 

161 

3.7 - 

114 

 

3.1 Selection of Inputs Parameters for 
Model 

The coefficient of correlation (R) between 

different parameters rock number, unit weight, 

porosity, point load, unconfined compressive strength 

and modulus of elasticity is shown in Table 4. The 

absolute value of R near to 1 shows good correlation 

and near to zero show weak correlation between 

individual parameters. These observations are 

presented in past studies for prediction of compaction 

parameters of coarse grained soils [11]. The 

parameter UCS cross correlation with RN, ã, n, Is(50) 

gave values of R-0.40, 0.23, -0.64 and 0.73 

respectively. The parameter E cross correlation with 

RN, ã, n, Is(50), UCS gave values of R -0.30, 0.15, -

0.38, 0.71 and 0.71, respectively. The weak value of 

correlation is observed for parameter ã with UCS and 

E. 
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Table 4: Cross correlation between parameters of 

dataset (N=143)  

  RN 
ã 

(kN/m3) 

n  

(%) 

Is(50) 

(MPa) 

UCS 

(MPa) 

E  

(GPa) 

RN 1      

ã (kN/m3) -0.72 1     

n (%) 0.67 -0.48 1    

Is(50) (MPa) -0.26 0.09 -0.48 1   

UCS (MPa) -0.40 0.23 -0.64 0.73 1  

E (GPa) -0.30 0.15 -0.38 0.71 0.71 1 

 

4. Data Analysis 

In this study the data is analyzed by using two 

techniques, Multivariable regression analysis 

(MVRA) and ANN to compare the prediction 

accuracy of models. In MVRA, mathematical 

equations are developed to predict the dependent 

variable (UCS and E) from the independent variables 

(rock number, unit weight, porosity and point load 

strength). The statistical software package SPSS 16 is 

used to develop regression models. The regressions 

equations are shown in Table 5. The increase in 

number of input variables has relatively produced 

higher regression coefficients. Model 3 and Model 6 

equation has R2 value of 0.64 and 0.65 respectively. 

This indicated that 65% of the data used for model 

development can be estimated using these MVRA 

models. 

Table 5 MVRA equations for the prediction of UCS 

and E 

Para-

meter 
Model Equation R2 

UCS Model 1 61.27)I(8UCS )50(3   0.53 

 Model 2 
36.7)RN(78.10UCS   

4.54)I( )50(3   
0.58 

 Model 3 
)(0099.0)RN(51.0UCS   

17.57)I(03.6)n(9.6 )50(3   
0.64 

E Model 1 46.5)UCS(54.0E   0.51 

 Model 2 
 )I(03.4E )50(3  

49.0)UCS(27.0   
0.62 

 Model 3 

 )(66.0)RN(32.4E  

33.0)I(16.4)n(52.3 )50(3   

23)UCS(   

0.65 

4.1 ANN Model Development 

A multi layer neural network (MLNN) consists of 

three layers namely; input layer, hidden layer and 

output layer as mentioned earlier. The training 

algorithm feed forward back propagation is used for 

training the dataset. Weight and biases are adjustable 

parameters of ANN structure which are fine tuned by 

training algorithm keeping in view the input and the 

target output values to make the neural network fit the 

dataset. The data from the input layer is sent to hidden 

layer. It is summed up after applying weight and biases 

[12]. The general ANN equation is shown in Equation 

1. 
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Where fn is the transfer function, h is the number 

of neurons in hidden layer, xi is the input value, m is 

number of input variables, wik is the connection weight 

between ith layer of input, and kth neuron of hidden 

layer, wk is the connection weight between kth neuron of 

hidden layer and single output neuron, bhk is the bias at 

the kth neuron of hidden layer and bo is the bias at 

output layer and P is the predicted output. Transfer 

function is used to map the weighted sum of the input 

neuron to the output neuron. In the hidden layer non-

linear transfer function Tan sigmoid (Tansig) is used to 

calculate output. It takes input values in the range of 

positive and negative infinity and produce output in -1 

and 1 range [13]. The Tan sigmoid transfer function is 

shown in Equation 2. The linear transfer function pure 

linear (Purelin) is used to calculate output in output 

layer of neural network architecture. The Purelin 

transfer function takes input values in the range of 

positive and negative infinity and produce output in the 

same range. The Pure linear transfer function is shown 

in Equation 3. 

