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Abstract 

In physics, propagation of sound, light and water waves is modeled by hyperbolic partial 

differential equations. Linear second order hyperbolic partial differential equations describe various 

phenomena in acoustics, electromagnetic and fluid dynamics. In this paper, a Galerkin based Finite 

Element Model has been developed to solve linear second order one dimensional Inhomogeneous 

wave equation numerically. Accuracy of the developed scheme has been analyzed by comparing the 

numerical solution with exact solution. 

Key Words:  Finite Element Model, Galerkin Method, Lagrangian polynomials, Shape functions. 

 

1. Introduction 

Partial Differential Equations (PDE’s) are at the 

heart of many, if not most, computer analysis or 

simulations of continuous physical systems, such as 

fluids, electromagnetic fields, and the human body 

and so on [1]. A class of hyperbolic Partial 

Differential Equations which describes vibrations 

with in objects and how waves are propagated is 

called wave equation [2]. In physics, propagation of 

sound, light and water waves is modeled by 

hyperbolic partial differential equations. Linear 

second order hyperbolic partial differential equations 

describe various phenomena in acoustics, 

electromagnetic and fluid dynamics. The efficient 

and accurate numerical techniques for the wave 

equations is of fundamental importance for the 

simulation of time dependent acoustic, 

electromagnetic or elastic wave phenomena [3]. 

Finite difference methods are commonly used for the 

simulations of time dependent waves because of their 

simplicity and their efficiency on structured Cartesian 

meshes [4-6]. However in presence of complex 

geometry, their usefulness is somewhat limited. In 

contrast Finite Element Methods [7, 8] can easily 

handle these cases. Moreover their extension to 

higher order is straightforward. In this paper, a Finite 

Element Model for linear second order one 

dimensional inhomogeneous wave equation has been 

developed. Galerkin method has been used to setup 

the element equations and a central finite difference 

scheme has been used to approximate the second 

order time derivative. Accuracy of the developed 

Finite Element model has been analyzed by 

comparing the computed solution with exact solution. 

2. Finite Element Model 

Consider the second order one dimensional 

Inhomogeneous Wave equation 
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2.1 Domain Discretization 

Let us consider the global domain as shown in 

figure1 in which we have to approximate the solution 

of equation (1). We divide the global domain into 

finite number of rectangular elements. Let there be K 
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nodes and K-1 linear elements in spatial direction. In 

the figure1, i  represents thi  node and )(i  represents 

the thi element. Each element has two nodese. g. 

element )(i  has left node  i  and right node 1i . The 

length of element )(i  is given by iii xxx  1 . In a 

similar way we take an element along temporal axis 

each of length ,1 nnn ttt    

 

Fig. 1 Discretization of x – t plane  

2.2 Interpolating Functions 

Let us approximate the solution of equation (1) 

by ),( txf ,  where ),( txf  is defined as 

),(...),(),( )1()1( txftxftxf   

 ),(... )1( txf K  (2) 

where each ),()1( txf  )1...,3,2,1(  Ki  represents 

the local interpolating polynomials over the element 

)(i . 

Write ),()1( txf  for thi  element as 

)()()()(),(
)(
11

)()1( xNtfxNtftxf
i

ii
i

ii   (3) 

Where )...,2,1()( Kitfi   represents the nodal values 

and 
)(i

iN  and )1( i
iN  represent the shape functions 

for the element )(i  at nodes i  and 1i  respectively 

and sNi  are Lagrangian polynomials of degree one. 
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Substituting the values from equations (4) and 

(5) into equation (3), we have  
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2.3 Element Equations 

In this section we apply Galerken method to 

approximate the solution of one dimensional wave 

equation given by eq.(1) i.e., 
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Let us define the integral  ),( txfl  of weighted 

residual, which is developed by multiplying ),( txR  

by weighting functions ..)...,3,2,1()( kxWk  and 

integrating that integral over the entire domain. Then 

set this integral equal to zero. We take the general 

weighting function )(xW . Therefore  
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Now solving the second integral in (8) by parts  

