Empirical Estimation of Unconfined Compressive Strength and Modulus of Elasticity Using ANN

Hasan Gul¹, Khalid Farooq² and Hassan Mujtaba³

- 1. Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan
- 2. Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan
- 3. Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan
- * **Corresponding Author:** E-mail: *hassaninbox@gmail.com*

Abstract

The strength parameters such as unconfined compressive strength (UCS) and Modulus of Elasticity (E) of rocks are important for design of foundations. Both the parameters are determined in laboratory after rigorous and destructive testing. In this study Artificial Neural Network (ANN) models are developed for prediction of UCS and E from index test parameters such as Unit Weight (γ), porosity (n) and point load index $I_{s(50)}$. Multi variable regression models are also developed to compare the accuracy of prediction from different models. Coefficient of determination (R^2), Root Mean Squared error (RMSE) and Standard Error of Estimate (SEE) has been used as the controlling factor to determine the prediction accuracy of both ANN and multivariable regression. The ANN models increased the R^2 values from 0.53 to 0.72 and 0.51 to 0.75 for UCS and E respectively. The variation between experimental and predicted values of UCS and E for ANN model are $\pm 23\%$ and $\pm 29\%$ and for regression model are $\pm 40\%$ and $\pm 31\%$ respectively.

Key Words: Artificial neural network, multivariable regression, unconfined compressive strength, Modulus of Elasticity

1. Introduction

Foundation of various civil engineering structures such as roads, bridges, tunnels, dams, harbors and high rise buildings are constructed up to natural rock beds. Therefore, it becomes important to analyze the behavior of rocks under the loads transferred from various structures on them. Unconfined compressive strength (UCS) and Modulus of Elasticity (E) are obligatory parameters for geotechnical design and evaluation of rock behavior. These measurement necessitates the recovery of high quality core specimen from the field. In laboratory rigorous and destructive tests are performed on the test specimens. At prefeasibility and preliminary design stages, these procedures are costly and time consuming. Therefore, it is preferred that indirect test methods may be used for the prediction of UCS and E. Artificial Neural Network (ANN) is being used as an alternate of statistical analysis for prediction of unknown geotechnical parameters. Its prediction accuracy is higher and it models real time complex field problems. ANN is mathematical models consisting of neurons in different layers. ANN is similar to biological neurons in human brain, which are interconnected with other neurons in subsequent layers [1]. The neurons communicate with each other by sending a signal over a large array of interconnected neurons having biased and weighted connections. A typical neural network model consists of input layer, hidden layer and output layer. Each of the layers consists of different number of neurons and has its own weights and biases. The weights and biases are adjusted during the training of ANN [2]. Various researchers [3], [4], [5], [6], [9], [13] and [15] have proposed empirical models to predict UCS and E from index test parameters.

Neural Network model is developed using feed forward back propagation algorithm with four layers, input layer of 4 neurons, two hidden layers of 20, 30 neurons and one output layer of 2 neurons [3]. The outputs from multivariable regression equation are compared with outputs of neural network. It is noted that neural network predicted regression coefficients of 0.96 for E and 0.93 for UCS of gypsum rock from input parameters of slake durability index, point load index, effective porosity and Schmidt hammer hardness. The performance indices such as root mean square error (RMSE) and variance account for (VAF) are 2.65, 2.28 and 92, 91 for UCS and E, respectively. In other study carbonate rock samples are collected from various stone processing plants in Turkey [4]. The laboratory tests were carried for the development of prediction models for UCS from Schmidt hammer test. In the comparative analysis of results obtained from regression analysis and neural network model coefficient of determination (R^2) , RMSE, VAF indices are 0.39, 46.51, 12.45 for regression and 0.96, 7.92, 95.84 for neural network model. It shows the prediction accuracy of ANN is significantly better than the regression analysis. Carbonate rock travertine and limestone from the villages in Kaklik, Kocabas, Honaz in Danzili Basin, Turkey for the study are collected [5]. A neural feed forward propagation model is developed having network architecture of input layer 5 neurons, hidden layer 2 neurons and output layer 2 neurons. UCS and E parameters are predicted from five rock properties namely dry unit weight, effective porosity, Schmidt hardness rebound number, p-wave velocity and slake durability cycles. Multi regression models are also developed for comparison. Results showed that R^2 is 0.55 for regression model and 0.66 for ANN model predicting UCS. R^2 is 0.66 for regression and 0.72 for ANN model predicting E. The neural network model gave precise values as average performance indices are higher than regression model. Neural Network model with feed forward back propagation training algorithm for prediction of UCS of rocks is developed [6]. Rock samples are collected from various coal fields in Iran and the standard cores are extracted to perform laboratory tests. The 93 number dataset including Schmidt hardness, density, porosity and UCS parameters is developed from laboratory test. The ANN model R^2 , VAF and mean absolute error (Ea) and mean relative error (Er) are calculated 97.25%, 95.65%, 0.0942 MPa, 1.1127% as respectively, 89.88%, 91.61%, 0.1117 MPa, 2.3422 are calculated for regression model. The ANN models performance indices indicate better results than the models developed from the regression. In this study effort has been made to develop predictive models for the estimation of UCS and E from rock type (RN), unit weight (γ), porosity (n) and point load index I_{s(50)}

2. Sampling Location

The Kohala hydro power project is located in Muzaffarabad district, and the dam site is on Jhelum River. The area has large formations of sedimentary rocks. It mainly includes Sand stone and Shale rock. The Basha dam site is located in northern area in Kohistan, Pakistan. The sampling location is shown in Figure 1. At dam site the rock formation are of mafic intrusive rocks which include mainly two types of rock i.e. Gabbronorite and Ultramafic Association. In order to determine strength characteristics of rock formations a detailed in-situ and laboratory testing plan is proposed. The UCS, E and other index test parameters are determined in laboratory by the test procedures outlined by American Society of Testing and Materials [8]. Numerical description of rock type is given in Table 1 and the database of 143 dataset is presented in Table 2. Pictorial view of rock samples and testing is shown in Figure 2.

Table 1Numerical description of rock samples;
(Gul, 2015)

Rock Number	Rock Type (RN)	Unit Weight (kN/m ³)
1	Ultramaffic Association	27.37 - 34.14
2	Gabbronorite	26.87 - 33.45
3	Sand Stone	22.46 - 28.45
4	Shale	24 - 24.07

Fig. 1 Sampling Location at Diamer Basha dam and Kohala hydro power station sites; (Munir, 2014)