Tansig (x) =  
x2

x2

e1

e1







 (2) 

Purelin (x) = y (3) 

The Mean Squared Error (MSE) is the controlling 

function for stopping the training process. It is 

calculated by comparing the measured output (Om) and 

predicted output (Op) value as shown in Equation 4 

[14], [15]. 
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MSE = 0.5 2
pm

n

1n
)OO(  

 (4) 

The weights are re-adjusted in neural network 

architecture and training of network is continued till the 

sum of MSE between target and output layer falls in an 

acceptable range. The each cycle of training the 

network is called epochs. In this process the learning 

rate (ç) is important parameters in training of network. 

If the learning rate is too small the training will be 

slow. If the value is large the training of network will 

not achieve the desired error goal. After various trial 

and errors optimum value of ç = 0.01 is selected for 

training [16]. Neural network toolbox (MATLAB 

version 8.2.0.701) is used for the analysis. A sample of 

neural network architecture developed in this study is 

shown in Figure 4. 

 

Fig. 4 The ANN architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

In MATLAB built-in data division function 

divides total dataset into 70% for training and 30% for 

validation and testing. To find an optimum architecture 

for neural network the numbers of neurons in hidden 

layer are adjusted by trial and error procedure. Hence 

various models are developed by varying the size of 

hidden layer for prediction of UCS and E. The R2 and 

RMSE are the controlling factors for the selection of 

optimum models. The results of different models are 

presented in Table 6. The value of R2 and RMSE are 

calculated by Equation 5 and 6. 

2N

1iN
1 )yy(RMSE   

 (5) 
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)0y(

)yy(
1R
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
  (6) 

Where measured value is denoted by (y), 

predicted value (y') and mean (ȳ) respectively. The 

RMSE value close to zero and R2 close to 1 represent 

that predicted and measured value has minimum error 

in prediction. The statistical performances of models 

show that for the prediction of UCS, Regression 

Model 1, 2 and 3 has R2 value of 0.53, 0.58 and 0.64 

respectively. Neural network model 4, 5 and 6 with 

same input and output parameters has R2 value of 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6   Results of different models for prediction of UCS and E 

Prediction 

Model 
Model Model Inputs 

Network 

Architecture 

Model 

Output 

ANN 

Analysis 
R R2 RMSE 

Regression Model 1 Is(50)  UCS  0.73 0.53 34.50 

 Model 2 RN, Is(50)    0.76 0.58 33.39 

 Model 3 RN, γ, n, Is(50)    0.80 0.64 32.44 

ANN Model 4 Is(50) 1-2-1  Training 0.75 0.56 24.19 

     Testing 0.68 0.46  

 Model 5 RN, Is(50) 2-5-1  Training 0.83 0.69 20.73 

     Testing 0.83 0.69  

 Model 6 RN, γ, n, Is(50) 4-45-1  Training 0.88 0.77 19.21 

     Testing 0.80 0.64  

Regression Model 1 UCS  E  0.71 0.51 18.34 

 Model 2 Is(50), UCS    0.79 0.62 16.08 

 Model 3 RN, γ, n, Is(50) , UCS    0.81 0.65 15.37 

ANN Model 4 UCS 1-2-1  Training 0.74 0.55 17.86 

     Testing 0.71 0.50  

 Model 5 Is(50), UCS 2-5-1  Training 0.86 0.74 15.34 

     Testing 0.75 0.56  

 Model 6 RN, γ, n, Is(50), UCS 5-29-1  Training 0.86 0.74 13.59 

     Testing 0.88 0.77  
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0.56, 0.69 and 0.77 after training of the networks. 