That is  
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The factor 
x

f




 in first term on R.H.S., of 

equation (9) cancels out at all interior points when we 
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assemble the element equations. It exists only at first 

and last node when there are boundary conditions on 

derivatives. Therefore we will drop this term so that 

equation (8) will take the form  

  












  dx

x

f

x

W
dx

t

f
Wtxfl

b

a

b

a


2

2

),(  

dxxW
b

a
sin  (10) 

Now the weighted residual integral  ),( txfl  for 

the entire domain is expressed as sum of weighted 

residual integrals of each element )...,2,1()( Kii  . 
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To evaluate  ),()( txfl i  given by equation (12). 

We require ),()( txf i  and its partial derivatives 

w.r.t., t and. 

Differentiating (3) two times partially w.r.t., 
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Substituting the values from equations (13) and 

(14) into equation (12)  
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Writing equation  symbolically as  
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Where A, B and C represents the integrals in 

equation (15). In Galerkin method, the weighted 

functions ...)...,2,1( kWk  are considered to be shape 
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Solving for the value of C 

dxxWC i
x

x

i

i

)(sin
1




  

 )(sin
2

)( i
ave

i x
x

C





 (19) 

Where )(i
avex  is average values of ix  and 1ix  

over the element )(i . Now put the values of 
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equations (17), (18) and (19) in equation (16) we 

have 
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Solving for C we have  
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Now substituting values from equations (21), 

(22) and (23) into equation (16), we have: 
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equations (21) and (26) are  the element equations for 

i
th

 element. 

2.4 Assembly of Element Equations 

Since i
th
 node is common between )(i  and 

)1( i  element therefore in order to get the nodal 

equation for i
th
 node we assemble the elements 

equation for node i in )(i  and )1( i  element. The 

physical domain for element )(i  and )1( i  is shown 

in Figure 2. 

 

Fig. 2 Linear Elements 
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Equation (29) represents the Finite Element 

Scheme for second order Hyperbolic Partial Differential 

Equations when we have non-uniform grid. Now for 

uniform grids we have 
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Therefore from (29) we have 
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Equation (31) represents the Finite Element Model 

for linear second order one dimensional Inhomogeneous 

wave equation with uniform mesh points. 

3. Test Problem 
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with the boundary conditions 

0,0),(),0(  ttftf   

and initial conditions 

xxf sin)0,(   

xxft sin)0,(   

Exact Solution 

)sin1(sin),( txtxf   

Table 1 02.0,1.0  kh   

xi FEM Exact |Error| 

0.000000000 0.000000000 0.000000000 0.000000000 

0.314159265 0.314917808 0.315196922 0.000279114 

0.628318531 0.599009267 0.599954017 0.000530907 

0.942477796 0.824465508 0.825196256 0.000730748 

1.256637061 0.969217354 0.970076379 0.000859025 

1.57-796327 1.019095436 1.019998667 0.000903231 

1.884955592 0.969217354 0.970076379 0.000859025 

2.199114858 0.824465508 0.825196256 0.000730748 

2.513274123 0.599009267 0.599954017 0.000530907 

2.827433388 0.314917808 0.315196922 0.000279114 

3.141582654 0.000000000 0.000000000 0.000000000 
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Fig. 3 Comparison of FEM with Exact Solution 

4. Results and Discussion 

In Table 1, a comparison of FEM solution with 

exact solution along with absolute errors is presented. It 

can be observed that computed values are very close to 

exact values and corresponding errors are very small. In 

Figure 3 both FEM and exact solutions are plotted. Dots 

represent FEM solution for different nodal values and 

continuous curve represents the exact solution for the 

test problem. It is clear from the plot that solution 

obtained by developed scheme is approximately equal 

to exact solution.   

5. Conclusion 

A Galerkin based Finite Element Model for 

linear second order one dimensional Inhomogeneous 

wave equation has been developed. Accuracy of the 

developed scheme has been analyzed by solving a 

test problem and comparing computed values with 

exact solutions. 
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