Sr. No.	Sample number	Rock type	Depth (m)	ã (kN/m ³)	n (%)	Is ₍₅₀₎ (MPa)	UCS (MPa)	E (GPa)
1	G-35	UMA	27.68-28.12	32.08	3.430	2.55	60	29.39
2	G-36	UMA	30.72-30.90	30.21	2.760	2.19	30	17.91
3	G-40	UMA	39.40-39.57	29.04	2.110	9.21	87	78.41
4	G-41	UMA	45.57-46.04	32.96	1.500	1.98	62	26.53
5	G-42	UMA	55.00-55.63	32.96	1.150	3.16	61	33.42
6	G-43	UMA	58.17-58.50	31.10	1.100	4.39	58	40.01
7	G-44	UMA	65.43-65.90	32.77	1.430	3.07	46	28.23
8	G-45	UMA	65.00-65.25	32.08	2.000	2.63	45	25.23
9	G-46	UMA	66.92-67.10	34.14	2.170	2.33	15	14.13
10	G-47	Gabbronorite	73.08-73.48	27.76	0.650	6.95	102	69.25
11	G-48	UMA	75.00-75.14	32.08	5.940	2.3	34	19.82
12	G-49	UMA	79.53-79.89	33.65	2.020	3.92	75	42.40
13	G-50	Gabbronorite	96.32-96.84	31.98	3.350	7.67	102	73.65
14	G-51	Gabbronorite	103.64-104.33	32.18	2.920	11.85	62	86.81
15	G-52	UMA	106.17-106.55	32.37	0.510	7.54	70	62.96
16	G-53	Gabbronorite	110.07 -110.35	33.16	2.600	2.67	50	27.03
17	G-54	Gabbronorite	117.00-117.46	33.45	1.180	5.84	96	60.62
18	G-55	UMA	34.23-34.53	30.51	2.350	11.26	112	73.62
19	G-56	UMA	34.65-34.80	31.20	0.790	1.71	75	28.90
20	G-57	UMA	29.23-29.60	34.04	1.460	2.61	53	27.59
21	G-58	Gabbronorite	117.99-118.33	32.47	2.330	5.47	53	45.06
22	G-59	UMA	107.25-107.55	32.77	1.620	2.32	96	39.63
23	G-61	Gabbronorite	30.00 - 30.30	29.53	0.812	9.21	106	67.6
24	G-62	Gabbronorite	49.27 - 49.53	29.18	2.390	9.05	95	58
25	G-63	Gabbronorite	51.75 - 52.00	28.56	1.570	6.48	128	38.3
26	G-64	Gabbronorite	127.53 - 127.65	28.01	1.310	7.85	94	58
27	G-65	Gabbronorite	49.65 - 50.00	27.55	0.850	11.54	120	72
28	G-66	Gabbronorite	35.08 - 35.35	27.76	2.640	9	94	93.2
29	G-67	Gabbronorite	51.78 - 52.09	27.95	2.140	11.2	103	98.1
30	G-68	Gabbronorite	30.50 - 30.74	28.34	2.870	11.69	108	101
31	G-69	Gabbronorite	95.50 - 95.76	28.27	1.970	7.03	117	59.5
32	G-70	Gabbronorite	95.76 - 96.00	28.54	1.640	5.23	116	41.3
33	G-71	Gabbronorite	101.62 - 101.90	27.82	1.240	7.01	90	69.2
34	G-72	Gabbronorite	116.54-116.85	28.06	0.550	9.12	113	91
35	G-73	Gabbronorite	130.40 - 130.65	28.17	0.870	5.68	129	50.6
36	G-74	Gabbronorite	130.65 - 130.9	28.31	0.560	7	143	69
37	G-75	Gabbronorite	58.33 - 58.58	26.87	1.271	5.91	117	49.7
38	G-76	Gabbronorite	37.25 - 37.48	27.66	1.238	6.45	92	28.6
39	G-77	Gabbronorite	37.48 - 37.75	27.76	1.206	7.8	109	73
40	G78	Gabbronorite	99.67 - 99.95	27.62	1.173	6.82	90	79.1
41	G-79	Gabbronorite	143.50 - 143.82	27.24	1.140	6.17	116	72.8
42	G-80	Gabbronorite	30.35 - 30.61	27.57	1.107	5.8	72	30.1
43	G-81	Gabbronorite	27.36 - 37.61	27.47	1.074	3.34	75	32.9
44	G-82	Gabbronorite	130.02 - 130.62	27.68	1.041	3.71	63	37.8
45	G83	Gabbronorite	50.93 - 51.20	27.76	1.008	7.54	95	53.7
46	G-84	Gabbronorite	75.25 - 75.52	27.37	0.976	4.6	91	42
47	G85	Gabbronorite	156.28 - 156.55	26.98	0.943	4.14	87	18.5
47	G-86	Gabbronorite	156.55 - 156.83	20.98	0.943	3.36	71	20.4
48 49	G-80 G-87	Gabbronorite	82.60 - 82.90	27.80	0.910	5.50 1.71	46	11.2
49 50	G-87 G-88	Gabbronorite	35.60 - 35.85	27.43	0.877	3.1	40 69	3.7
50 51	G-88 G-89	Gabbronorite	35.80 - 35.85 35.85 - 36.11	26.93	0.844 0.811	3.1 3.41	69 75	3.7 23.7
52	G-90	Gabbronorite	59.30-59.78	28.25	0.426	7.26	123	77.58
53	G-91	Gabbronorite	92.52-92.98	28.65	0.319	5.4	80	52.94
54	G-92	Gabbronorite	68.50-68.85	28.25	1.230	6.76	80	68.3
55 56	G-93	Gabbronorite	84.12-84.54	28.65	0.649	10.26	96 148	65
56	G-94	Gabbronorite	100.01-100.37	28.84	0.369	14	148	98
57	G-95	Gabbronorite	104.1-104.47	28.65	0.783	9.71	127	37.1
58	G-96	Gabbronorite	152.78-153.13	28.74	0.679	10.29	133	88
59	G-97	Gabbronorite	155.1-155.55	28.84	0.568	10.87	126	77

Table 2Dataset prepared from laboratory tests; (Gul, 2015)