This indicates significant increase in the R2 value and 

non-linear fitting of data by neural network 

architecture. The results of the same models are 

further analyzed by calculating RMSE to select the 

optimum model. After comparing all the models 

developed with regression and neural network 

technique lowest value of RMSE is 19.21 of Model 6 

predicting UCS. The plot of measured and predicted 

values of Model 3 (regression) and Model 6 (neural 

network) is shown in Figure 5. For prediction of E 

the regression Model 1, 2 and 3 has R2 value of 0.51, 

0.62 and 0.65 respectively. Neural network model 4, 

5 and 6 has R2 value of 0.55, 0.74 and 0.74 after 

training of the network. This also indicates 

significant increase in the R2 value and non-linear 

fitting of data by neural network architecture. The 

lowest value of RMSE is 13.59 for Model 6. The plot 

of measured and predicted values of Model 3 

(regression) and Model 6 (neural network) is shown 

in Figure 6. The RMSE plot is shown in Figure 7. 

 
(a) 

 
(b) 

Fig. 5 Plot of Experimental and Predicted UCS (a) 

MVRA Model (b) ANN Model 

 

(a) 

 

(b) 

Fig. 6 Plot of Measured and Predicted E (a) MVRA 

Model (b) ANN Model 

4.2 ANN Model with Two Outputs 

ANN has the ability to predict two outputs 

simultaneously from the input data. The neural 

network architecture having two neurons in output 

layer is shown in Figure 8. The values of rock 

number, unit weight, porosity, point load from the 

neurons in input layer are transferred to the hidden 

layer. Two parameters UCS and E are obtained at the 

output layer. As previously mentioned numbers of 

neurons in hidden layer are adjusted by trial and error 

to arrive at optimum network. Neural network toolbox 

(MATLAB version 8.2.0.701) is used for the analysis. 

The results of the developed models are presented in 

Table 7. The assessment of developed models 

indicate that Model 4 after training has R2 value of 

0.83 and RMSE value of 20.31 and 17.61 

respectively for prediction of UCS and E. The values  
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of controlling factors show higher values in 

comparison to other models. The plot for both 

predicted and measured values of UCS and E is 

shown in Figure 9. The RMSE plot is shown in 

Figure 10. 

4.3 Mathematical Formulation of ANN 
Model 

The mathematical equation for prediction of 

UCS is formulated considering Equation 1 [17]. 

Weight and biases matrix is obtained from trained 

neural network Model 6 having network architecture 

4-45-1 as discussed in model development section. 

The Equation 7 is suggested for prediction of UCS. 

Whereas Tanh and Purelin are transfer function, 

(IWji) input weight matrix, (bij) input bias matrix, 

(LW) output layer weight matrix and 1.0604 is the 

output layer bias value.  The  input  layer  weight and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bias matrix values are shown in Table 8.  Similarly 

the Equation 8 for prediction of E is also suggested 

utilizing the weight and bias matrix obtained from 

Model 6 having trained neural network architecture 

5-29-1. The input layer weight and biases matrix are 

shown in Table 9.  

 

Fig. 8 ANN architecture with two neurons in output 

layer 

   

Fig. 7 RMSE plot of MVRA and ANN model (a) UCS (b) E 

Table 7 Result of ANN models with neurons in output layer 

Network 

Model 

Input 

Parameter 

Output 

Parameter 

Network 

Architecture 

ANN 

Analysis 
R R2 RMSE 

       UCS E 

Model 1 Is(50) UCS, E 1-12-2 Train 0.84 0.71 23.82 16.86 

    Test 0.75 0.56   

Model 2   1-37-2 Train 0.88 0.77 24.23 16.56 

    Test 0.62 0.38   

Model 3 RN, γ, n, Is(50) UCS, E 4-7-2 Train 0.82 0.67 22.43 18.45 

    Test 0.76 0.58   

Model 4   4-25-2 Train 0.91 0.83 20.31 17.61 

    Test 0.65 0.42   
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(a) 

 

(b) 

Fig. 9 Plot of measured and predicted (a) UCS (b) E 

 

Fig. 10 RMSE plot of ANN model with two neurons in 

output layer 

jiIW[TanhLW[PurelinUCS  

]0604.1]b]IsnRN[ ij)5(   (7) 

jiIW[TanhLW[PurelinE   

]183.0]b]UCSIsnRN[ ij)5(   (8) 

Table 8 Weight and Biases values between input 

hidden layers for UCS model 

IWji bij LW 

-0.741 0.990 -2.424 -2.385 3.634 -0.069 

1.334 -1.580 2.780 -1.046 -3.635 0.692 

2.409 1.272 2.430 -0.092 -3.224 0.560 

-0.244 -3.576 0.509 -1.501 1.633 0.492 

0.800 1.557 -0.873 -2.933 -2.484 0.225 

-1.585 -0.609 -2.203 2.334 3.207 0.724 

2.287 -2.428 0.599 1.124 -2.709 0.101 

-0.063 -0.205 -2.008 -2.701 -2.683 -0.516 

-1.726 1.202 -2.332 -1.705 2.321 -0.086 

-0.355 2.532 -2.275 1.244 2.115 -0.243 

0.948 2.826 -0.472 -0.738 -2.902 0.719 

1.586 2.107 0.223 -1.224 -2.509 0.206 

-0.320 2.014 2.342 -1.473 -2.028 0.274 

0.791 2.187 -0.383 -2.115 -2.250 0.013 

0.825 2.078 -2.612 1.404 -1.055 0.188 

1.850 0.554 -0.758 2.927 -1.177 0.364 

-2.046 -0.908 1.116 -3.464 1.054 0.020 

-0.841 -2.526 2.371 0.454 1.258 0.605 

-1.831 0.972 -1.290 3.144 0.482 0.857 

1.134 2.781 0.559 -2.047 0.205 -0.320 

2.345 -1.203 2.654 1.204 -0.389 0.057 

-0.007 2.901 0.918 -1.881 0.195 -0.471 

1.327 -1.951 0.696 -2.699 0.163 -0.254 

-1.181 -1.454 -0.594 -3.333 -0.518 0.115 

0.937 -1.836 -0.435 2.633 0.051 -0.432 

-0.694 -2.399 2.143 1.403 -0.396 -0.690 

2.595 0.931 -0.898 2.298 0.847 0.496 

2.354 -2.231 -0.641 1.331 1.055 0.507 

1.681 2.845 -0.466 1.400 1.334 0.225 

-1.364 0.108 0.628 -2.368 -0.755 0.104 

-2.173 2.748 0.699 -1.088 -0.488 0.160 

1.620 -2.816 0.460 -1.415 1.592 0.083 

-3.398 1.015 -0.576 -0.055 -1.639 0.637 

-2.918 0.740 -0.144 1.971 -1.578 0.611 
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Table 9 Weight and Biases values between input 

hidden layers for E model 

 