Table 2 Continued

Table 2	Continued
	0011111000

	able 2	Continued							
number (MP4) (MP4) (MP4) (MP4) (MP4) 60 G-98 Gabbronorite 166.44-166.81 28.84 0.505 7.84 88 45.7 61 G-99 Gabbronorite 166.44-166.81 28.06 1.102 115 77 63 G-101 UMA 27.24-27.54 27.36 0.306 10.2 115 77 64 G-102 UMA 36.97-37.27 27.37 1.536 9.36 115 85.5 65 G-104 UMA 36.97-37.27 27.76 0.442 10.87 104 55 67 G-105 UMA 55.05-55.35 28.06 0.615 11.54 126 84 69 G-107 UMA 52.757.01 28.74 0.503 12.6 124 101 71 G-110 UMA 12.457.121.72 28.35 1.655 9.03 78 13.2 73 G-111 UMA 12.46-18.00 <td< th=""><th>Sr</th><th></th><th>Rock type</th><th>Depth (m)</th><th>\tilde{a} (kN/m³)</th><th>n (%)</th><th></th><th>UCS</th><th>Е</th></td<>	Sr		Rock type	Depth (m)	\tilde{a} (kN/m ³)	n (%)		UCS	Е
61 G-99 Gabbronorite 168.60-169.01 29.23 0.771 10.57 100 86.4 62 G-100 UMA 27.24-27.54 27.86 0.306 10.2 115 77. 64 G-102 UMA 33.22-34.14 27.37 1.270 8.08 115 85.8 65 G-103 UMA 30.27-37.27 27.57 1.536 9.36 138 114 66 G-104 UMA 54.55-52.86 28.06 0.513 10.78 124 82 67 G-105 UMA 55.55-52.86 28.06 0.615 11.54 126 84 70 G-108 UMA 56.72-57.01 28.74 0.503 78 13.2 73 G-110 UMA 107.47-107.78 22.17 10.06 81.2 89 88.3 74 G-112 UMA 107.47-107.78 32.18 1.615 6.35 80 74 36.9 76				1 · · ·	. ,				
62 G-100 UMA 27.29-27.63 28.06 1.402 11.06 125 95.6 63 G-101 UMA 33.92-34.14 27.37 1.270 8.08 115 85.8 65 G-103 UMA 36.97-37.27 27.37 1.536 9.36 114 55 66 G-104 UMA 52.55-52.86 28.06 0.615 11.64 126 84 69 G-107 UMA 55.05-55.35 28.06 0.615 11.54 126 84 69 G-107 UMA 62.72-57.01 28.74 0.033 12.66 113 73 71 G-108 UMA 12.67-61.18.00 32.67 0.351 9.66 113 73 73 G-111 UMA 12.45-12.17.2 32.27 1.006 8.12 89 88.3 74 G-112 UMA 48.00-48.32 28.55 0.593 74 36.9 76 G-113 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
63 G-101 UMA 27.2+27.54 27.96 0.306 10.2 115 77 64 G-102 UMA 36.97-37.27 27.37 1.526 9.36 115 85.8 65 G-103 UMA 39.47-39.74 27.76 0.442 10.87 104 55 67 G-105 UMA 52.55.35 28.06 0.513 10.78 124 82 68 G-106 UMA 56.72-57.01 28.74 0.503 78 13.2 71 G-109 UMA 56.72-57.01 28.74 0.503 78 13.2 72 G-110 UMA 117.66-118.00 32.67 0.351 9.66 11.3 73 73 G-111 UMA 107.47-107.78 32.18 1.615 6.35 80 76.3 75 G-113 UMA 44.04-45.00 32.08 0.589 10.31 111 57.8 76 G-114 UMA 44.									
64 G-102 UMA 33.92-34.14 27.37 1.270 8.08 115 85.8.8 65 G-103 UMA 39.47-39.74 27.57 1.536 9.36 138 114 66 G-105 UMA 52.55-52.86 28.06 0.513 10.78 124 82 68 G-106 UMA 52.55-25.85 28.06 0.615 11.54 126 84 69 G-107 UMA 52.55-25.85 28.06 0.615 11.54 126 84 70 G-108 UMA 62.72-57.01 28.74 0.053 12.6 124 101 71 G-110 UMA 11.76-6-118.00 32.08 0.511 13.1 73.78 13.2 75 G-113 UMA 44.64-45.00 32.08 0.589 10.31 111 57.8 76 G-116 Gabbronorite 162.4-12.43 28.65 0.743 6.35 58 13.5 76 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
65 G-103 UMA 36 97-37,27 27,37 1.536 9.36 138 114 66 G-104 UMA 39.47.39,74 27,76 0.442 10.87 104 55 67 G-105 UMA 55.55.28.6 28.06 0.513 10.78 124 82 68 G-107 UMA 55.05.55.3 28.06 0.615 11.54 126 84 70 G-108 UMA 56.72.57.01 28.74 0.503 12.6 124 101 71 G-109 UMA 12.45-121.72 32.27 1.006 81.2 89 88.3 73 G-111 UMA 12.45-121.72 32.27 1.006 81.2 89 88.3 74 G-112 UMA 44.04-45.00 32.08 0.589 10.31 111 57.8 76 G-114 UMA 44.04-45.00 32.08 0.589 10.31 111 57.8 113.5 114.5									
66 G-104 UMA 39.47.39.74 27.76 0.442 10.87 124 82 67 G-105 UMA 52.55.28 28.06 0.513 10.78 124 82 68 G-107 UMA 55.05.55.35 28.06 0.615 11.54 126 84 69 G-108 UMA 62.72.57.01 28.73 1.655 9.03 78 13.2 72 G-110 UMA 107.66-118.00 32.67 0.351 9.66 113 73 74 G-112 UMA 107.47-107.78 32.18 1.615 6.35 80 76.3 75 G-116 Gabbronorite 162.14-162.42 28.35 0.963 3.9 74 36.9 76 G-116 Gabbronorite 162.14-162.42 28.65 0.743 6.35 58 13.5 717 G-116 Gabbronorite 187.97-188.34 28.35 1.148 6.14 74 16.5				33.92-34.14					
67 G-105 UMA \$52,552,286 28,06 0.513 10.78 124 82 68 G-107 UMA \$5,05,55,35 28,06 0.615 11.54 126 84 69 G-108 UMA \$5,05,55,35 28,05 1.655 9.03 78 132 71 G-109 UMA \$6,71,62,95 28,35 1.655 9.03 78 133 73 73 G-111 UMA 121,45-12,17 32,27 3.218 1.615 6.35 80 76.3 75 G-113 UMA 44,64-45.00 32,08 0.963 8.39 74 36.9 76 G-114 UMA 44,64-45.00 32,08 0.59 10.31 111 57.8 77 G-115 Gabbronorite 124,6-124.93 29.14 0.512 12.1 13.0 47 78 G-116 Gabbronorite 18.0 28.55 0.743 6.35 58 13.5									
68 G-106 UMA 54:50:54:78 29:14 0.196 11.54 126 84 69 G-107 UMA 55:05:55:35 28:06 0.615 11.54 126 84 70 G-108 UMA 62:71:62:95 28:35 1.655 9:03 78 13:2 72 G-110 UMA 12:14:52:17:2 32:27 1.006 8:12 89 88:3 74 G-112 UMA 14:14:61:42:3 28:35 0.963 8:39 74 36:9 75 G-113 UMA 48:00:48:32 28:35 0.963 8:39 74 36:9 76 G-114 UMA 44:64:45:00 32:08 0.589 10:31 111 57:8 77 G-116 Gabbronorite 16:21:4:16:24:2 28:65 0.743 6:35 58 13:3 13:3 81 G-117 Gabbronorite 13:6:4:13:2:00 28:25 1:3:4 3:39 92 23									
69 G-107 UMA 55:05:55:35 28:06 0.615 11.54 12.6 124 101 71 G-109 UMA 66:72-57:01 28:74 0.503 12.6 124 101 72 G-110 UMA 117:66-118:00 32:67 0.351 9.66 113 73 73 G-111 UMA 107:47-107:78 32:18 1.615 6.35 80 76.3 75 G-113 UMA 48:00-48:32 28:35 0.963 8.39 74 36.9 76 G-114 UMA 44:64-45:00 32:08 0.512 12:13 130 47 78 G-116 Gabbronorite 187:97-188:34 28:35 1.148 6.14 74 16.5 80 G-113 Gabbronorite 13:64-132:00 28:25 1.134 3.39 99 23 81 G-110 Gabbronorite 13:8:00 28:45 0.926 5.93 81 40.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
73 G-111 UMA 12.145-121.72 32.27 1.006 8.12 89 88.3 74 G-112 UMA 107.47-107.78 32.18 1.615 6.55 80 76.3 75 G-114 UMA 44.64-45.00 32.08 0.589 10.31 111 57.8 76 G-115 Gabbronorite 124.6-124.93 29.14 0.512 12.18 130 47 78 G-116 Gabbronorite 124.6-124.22 28.65 0.441 9.52 110 66 79 G-117 Gabbronorite 187.97-188.34 28.35 1.148 6.14 74 16.5 80 G-119 Gabbronorite 131.64-132.00 28.25 1.134 3.39 99 23 81 G-121 Gabbronorite 72.27.25 28.35 1.081 6.79 85 43.2 84 G-123 Gabbronorite 175.00-75.32 28.45 0.788 73 71 26.3 85 G-124 Gabbronorite 107.91-128.15 28.65 10.									
74G-112UMA $107,47-107,78$ $32,18$ 1.615 6.55 80 76.3 75G-113UMA $48,00-48,32$ $28,35$ 0.963 8.39 74 36.9 76G-114UMA $44.64.45.00$ 32.08 0.589 10.31 111 57.8 77G-115Gabbronorite $122.61.24,93$ 29.14 0.512 12.18 130 47 78G-116Gabbronorite $112.14.162.24$ 28.65 0.441 9.52 110 66 79G-117Gabbronorite $118.64.132.00$ 28.65 0.743 6.35 58 13.5 81G-120Gabbronorite $131.64.132.00$ 28.25 1.134 3.39 99 23 82G-120Gabbronorite $72.29.72.59$ 28.35 1.081 6.79 85 43.2 84G-122Gabbronorite $75.00.75.32$ 28.45 0.376 7.37 71 26.3 85G-123Gabbronorite $122.09.122.46$ 29.14 1.271 7.93 89 27.9 88G-126Gabbronorite $144.03.24.32$ 28.94 0.669 11.79 158 114 91G-128Gabbronorite $90.07.90.32$ 28.94 0.669 11.79 158 114 91G-129Gabbronorite $90.07.90.32$ 28.94 0.669 11.79 158 114 91G-129Gabbronorite $90.67.90.32$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
75G-113UMA48,00-48.3228,350.9638.397436.976G-114UMA44,64-45.0032.080.58910.3111157.877G-115Gabbronorite124,6-124.9329,140.51212.181304778G-116Gabbronorite187.97-188.3428.351.1486.147416.580G-118Gabbronorite187.97-188.3428.351.1486.147416.580G-118Gabbronorite131.64-132.0028.650.7436.335813.581G-120Gabbronorite138.00-138.3528.450.9265.938140.382G-121Gabbronorite75.00-75.3228.450.7887.937126.384G-122Gabbronorite175.00-75.3228.450.7887.937126.386G-124Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite102.49.3228.940.6787.486855.490G-128Gabbronorite90.07-90.3828.940.6787.486855.491G-129Gabbronorite90.07-90.3828.940.6177.42.410693G-131Gabbronorite90.49.0329.230.5357.4812171.392G-130Gabbronorite166.14728.060.312 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
78G-116Gabbronorite162.14-162.4228.650.4419.521106679G-117Gabbronorite187.97-188.3428.351.1486.147416.580G-118Gabbronorite131.64-132.0028.251.1343.39992381G-119Gabbronorite131.64-132.0028.251.1343.39992382G-120Gabbronorite138.00-138.3528.450.9265.938140.383G-121Gabbronorite72.29-72.5928.550.31710.7810873.684G-122Gabbronorite75.00-75.3228.450.7887.937126.386G-124Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite144.38-144.7228.651.0255.624742.489G-127Gabbronorite96.03-96.3228.940.6787.486855.490G-128Gabbronorite90.67-90.3828.940.13710.971217392G-130Gabbronorite165.74-137.0329.230.5357.4812151.394G-132Gabbronorite165.16-165.4728.060.40410.3111424.394G-132Gabbronorite79.57.12928.450.62610.477427.597G-133Gabbronorite79.57.12									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
80G-118Gabbronorite77.64-78.0028.650.7436.355813.581G-119Gabbronorite131.64-132.0028.251.1343.39992382G-120Gabbronorite138.0028.450.9265.938140.383G-121Gabbronorite72.29-72.5928.351.0816.798543.284G-122Gabbronorite75.075.3228.450.7887.937126.386G-124Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite122.09-122.4629.141.2717.938927.988G-127Gabbronorite144.38-144.7228.650.8217.486855.490G-128Gabbronorite90.02-49.3228.940.6787.486855.491G-129Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.395G-133Gabbronorite10.95-71.2928.450.62210.477427.596G-134Gabbronorite70.95-71.2928.650.3359.9714856.999G-136Gabbronorite70.95-71.2928.650.30310.959256.999G-133Gabbronorite73.67-38.02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
81G-119Gabbronorite131.64-132.0028.251.1343.39992382G-120Gabbronorite138.00-138.3528.450.9265.938140.383G-121Gabbronorite72.29-72.5928.350.31710.7810873.684G-122Gabbronorite75.00-75.3228.450.7887.937126.386G-124Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite122.09-122.4629.141.2717.938927.988G-126Gabbronorite144.38-144.7228.651.0255.624742.489G-127Gabbronorite90.03-96.3228.940.66911.7915811491G-129Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-147.0329.230.5357.4812151.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite70.71-79.9928.060.3359.9714856.999G-137Gabbronorite70.71-79.9928.060.3359.9714856.999G-136Gabbronorite70.71-79.9928.060.3359.9714856.999G-138Gabbronorite70.7									