IWji bij LW 

0.53 0.70 2.81 -1.09 -0.15 -2.63 -0.29 

0.45 1.03 1.77 -1.66 -0.47 -2.60 0.17 

-0.08 -0.33 -1.06 -0.25 -2.25 -2.70 -0.50 

-1.93 -1.48 -1.32 -0.51 -0.31 1.73 0.26 

0.61 2.37 -0.26 -1.13 -1.58 -1.48 0.52 

1.31 0.04 -2.02 0.64 -0.47 -1.87 0.09 

1.92 -0.75 -0.15 0.55 2.02 -1.53 1.14 

-1.60 -1.40 1.70 0.01 -0.40 1.31 0.39 

-0.75 0.49 -1.28 1.24 -1.83 1.17 -0.33 

-1.92 0.55 -0.72 -1.96 -0.19 0.95 0.03 

0.61 1.45 -0.45 1.22 1.98 -0.63 0.40 

0.60 -1.17 1.36 -0.70 -1.19 -0.41 -0.42 

-0.94 -1.04 1.83 -0.44 1.68 0.89 0.47 

1.63 -1.90 -0.63 0.01 -1.06 -0.18 -0.16 

1.24 1.57 -0.73 1.54 -0.85 0.19 0.19 

0.88 -0.65 1.54 -1.30 -1.71 0.06 0.40 

-0.74 -1.09 1.56 1.07 1.50 -0.32 0.46 

-1.29 -1.00 1.07 0.94 -0.96 -0.80 -0.13 

0.64 0.83 1.43 -0.77 2.03 -0.03 -0.73 

2.13 0.00 -0.08 -0.48 -0.92 1.45 0.34 

-2.28 -0.27 1.34 -0.53 -0.98 -1.50 -0.26 

-1.63 1.38 -0.39 1.66 0.85 -1.35 0.49 

1.59 0.72 1.61 0.18 -1.55 1.48 -0.29 

0.59 2.31 -0.93 -2.00 0.35 -1.62 0.05 

1.91 -1.74 1.16 0.20 0.68 1.88 0.25 

1.31 0.37 1.65 0.02 2.13 2.00 0.27 

-1.48 1.72 -0.00 -0.55 0.64 -2.97 0.53 

-0.99 0.32 -0.05 -2.18 1.03 -2.69 -0.32 

-1.59 1.49 -1.22 0.59 -0.04 -2.57 -0.26 

 

5. Conclusion 

Four rock index parameters rock type (RN), unit 

weight (γ), porosity (n), point load (Is(50)) are used to 

predict unconfined compressive strength (UCS) and 

modulus of elasticity (E). The dataset of igneous and 

sedimentary rocks prepared after detailed laboratory 

experimentation is used. The comparison of 

developed models based on the performance indices 

of coefficient of determination (R2), root mean 

squared error (RMSE) and standard error of estimate 

(SEE) is as follows. 

 The performance indices values of R2=1, 

RMSE=1, and SEE=0 were set as target values 

in order to describe accurate prediction capacity 

of models. 

 The Model 6 of neural network with network 

architecture 4-45-1 produced R2, RMSE, SEE of 

0.72, 19.2, ± 23% respectively. Regression 

Model 3 for prediction of UCS produced R2, 

RMSE, and SEE of 0.65, 32.44, ± 40%. The 

ANN Model 6, predicted target values with 

minimum error and performance indices were 

close to target range. 

 The neural network Model 6 with network 

architecture 5-29-1 for prediction of E produced 

R2, RMSE, SEE 0.75, 13.59, ± 29% 

respectively. Regression Model 3 for prediction 

of E produced R2, RMSE, SEE of 0.66, 15.37, ± 

31% respectively. 

 The ANN Model 4 with network architecture 4-

25-2 produced R2, RMSE, SEE of 0.68, 20.3, ± 

25% for UCS and 0.57, 17.61, ± 35% for E 

respectively. 

 The increase in prediction accuracy of ANN is 

noted when various laboratory test parameters 

were introduced. This means generalization 

capability of ANN increase with large dataset. 

However for current study the performance of 

neural network model is significantly higher 

than the regression model. 

 Two separate equations are suggested for the 

prediction of UCS and E from weights and 

biases obtained from training of neural 

networks. It must be noted that equations can be 

used to predict parameters having same range of 

dataset as used in the current study. 

6. References 

[1] Neural Networks: A Comprehensive 

Foundation; Haykin, S., Prentice Hall, N.J, 2nd 

Edition, (1999). 

[2] Liu, S. W., Huang, J. H., Sung, J. C., Lee, C. C. 

2002. Detection of cracks using Neural 

Networks and Computational Mechanics. 

Computer Methods in Applied Mechanics and 

Engineering. Vol. 191. pp. 2831 – 2845. 



Pak. J. Engg. & Appl. Sci. Vol.18, Jan., 2016 

 110 

[3] Yilmaz, I., Yuksek, A. G. 2008. Technical Note 

an Example of Artificial Neural Network 

(ANN) Application for Indirect Estimation of 

Rock Parameters. Rock Mechanics and Rock 

Engineering. Vol. 41 (5). pp. 781-795. 