82G-120Gabbronorite138.00-138.3528.450.9265.938140.383G-121Gabbronorite72.29-72.5928.351.0816.798543.284G-122Gabbronorite43.5843.9528.550.31710.7810873.685G-123Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite122.09-122.4629.141.2717.938927.988G-127Gabbronorite44.38-144.7228.651.0255.624742.489G-127Gabbronorite90.07-90.3828.940.6787.486855.490G-128Gabbronorite90.07-90.3828.940.13710.971217392G-130Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.16-145.4329.230.5357.4812151.395G-133Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite79.71-79.9928.060.8049.028335.898G-134Gabbronorite79.71-79.9928.060.40310.959256.9100G-138Gabbronorite79.7									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
84G-122Gabbronorite $43.58+43.95$ 28.55 0.317 10.78 108 73.6 85G-123Gabbronorite $75.00-75.32$ 28.45 0.788 7.93 71 26.3 86G-124Gabbronorite $107.85-108.15$ 28.65 0.821 7.26 86 59 87G-125Gabbronorite $122.09-122.46$ 29.14 1.271 7.93 89 27.9 88G-126Gabbronorite $49.02-49.32$ 28.94 0.678 7.48 68 55.4 90G-128Gabbronorite $90.03-96.32$ 28.94 0.678 7.48 68 55.4 91G-129Gabbronorite $90.07-90.38$ 28.94 0.678 7.48 68 51.4 92G-130Gabbronorite $90.64-90.93$ 29.04 0.312 11.24 161 106 93G-131Gabbronorite $136.74\cdot137.03$ 29.23 0.535 7.48 121 51.3 94G-132Gabbronorite $46.13\cdot46.42$ 29.14 0.642 11.29 121 45 96G-134Gabbronorite $70.95\cdot71.29$ 28.45 0.626 10.47 74 27.5 97G-135Gabbronorite $79.71-79.99$ 28.06 0.335 9.97 148 56.9 99G-137Gabbronorite $37.67\cdot38.02$ 28.65 0.403 10.95 92 56.9 100G-138Gabbronorite <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
85G-123Gabbronorite $75.00-75.32$ 28.45 0.788 7.93 71 26.3 86G-124Gabbronorite $107.85-108.15$ 28.65 0.821 7.26 86 59 87G-125Gabbronorite $122.09-122.46$ 29.14 1.271 7.93 89 27.9 88G-126Gabbronorite $144.38.144.72$ 28.65 1.025 5.62 47 42.4 89G-127Gabbronorite $96.03-96.32$ 28.94 0.678 7.48 68 55.4 90G-128Gabbronorite $90.07-90.38$ 28.94 0.669 11.79 158 114 91G-129Gabbronorite $90.07-90.38$ 28.94 0.137 10.97 121 73 92G-131Gabbronorite $136.74-137.03$ 29.23 0.494 10.31 114 24.3 94G-132Gabbronorite $105.71.29$ 28.45 0.626 10.47 74 27.5 97G-135Gabbronorite $105.71.29$ 28.46 0.335 9.97 148 56.9 99G-136Gabbronorite $37.67.38.02$ 28.65 0.335 9.97 148 56.9 99G-137Gabbronorite $37.67.38.02$ 28.65 0.338 10.63 91 55.1 101G-139Gabbronorite $49.28.49.59$ 28.74 0.335 12.44 128 85 102BH2-1Sand Stone <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
86G-124Gabbronorite107.85-108.1528.650.8217.26865987G-125Gabbronorite122.09-122.4629.141.2717.938927.988G-126Gabbronorite144.38-144.7228.6510.255.624742.489G-127Gabbronorite94.02-49.3228.940.6787.486855.490G-128Gabbronorite90.07-90.3828.940.66911.7915811491G-129Gabbronorite90.07-90.3828.940.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite34.51-34.8228.550.38810.639155.1101G-137Gabbronorite34.51-34.8228.550.38810.639155.1102BH2-1Sand Stone65									
87G-125Gabbronorite122.09-122.4629.141.2717.938927.988G-126Gabbronorite144.38-144.7228.651.0255.624742.489G-127Gabbronorite49.02-49.3228.940.6687.186855.490G-128Gabbronorite90.63-96.3228.940.66811.7915811491G-129Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite79.71-79.9928.060.3359.9714856.998G-138Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite34.51-34.8228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.050.30021.5632.46103BH2-3Sand Stone65.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
88G-126Gabbronorite $144.38-144.72$ 28.65 1.025 5.62 47 42.4 89G-127Gabbronorite $90.02+9.32$ 28.94 0.678 7.48 68 55.4 90G-128Gabbronorite $90.07-90.38$ 28.94 0.1678 7.48 68 55.4 91G-129Gabbronorite $90.07-90.38$ 28.94 0.137 10.97 121 73 92G-130Gabbronorite $90.64-90.93$ 29.04 0.312 11.24 161 106 93G-131Gabbronorite $136.74+137.03$ 29.23 0.494 10.31 114 24.3 94G-132Gabbronorite $145.10-145.43$ 29.23 0.535 7.48 121 51.3 95G-133Gabbronorite $40.13-46.42$ 29.14 0.642 11.29 121 45 96G-134Gabbronorite $70.95-71.29$ 28.45 0.626 10.47 74 27.5 97G-136Gabbronorite $79.71-79.99$ 28.06 0.804 9.02 83 35.8 98G-136Gabbronorite $34.51-34.82$ 28.55 0.388 10.63 91 55.1 101G-139Gabbronorite $49.28-49.59$ 28.74 0.335 12.44 128 85 102BH2-1Sand Stone 61.60 24.15 3.300 5.00 21.56 32.46 103BH2-3Sand Stone <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
89 G-127 Gabbronorite 49.02-49.32 28.94 0.678 7.48 68 55.4 90 G-128 Gabbronorite 96.03-96.32 28.94 0.669 11.79 158 114 91 G-129 Gabbronorite 90.07-90.38 28.94 0.137 10.97 121 73 92 G-130 Gabbronorite 136.74-137.03 29.23 0.494 10.31 114 24.3 94 G-132 Gabbronorite 145.10-145.43 29.23 0.535 7.48 121 51.3 95 G-133 Gabbronorite 46.13-46.42 29.14 0.642 11.29 121 45 96 G-134 Gabbronorite 70.95-71.29 28.45 0.666 10.47 74 27.5 97 G-135 Gabbronorite 79.71-79.99 28.06 0.335 9.97 148 56.9 99 G-137 Gabbronorite 37.67-38.02 28.65 0.403 10.95									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
91G-129Gabbronorite90.07-90.3828.940.13710.971217392G-130Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite145.10-145.4329.230.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite34.51-34.8228.550.38810.639155.1101G-138Gabbronorite61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone50.3025.897.4000.8348.6015.36107BH15-3BSand Stone50.5026.003.5002.7861.0047.07106BH15-3BSand Stone50.50									
92G-130Gabbronorite90.64-90.9329.040.31211.2416110693G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite165.16-165.4728.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone65.0025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone50.5026.003.5002.7861.0047.07108BH15-13Sand Stone50.5026.									
93G-131Gabbronorite136.74-137.0329.230.49410.3111424.394G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite165.16-165.4728.060.8049.028335.898G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone50.5026.003.5002.7861.0047.07108BH15-13Sand Stone50.5026.0									
94G-132Gabbronorite145.10-145.4329.230.5357.4812151.395G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite165.16-165.4728.060.8049.028335.898G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone102.5025.004.0006.3927.4542.77105BH15-3BSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone55.7026.764.2006.1152.0031.63110BH15-13Sand Stone55.7026.76									
95G-133Gabbronorite46.13-46.4229.140.64211.291214596G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite165.16-165.4728.060.8049.028335.898G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0037.79105BH2-10Sand Stone89.2026.003.3009.4475.0037.79105BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3BSand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone105.1027.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
96G-134Gabbronorite70.95-71.2928.450.62610.477427.597G-135Gabbronorite165.16-165.4728.060.8049.028335.898G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.									
97G-135Gabbronorite165.16-165.4728.060.8049.028335.898G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone105.1027.005.4005.0031.6335.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone136.0027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8									
98G-136Gabbronorite79.71-79.9928.060.3359.9714856.999G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-13Sand Stone105.1027.005.4005.0031.6335.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.800<									
99G-137Gabbronorite37.67-38.0228.650.40310.959256.9100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.800 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
100G-138Gabbronorite34.51-34.8228.550.38810.639155.1101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
101G-139Gabbronorite49.28-49.5928.740.33512.4412885102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
102BH2-1Sand Stone61.6024.153.3005.0021.5632.46103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
103BH2-3Sand Stone65.0024.652.4006.1175.0038.29104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
104BH2-8Sand Stone89.2026.003.3009.4475.0037.79105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
105BH2-10Sand Stone102.5025.004.0006.3927.4542.77106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
106BH15-3BSand Stone50.3025.897.4000.8348.6015.36107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
107BH15-3CSand Stone50.5026.003.5002.7861.0047.07108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
108BH15-4Sand Stone55.7026.346.1003.6174.2040.25109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
109BH15-11Sand Stone89.2026.764.2006.1152.0031.63110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
110BH15-13Sand Stone105.1027.005.4005.0031.6035.56111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22									
111BH10-5Sand Stone31.0027.126.0004.8645.5739.03112BCD1-1Sand Stone188.5027.564.0008.33115.6381.89113BCD1-5Sand Stone264.3028.124.8003.6138.5529.22		BH15-13	Sand Stone						
113 BCD1-5 Sand Stone 264.30 28.12 4.800 3.61 38.55 29.22	111	BH10-5	Sand Stone	31.00		6.000	4.86	45.57	39.03
	112	BCD1-1	Sand Stone	188.50	27.56	4.000	8.33	115.63	
114 BCD1-5 Sand Stone 265.10 28.12 5.000 1.00 23.00 11.60	113	BCD1-5	Sand Stone	264.30	28.12	4.800	3.61		29.22
	114	BCD1-5	Sand Stone	265.10	28.12	5.000	1.00	23.00	11.60

Table 2 Continued

Table 2	Continued
	Commaca

Sr.	Sample	Rock type	Depth (m)	ã (kN/m ³)	n (%)	Is(50)	UCS	Е
51.	number	Коек туре	Deptil (III)	a (KI (/III)	II (70)	(MPa)	(MPa)	(GPa)
115	BCD2-1	Sand Stone	96.30	28.00	4.560	3.33	42.84	28.84
116	BH4-9	Sand Stone	52.60	27.89	3.000	7.54	79.00	26.46
117	BH5-5	Sand Stone	89.80	28.45	5.800	3.07	65.81	34.36
118	BH21-1	Sand Stone	34.00	28.00	3.200	1.25	14.82	7.47
119	BH23-2	Sand Stone	56.20	27.76	4.000	5.24	68.60	48.54
120	BH28-1	Sand Stone	41.50	26.87	7.100	5.23	24.82	34.87
121	BH31-1	Sand Stone	29.20	27.50	3.100	4.25	13.36	25.34
122	BH09-1	Sand Stone	18.50	25.00	3.800	3.61	33.15	27.56
123	BH09-7	Shale	28.10	24.07	6.100	5.55	73.00	31.49
124	BH09-9	Sand Stone	37.80	27.14	2.500	3.05	92.59	42.47
125	BH09-15	Sand Stone	70.20	27.34	3.600	6.39	61.00	25.54
126	BH18A-1	Sand Stone	22.30	28.14	3.150	2.78	68.58	33.45
127	BH18A-2	Sand Stone	35.80	25.00	5.500	4.44	33.72	32.80
128	BH18A-5	Sand Stone	72.10	24.17	6.000	4.16	30.00	7.11
129	BH18A-9	Sand Stone	78.20	24.11	7.200	2.50	58.00	13.24
130	BH18A-15	Sand Stone	87.40	28.34	2.890	4.44	81.00	15.10
131	BH26-1	Sand Stone	95.70	27.21	3.780	6.66	37.15	47.42
132	BH26-2	Sand Stone	130.40	24.00	5.900	2.22	27.43	17.29
133	BH26-6c	Sand Stone	253.80	26.76	3.230	7.22	59.44	57.74
134	BH26-14b	Shale	338.80	24.00	6.230	10.00	71.00	61.46
135	BH11-1	Sand Stone	22.20	26.50	4.210	3.37	40.00	20.23
136	BH11-3	Sand Stone	29.50	23.74	5.400	6.18	34.28	43.60
137	BH11-8	Sand Stone	48.40	26.14	4.560	11.80	113.51	102.43
138	BH01-2	Sand Stone	33.50	23.50	2.890	1.62	11.21	8.62
139	BH01-3	Sand Stone	39.20	26.00	5.000	2.34	36.00	31.19
140	BH01-22	Sand Stone	106.30	23.24	3.400	3.03	18.00	21.61
141	BH03-9	Sand Stone	60.60	23.12	6.400	4.13	18.00	11.97
142	BH14-8	Sand Stone	167.30	22.46	5.470	2.48	27.00	51.68
143	BH16-6	Sand Stone	51.30	23.00	7.000	3.58	22.00	17.16

(b)

Fig. 2 Rock samples (a) Gabbronotite rock (b) UMA rock (c) Rock cores of Sand Stone and Shale (d) UCS test in progress on rock sample (Munir, 2014)

3. Statistical Analysis of Dataset

The maximum, minimum, average and standard deviation of the dataset are shown in Table 3. The standard deviation between values of $I_{s(50)}$, UCS and E is 3.23 MPa, 35.24 MPa and 27.1 GPa, respectively. It shows that mechanical behavior of rock is variable due to geological conditions of individual project sites. However prediction accuracy of mathematical models increase when data is normally distributed and outlier values are less significant [10]. The histogram plots are shown in Figure 3.