[4] Yurdakul M, Ceylan H, Akdas H (2011). “A 

Predictive Model for Uniaxial Compressive 

Strength of Carbonate Rocks from Schmidt 

Hardness”. ‘Civil, Construction and 

Environmental Engineering Conference 

Presentation and Proceedings’, Paper 7. 

http://lib.dr.iastate.edu/ccee_conf/7 

[5] Yagzi, S., Sezer, E. A., Gokceoglu, C. 2012. 

Artificial Neural Networks and Non-linear 

Regression Techniques to Assess the Influence 

of Slake Durability Cycles on the Prediction of 

Unconfined Compressive Strength and Modulus 

of Elasticity for Carbonate Rocks. International 

Journal for Numerical and Analytical Methods 

in Geomechanics. Vol. 36. pp. 1636-1650. 

[6] Majdi, A., Rezaei, M. 2013. Prediction of 

Unconfined Compressive Strength of Rock 

surrounding a Roadway using Artificial Neural 

Network. Neural Computing & Applications 

Vol. 23. pp. 381-389. 

[7] Munir, K.; Development of Correlation between 

Rock Classification System and Modulus of 

Deformation, Ph.D. Thesis, University of 

Engineering & Technology, Lahore, Pakistan, 

(2014). 

[8] Annual Book of ASTM Standards; D2938-95, 

D5731-08, ASTM International, West 

Conshohocken, PA, USA, (2008). 

[9] Gul, H.; Prediction Models for Estimation of 

Unconfined Compressive Strength and Modulus 

of Elasticity from Index Tests of Rocks, M.Sc. 

Thesis, University of Engineering & 

Technology, Lahore, Pakistan, (2015). 

 

 

 

[10] Haghnejad, A., Ahangari, K., Noorzad, A. 2014. 

Investigation on various relations between 

Uniaxial Compressive Strength, Elasticity and 

Deformation Modulus of Asmari Formation in 

Iran. Arabian Journal for Science and 
Engineering. Vol. 39. pp. 2677 – 2682. 

[11] Khuntia, S., Mujtaba, H., Patra, C., Farooq, K., 

Sivakugan, N., Das, B. M. 2015. Prediction of 

Compaction Parameters of Coarse Grained Soils 

using Multivariate Adaptive Regression splines 

(MARS). International Journal of Geotechnical 

Engineering. Vol. 9 (1). pp. 79 -88. 

[12] Sulewska M. J. 2010. Prediction Model for 

Minimum and Maximum Dry Density of Non-

Cohesive Soils. Polish Journal of 

Environmental Studies. Vol. 19 (4), pp. 797 -

804. 

[13] Guven, A., Gunal, M. 2008. Prediction of Scour 

Downstream of Grade-Control Structures Using 

Neural Networks. Journal of Hydraulic 

Engineering, ASCE. Vol. 134 (11). pp. 1656 – 

1660. 

[14] Mohammadi, H., Rahmannejad, R. 2010. The 

Estimation of Rock Mass Deformation Modulus 

Using Regression and Artificial Neural Network 

Analysis.  Arabian Journal for Science and 

Engineering. Vol. 35 (1A). pp. 205-217. 

[15] Kabuba, J., Bafbiandi, A. M., Battle, K. 2014. 

Neural Network Technique for modeling of Cu 

(II) removal from aqueous solution by 

Clinoptilolite. Arabian Journal for Science and 
Engineering. Vol. 39. pp. 6793 – 6803. 

[16] Khandelwal, M., Singh, T. N. 2011. Predicting 

elastic properties of schistose rocks from 

unconfined strength using intelligent approach. 

Arabian Journal for Science and Engineering. 

Vol. 4. pp. 435 – 442. 

[17] Gurocak, Z., Solanki, P., Alemdag, S., Zaman, 

M. M. 2012. New Considerations for Empirical 

Estimation of Tensile Strength of Rocks. 

Engineering Geology. Vol. 145 – 146. pp. 1-8. 

   