Fig. 3 Histogram plots of (a) $I_{s(50)}$ (b) UCS (c) E

Table 3 Summary of statistical values of Inputs and Outputs parameters

St	Statistical Analysis of Dataset (N=143)										
Para-	Ã	n	Is(50)	UCS	Е						
meters	(kN/m ³)	(%)	(MPa)	(MPa)	(GPa)						
Max.	34.14	7.40	14	161	114						
Min.	22.46	0.14	0.83	11.21	3.7						
Avg.	28.29	2.19	6.67	80.93	49.3						
St.dev.	2.39	1.90	3.23	35.24	27.1						
Domas	22.46 -	0.14 -	0.83 -	11.21 -	3.7 -						
Range	34.14	7.40	14	161	114						

3.1 Selection of Inputs Parameters for Model

The coefficient of correlation (R) between different parameters rock number, unit weight, porosity, point load, unconfined compressive strength and modulus of elasticity is shown in Table 4. The absolute value of R near to 1 shows good correlation and near to zero show weak correlation between individual parameters. These observations are presented in past studies for prediction of compaction parameters of coarse grained soils [11]. The parameter UCS cross correlation with RN, \tilde{a} , n, $I_{s(50)}$ gave values of R-0.40, 0.23, -0.64 and 0.73 respectively. The parameter E cross correlation with RN, ã, n, I_{s(50)}, UCS gave values of R -0.30, 0.15, -0.38, 0.71 and 0.71, respectively. The weak value of correlation is observed for parameter ã with UCS and E.

	RN	ã (kN/m ³)	n (%)	I _{s(50)} (MPa)	UCS (MPa)	E (GPa)
RN	1					
ã (kN/m ³)	-0.72	1				
n (%)	0.67	-0.48	1			
Is(50) (MPa)	-0.26	0.09	-0.48	1		
UCS (MPa)	-0.40	0.23	-0.64	0.73	1	
E (GPa)	-0.30	0.15	-0.38	0.71	0.71	1

 Table 4: Cross correlation between parameters of dataset (N=143)

4. Data Analysis

In this study the data is analyzed by using two techniques, Multivariable regression analysis (MVRA) and ANN to compare the prediction accuracy of models. In MVRA, mathematical equations are developed to predict the dependent variable (UCS and E) from the independent variables (rock number, unit weight, porosity and point load strength). The statistical software package SPSS 16 is used to develop regression models. The regressions equations are shown in Table 5. The increase in number of input variables has relatively produced higher regression coefficients. Model 3 and Model 6 equation has R^2 value of 0.64 and 0.65 respectively. This indicated that 65% of the data used for model development can be estimated using these MVRA models.

 Table 5 MVRA equations for the prediction of UCS and E

Para- meter	Model	Equation	R^2
UCS	Model 1	$UCS = 8(I_{3(50)}) + 27.61$	0.53
	Model 2	UCS = $-10.78(RN) + 7.36$ (I ₃₍₅₀₎) + 54.4	0.58
	Model 3	$UCS = -0.51(RN) - 0.0099(\gamma)$ -6.9(n) + 6.03(I ₃₍₅₀₎) + 57.17	0.64
Е	Model 1	E = 0.54(UCS) + 5.46	0.51
	Model 2	$E = 4.03(I_{3(50)}) + 0.27(UCS) - 0.49$	0.62
	Model 3	$\begin{split} E = -4.32(\text{RN}) &- 0.66(\gamma) + \\ & 3.52(n) + 4.16(\text{I}_{3(50)}) - 0.33 \\ & (\text{UCS}) + 23 \end{split}$	0.65

4.1 ANN Model Development

A multi layer neural network (MLNN) consists of three layers namely; input layer, hidden layer and output layer as mentioned earlier. The training algorithm feed forward back propagation is used for training the dataset. Weight and biases are adjustable parameters of ANN structure which are fine tuned by training algorithm keeping in view the input and the target output values to make the neural network fit the dataset. The data from the input layer is sent to hidden layer. It is summed up after applying weight and biases [12]. The general ANN equation is shown in Equation 1.

$$\mathbf{P} = \mathbf{f}_{n} \left[\mathbf{b}_{o} + \sum_{k=1}^{n} \left\{ \mathbf{w}_{k} \mathbf{f}_{n} \left(\mathbf{b}_{hk} + \sum_{i=1}^{m} \mathbf{w}_{ik} \mathbf{X}_{i} \right) \right\} \right]$$
(1)

Where f_n is the transfer function, h is the number of neurons in hidden layer, x_i is the input value, m is number of input variables, w_{ik} is the connection weight between i_{th} layer of input, and k_{th} neuron of hidden layer, w_k is the connection weight between k_{th} neuron of hidden layer and single output neuron, b_{hk} is the bias at the k_{th} neuron of hidden layer and b_o is the bias at output layer and P is the predicted output. Transfer function is used to map the weighted sum of the input neuron to the output neuron. In the hidden layer nonlinear transfer function Tan sigmoid (Tansig) is used to calculate output. It takes input values in the range of positive and negative infinity and produce output in -1 and 1 range [13]. The Tan sigmoid transfer function is shown in Equation 2. The linear transfer function pure linear (Purelin) is used to calculate output in output layer of neural network architecture. The Purelin transfer function takes input values in the range of positive and negative infinity and produce output in the same range. The Pure linear transfer function is shown in Equation 3.

Tansig (x) =
$$\frac{1 - e^{-2x}}{1 + e^{-2x}}$$
 (2)

$$Purelin(x) = y \tag{3}$$

The Mean Squared Error (MSE) is the controlling function for stopping the training process. It is calculated by comparing the measured output (O_m) and predicted output (O_p) value as shown in Equation 4 [14], [15].

MSE = 0.5
$$\sum_{n=1}^{n} (O_m - O_p)^2$$
 (4)

The weights are re-adjusted in neural network architecture and training of network is continued till the sum of MSE between target and output layer falls in an acceptable range. The each cycle of training the network is called epochs. In this process the learning rate (c) is important parameters in training of network. If the learning rate is too small the training will be slow. If the value is large the training of network will not achieve the desired error goal. After various trial and errors optimum value of c = 0.01 is selected for training [16]. Neural network toolbox (MATLAB version 8.2.0.701) is used for the analysis. A sample of neural network architecture developed in this study is shown in Figure 4.

Fig. 4 The ANN architecture

In MATLAB built-in data division function divides total dataset into 70% for training and 30% for validation and testing. To find an optimum architecture for neural network the numbers of neurons in hidden layer are adjusted by trial and error procedure. Hence various models are developed by varying the size of hidden layer for prediction of UCS and E. The R^2 and RMSE are the controlling factors for the selection of optimum models. The results of different models are presented in Table 6. The value of R^2 and RMSE are calculated by Equation 5 and 6.

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y - y')^2}$$
 (5)

$$R^{2} = 1 - \frac{\sum(y - y')^{2}}{\sum(y - 0)^{2}}$$
(6)

Where measured value is denoted by (y), predicted value (y') and mean (\bar{y}) respectively. The RMSE value close to zero and R^2 close to 1 represent that predicted and measured value has minimum error in prediction. The statistical performances of models show that for the prediction of UCS, Regression Model 1, 2 and 3 has R^2 value of 0.53, 0.58 and 0.64 respectively. Neural network model 4, 5 and 6 with same input and output parameters has R^2 value of

Table 6	Results of different models for prediction of UCS and E	
---------	---	--

Prediction Model	Model	Model Inputs	Network Architecture	Model Output	ANN Analysis	R	R ²	RMSE
Regression	Model 1	Is(50)		UCS		0.73	0.53	34.50
	Model 2	RN, I _{s(50)}				0.76	0.58	33.39
	Model 3	RN, γ , n, I _{s(50)}				0.80	0.64	32.44
ANN	Model 4	Is(50)	1-2-1		Training	0.75	0.56	24.19
					Testing	0.68	0.46	
	Model 5	RN, I _{s(50)}	2-5-1		Training	0.83	0.69	20.73
					Testing	0.83	0.69	
	Model 6	RN, γ , n, I _{s(50)}	4-45-1		Training	0.88	0.77	19.21
					Testing	0.80	0.64	
Regression	Model 1	UCS		Е		0.71	0.51	18.34
	Model 2	Is(50), UCS				0.79	0.62	16.08
	Model 3	RN, γ , n, I _{s(50)} , UCS				0.81	0.65	15.37
ANN	Model 4	UCS	1-2-1		Training	0.74	0.55	17.86
					Testing	0.71	0.50	
	Model 5	I _{s(50)} , UCS	2-5-1		Training	0.86	0.74	15.34
					Testing	0.75	0.56	
	Model 6	RN, γ , n, I _{s(50)} , UCS	5-29-1		Training	0.86	0.74	13.59
					Testing	0.88	0.77	

0.56, 0.69 and 0.77 after training of the networks. This indicates significant increase in the R^2 value and non-linear fitting of data by neural network architecture. The results of the same models are further analyzed by calculating RMSE to select the optimum model. After comparing all the models developed with regression and neural network technique lowest value of RMSE is 19.21 of Model 6 predicting UCS. The plot of measured and predicted values of Model 3 (regression) and Model 6 (neural network) is shown in Figure 5. For prediction of E the regression Model 1, 2 and 3 has R^2 value of 0.51, 0.62 and 0.65 respectively. Neural network model 4, 5 and 6 has R^2 value of 0.55, 0.74 and 0.74 after training of the network. This also indicates significant increase in the R^2 value and non-linear fitting of data by neural network architecture. The lowest value of RMSE is 13.59 for Model 6. The plot of measured and predicted values of Model 3 (regression) and Model 6 (neural network) is shown in Figure 6. The RMSE plot is shown in Figure 7.

Fig. 5 Plot of Experimental and Predicted UCS (a) MVRA Model (b) ANN Model

Fig. 6 Plot of Measured and Predicted E (a) MVRA Model (b) ANN Model

4.2 ANN Model with Two Outputs

ANN has the ability to predict two outputs simultaneously from the input data. The neural network architecture having two neurons in output layer is shown in Figure 8. The values of rock number, unit weight, porosity, point load from the neurons in input layer are transferred to the hidden layer. Two parameters UCS and E are obtained at the output layer. As previously mentioned numbers of neurons in hidden layer are adjusted by trial and error to arrive at optimum network. Neural network toolbox (MATLAB version 8.2.0.701) is used for the analysis. The results of the developed models are presented in Table 7. The assessment of developed models indicate that Model 4 after training has R^2 value of 0.83 and RMSE value of 20.31 and 17.61 respectively for prediction of UCS and E. The values

Fig. 7 RMSE plot of MVRA and ANN model (a) UCS (b) E

Network Model	Input Parameter	Output Parameter	Network Architecture	ANN Analysis	R	R^2	RMSE	
							UCS	Е
Model 1	Is(50)	UCS, E	1-12-2	Train	0.84	0.71	23.82	16.86
				Test	0.75	0.56		
Model 2			1-37-2	Train	0.88	0.77	24.23	16.56
				Test	0.62	0.38		
Model 3	RN, γ, n, Is ₍₅₀₎	UCS, E	4-7-2	Train	0.82	0.67	22.43	18.45
				Test	0.76	0.58		
Model 4			4-25-2	Train	0.91	0.83	20.31	17.61
				Test	0.65	0.42		

of controlling factors show higher values in comparison to other models. The plot for both predicted and measured values of UCS and E is shown in Figure 9. The RMSE plot is shown in Figure 10.

4.3 Mathematical Formulation of ANN Model

The mathematical equation for prediction of UCS is formulated considering Equation 1 [17]. Weight and biases matrix is obtained from trained neural network Model 6 having network architecture 4-45-1 as discussed in model development section. The Equation 7 is suggested for prediction of UCS. Whereas Tanh and Purelin are transfer function, (IW_{ji}) input weight matrix, (b_{ij}) input bias matrix, (LW) output layer weight matrix and 1.0604 is the output layer bias value. The input layer weight and

bias matrix values are shown in Table 8. Similarly the Equation 8 for prediction of E is also suggested utilizing the weight and bias matrix obtained from Model 6 having trained neural network architecture 5-29-1. The input layer weight and biases matrix are shown in Table 9.

Fig. 8 ANN architecture with two neurons in output layer

Fig. 9 Plot of measured and predicted (a) UCS (b) E

Fig. 10 RMSE plot of ANN model with two neurons in output layer

UCS = Purelin [LW Tanh[IW_{ji}
[RN
$$\gamma$$
 n Is₍₅₎] + b_{ij}] + 1.0604] (7)

 $E = Purelin[LWTanh[IW_{ii}]]$

$$[RN \gamma n Is_{(5)} UCS] + b_{ij}] - 0.183] \qquad (8)$$

 Table 8
 Weight and Biases values between input hidden layers for UCS model

	IW	b _{ij}	LW		
-0.741	0.990	-2.424	-2.385	3.634	-0.069
1.334	-1.580	2.780	-1.046	-3.635	0.692
2.409	1.272	2.430	-0.092	-3.224	0.560
-0.244	-3.576	0.509	-1.501	1.633	0.492
0.800	1.557	-0.873	-2.933	-2.484	0.225
-1.585	-0.609	-2.203	2.334	3.207	0.724
2.287	-2.428	0.599	1.124	-2.709	0.101
-0.063	-0.205	-2.008	-2.701	-2.683	-0.516
-1.726	1.202	-2.332	-1.705	2.321	-0.086
-0.355	2.532	-2.275	1.244	2.115	-0.243
0.948	2.826	-0.472	-0.738	-2.902	0.719
1.586	2.107	0.223	-1.224	-2.509	0.206
-0.320	2.014	2.342	-1.473	-2.028	0.274
0.791	2.187	-0.383	-2.115	-2.250	0.013
0.825	2.078	-2.612	1.404	-1.055	0.188
1.850	0.554	-0.758	2.927	-1.177	0.364
-2.046	-0.908	1.116	-3.464	1.054	0.020
-0.841	-2.526	2.371	0.454	1.258	0.605
-1.831	0.972	-1.290	3.144	0.482	0.857
1.134	2.781	0.559	-2.047	0.205	-0.320
2.345	-1.203	2.654	1.204	-0.389	0.057
-0.007	2.901	0.918	-1.881	0.195	-0.471
1.327	-1.951	0.696	-2.699	0.163	-0.254
-1.181	-1.454	-0.594	-3.333	-0.518	0.115
0.937	-1.836	-0.435	2.633	0.051	-0.432
-0.694	-2.399	2.143	1.403	-0.396	-0.690
2.595	0.931	-0.898	2.298	0.847	0.496
2.354	-2.231	-0.641	1.331	1.055	0.507
1.681	2.845	-0.466	1.400	1.334	0.225
-1.364	0.108	0.628	-2.368	-0.755	0.104
-2.173	2.748	0.699	-1.088	-0.488	0.160
1.620	-2.816	0.460	-1.415	1.592	0.083
-3.398	1.015	-0.576	-0.055	-1.639	0.637
-2.918	0.740	-0.144	1.971	-1.578	0.611

		IW_{ji}			b _{ij}	LW
0.53	0.70	2.81	-1.09	-0.15	-2.63	-0.29
0.45	1.03	1.77	-1.66	-0.47	-2.60	0.17
-0.08	-0.33	-1.06	-0.25	-2.25	-2.70	-0.50
-1.93	-1.48	-1.32	-0.51	-0.31	1.73	0.26
0.61	2.37	-0.26	-1.13	-1.58	-1.48	0.52
1.31	0.04	-2.02	0.64	-0.47	-1.87	0.09
1.92	-0.75	-0.15	0.55	2.02	-1.53	1.14
-1.60	-1.40	1.70	0.01	-0.40	1.31	0.39
-0.75	0.49	-1.28	1.24	-1.83	1.17	-0.33
-1.92	0.55	-0.72	-1.96	-0.19	0.95	0.03
0.61	1.45	-0.45	1.22	1.98	-0.63	0.40
0.60	-1.17	1.36	-0.70	-1.19	-0.41	-0.42
-0.94	-1.04	1.83	-0.44	1.68	0.89	0.47
1.63	-1.90	-0.63	0.01	-1.06	-0.18	-0.16
1.24	1.57	-0.73	1.54	-0.85	0.19	0.19
0.88	-0.65	1.54	-1.30	-1.71	0.06	0.40
-0.74	-1.09	1.56	1.07	1.50	-0.32	0.46
-1.29	-1.00	1.07	0.94	-0.96	-0.80	-0.13
0.64	0.83	1.43	-0.77	2.03	-0.03	-0.73
2.13	0.00	-0.08	-0.48	-0.92	1.45	0.34
-2.28	-0.27	1.34	-0.53	-0.98	-1.50	-0.26
-1.63	1.38	-0.39	1.66	0.85	-1.35	0.49
1.59	0.72	1.61	0.18	-1.55	1.48	-0.29
0.59	2.31	-0.93	-2.00	0.35	-1.62	0.05
1.91	-1.74	1.16	0.20	0.68	1.88	0.25
1.31	0.37	1.65	0.02	2.13	2.00	0.27
-1.48	1.72	-0.00	-0.55	0.64	-2.97	0.53
-0.99	0.32	-0.05	-2.18	1.03	-2.69	-0.32
-1.59	1.49	-1.22	0.59	-0.04	-2.57	-0.26

 Table 9
 Weight and Biases values between input hidden layers for E model

5. Conclusion

Four rock index parameters rock type (RN), unit weight (γ), porosity (n), point load (I_{s(50)}) are used to predict unconfined compressive strength (UCS) and modulus of elasticity (E). The dataset of igneous and sedimentary rocks prepared after detailed laboratory experimentation is used. The comparison of developed models based on the performance indices of coefficient of determination (R²), root mean squared error (RMSE) and standard error of estimate (SEE) is as follows.

• The performance indices values of R²=1, RMSE=1, and SEE=0 were set as target values

in order to describe accurate prediction capacity of models.

- The Model 6 of neural network with network architecture 4-45-1 produced R², RMSE, SEE of 0.72, 19.2, ± 23% respectively. Regression Model 3 for prediction of UCS produced R², RMSE, and SEE of 0.65, 32.44, ± 40%. The ANN Model 6, predicted target values with minimum error and performance indices were close to target range.
- The neural network Model 6 with network architecture 5-29-1 for prediction of E produced R^2 , RMSE, SEE 0.75, 13.59, \pm 29% respectively. Regression Model 3 for prediction of E produced R^2 , RMSE, SEE of 0.66, 15.37, \pm 31% respectively.
- The ANN Model 4 with network architecture 4-25-2 produced R², RMSE, SEE of 0.68, 20.3, ± 25% for UCS and 0.57, 17.61, ± 35% for E respectively.
- The increase in prediction accuracy of ANN is noted when various laboratory test parameters were introduced. This means generalization capability of ANN increase with large dataset. However for current study the performance of neural network model is significantly higher than the regression model.
- Two separate equations are suggested for the prediction of UCS and E from weights and biases obtained from training of neural networks. It must be noted that equations can be used to predict parameters having same range of dataset as used in the current study.

6. References

- [1] *Neural Networks: A Comprehensive Foundation*; Haykin, S., Prentice Hall, N.J, 2nd Edition, (1999).
- [2] Liu, S. W., Huang, J. H., Sung, J. C., Lee, C. C. 2002. Detection of cracks using Neural Networks and Computational Mechanics. *Computer Methods in Applied Mechanics and Engineering*. Vol. 191. pp. 2831 – 2845.

- [3] Yilmaz, I., Yuksek, A. G. 2008. Technical Note an Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters. *Rock Mechanics and Rock Engineering*. Vol. 41 (5). pp. 781-795.
- [4] Yurdakul M, Ceylan H, Akdas H (2011). "A Predictive Model for Uniaxial Compressive Strength of Carbonate Rocks from Schmidt Hardness". 'Civil, Construction and Environmental Engineering Conference Presentation and Proceedings', Paper 7. http://lib.dr.iastate.edu/ccee_conf/7
- [5] Yagzi, S., Sezer, E. A., Gokceoglu, C. 2012. Artificial Neural Networks and Non-linear Regression Techniques to Assess the Influence of Slake Durability Cycles on the Prediction of Unconfined Compressive Strength and Modulus of Elasticity for Carbonate Rocks. *International Journal for Numerical and Analytical Methods in Geomechanics*. Vol. 36. pp. 1636-1650.
- [6] Majdi, A., Rezaei, M. 2013. Prediction of Unconfined Compressive Strength of Rock surrounding a Roadway using Artificial Neural Network. *Neural Computing & Applications* Vol. 23. pp. 381-389.
- [7] Munir, K.; Development of Correlation between Rock Classification System and Modulus of Deformation, Ph.D. Thesis, University of Engineering & Technology, Lahore, Pakistan, (2014).
- [8] Annual Book of ASTM Standards; D2938-95, D5731-08, ASTM International, West Conshohocken, PA, USA, (2008).
- [9] Gul, H.; Prediction Models for Estimation of Unconfined Compressive Strength and Modulus of Elasticity from Index Tests of Rocks, M.Sc. Thesis, University of Engineering & Technology, Lahore, Pakistan, (2015).

- [10] Haghnejad, A., Ahangari, K., Noorzad, A. 2014. Investigation on various relations between Uniaxial Compressive Strength, Elasticity and Deformation Modulus of Asmari Formation in Iran. Arabian Journal for Science and Engineering. Vol. 39. pp. 2677 – 2682.
- [11] Khuntia, S., Mujtaba, H., Patra, C., Farooq, K., Sivakugan, N., Das, B. M. 2015. Prediction of Compaction Parameters of Coarse Grained Soils using Multivariate Adaptive Regression splines (MARS). *International Journal of Geotechnical Engineering*. Vol. 9 (1). pp. 79-88.
- [12] Sulewska M. J. 2010. Prediction Model for Minimum and Maximum Dry Density of Non-Cohesive Soils. *Polish Journal of Environmental Studies*. Vol. 19 (4), pp. 797 -804.
- [13] Guven, A., Gunal, M. 2008. Prediction of Scour Downstream of Grade-Control Structures Using Neural Networks. *Journal of Hydraulic Engineering, ASCE.* Vol. 134 (11). pp. 1656 – 1660.
- [14] Mohammadi, H., Rahmannejad, R. 2010. The Estimation of Rock Mass Deformation Modulus Using Regression and Artificial Neural Network Analysis. Arabian Journal for Science and Engineering. Vol. 35 (1A). pp. 205-217.
- [15] Kabuba, J., Bafbiandi, A. M., Battle, K. 2014. Neural Network Technique for modeling of Cu (II) removal from aqueous solution by Clinoptilolite. *Arabian Journal for Science and Engineering.* Vol. 39. pp. 6793 – 6803.
- [16] Khandelwal, M., Singh, T. N. 2011. Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. *Arabian Journal for Science and Engineering*. Vol. 4. pp. 435 – 442.
- [17] Gurocak, Z., Solanki, P., Alemdag, S., Zaman, M. M. 2012. New Considerations for Empirical Estimation of Tensile Strength of Rocks. *Engineering Geology*. Vol. 145 – 146. pp. 1-8.