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Abstract 
Stability or robustness is a crucial yardstick for analyzing and evaluating feature selection 

algorithms which have become indispensible due to unprecedented advancements in knowledge data 
discovery and management. Stability of feature selection algorithms is taken as the insensitivity of the 
algorithm to perturbations in the training data with reference to the performance of the algorithm with 
all training data. In this work, we propose an algorithm for evaluating and quantifying the robustness 
of feature ranking algorithms and test three feature ranking algorithms: relief, diff-criterian and 
mutual information on four different real life binary data sets from text mining, handwriting 
recognition, medical diagnoses and medicinal sciences.  We then analyze the stability profiles of 
feature selectors and determine how stability is a desirable characteristic of a feature ranking 
algorithm. We find that diff-criterian, and mutual information, outperform relief in stability. 

 
 
1. Introduction 

Information technology has made 
unprecedented advances in the recent times. Data 
collection and its storage have been facilitated 
resulting in a manifold increase in the volume and 
dimensionality of data available for processing. This 
has necessitated research in this domain, 
consolidating feature selection as an effective data 
preprocessing tool, widely, employed for 
classification tasks in the field of machine learning 
[1], pattern recognition [2] and data mining[3]. 
Feature selection has been embarked upon by 
researchers, due to its potential to improve and 
economize automatic decision making while bringing 
about a reduction in dimensionality. Advantages of 
feature selection techniques when they are employed 
at the pre processing stage include a reduction in the 
quantity of data required to achieveimproved 
predictive accuracy, compact and precise learned 
knowledge and a markedly reduced execution time, 
[4]. 

Feature selection techniques are typically 
classified into two main categories, which are, feature 
ranking (FR) and feature subset selection (FSS). 
Feature ranking algorithms operate by assigning 
ranks to features by assessing each feature 
individually according to some criterion. The ranking 
is then utilized for retaining or discarding the 

features. On the other hand, feature subset selection, 
searches explicitly for the optimal subset by 
collective evaluation of features in the form of 
subsets. FR algorithms, when contrasted with FSS 
algorithms, are simpler and computationally efficient 
with a linear time complexity, [4]. This superiority 
over FSS methods has made FR methods quite 
popular and also, our choice of, feature selection 
technique for this work. 

Besides high accuracy and computational 
efficiency, stability is a critical parameter for gauging 
the performance of feature selection techniques. 
Stability can be defined as the insensitivity of the 
outcome of the feature selection techniques to 
fluctuations or differences in the training data with 
reference to the outcome of the same technique with 
all training data. This aspect is of immense 
importance in domains and applications where 
feature selection is employed as a knowledge 
discovery tool for identifying distinctive markers to 
explain the observed behavior. For example, in 
genomics and microarray analysis, researchers aspire 
to obtain the smallest set of features that can 
accurately depict the processes governing different 
behaviors predominant in microarray samples [5]. A 
feature selection technique, without causing 
degradation in the subsequent classification 
performance, can often select very different feature 
sets when subjected to fluctuations in the training 
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data, [6], [7], [8]. This lack of stability in feature 
selection techniques can diminish the domain 
specialists’ confidence in empirically validating the 
selected features. 

Investigation of the stability of feature ranking 
algorithms provides application domain experts with 
quantified results with regard to the stability of the 
selected features to fluctuations in the training data. 
Robustness of feature selection algorithms is a 
relatively less explored field and almost no 
experimental results exist for binary data, which is a 
key motivation for our choice of this work. 
Furthermore, binary data sets have become pervasive 
in real-world applications. Modeling systems with 
binary data is easy, simple and widely employed. [9], 
[10] and [11]. 

The rest of the paper is organized as follows: in 
Section 2, we discuss related work on the stability of 
feature selection techniques, following which we 
propose and introduce measures that can be utilized 
for analyzing the stability of FR algorithms. In 
section 3, we propose an algorithm for evaluating 
stability termed as stability evaluation strategy (SES). 
In section 4, we outlay the experimental setup, data 
sets used and the FR algorithms that are analyzed in 
this study. In section 5, we present our findings and 
establish stability profiles for our FR algorithms. In 
section 6, we finally conclude. 

2. Stability Theory 
2.1 Related Work 

A large volume of existing feature selection 
algorithms calls for evaluation techniques for 
analyzing them and bringing forth their merits and 
demerits. In most works, the two criteria that have 
been explored and established for gauging the 
performance of feature selection techniques are 
accuracy and efficiency, [12], [13], [14] and [15]. 
Recently, researchers have realized that stability is 
also a crucial performance metric, when evaluating 
feature selection algorithms. 

Kalaous et al.[16] in evaluating stability of 
algorithms employed tools from statistics, namely, 
Tanimoto distance between sets, Spearman rank 
correlation and Pearson correlation coefficient to 
compute the association between feature preferences 
expressed in terms of feature subset selection, feature 

ranking and feature weight scoring, respectively. 
They worked with high dimensional data sets, from 
proteomics, genomics and text mining and exploited 
various univariate and multivariate feature selection 
algorithms for their experiments. Their results 
indicated that none of the feature selection techniques 
were consistently stable for all datasets. They 
employed 10 fold stratified cross validation for 
empirically establishing the stability of their feature 
selectors. They generated a feature preference for 
each of the training folds and estimated the final 
stability by averaging the similarity of each pair of 
feature preferences. The technique adopted by them, 
however, disregarded the following: the features 
preferences produced by the sub sampled training 
folds may be similar or dissimilar to each other, 
however they may produce contrasting results when 
compared with feature preferences generated by the 
entire training data; also, the larger is the overlap 
between the training folds, more similar are the 
feature preferences likely to be as discussed by 
Alelyani et al. [17]. 

Somoland Novovicova [18] evaluated the merits 
and demerits of existing similarity measures and then 
proposed the framework for new similarity measures 
which can be applied to feature subset selectors 
which yield subsets of varying cardinalities. They 
also proposed a technique based on Shannon Entropy 
for estimating the similarity of feature subset 
selectors that yield subsets of varying sizes, [19]. The 
authors, however, did not propose any algorithm or 
offer any new methodology for establishing the 
stability of FSTs. Moreover, they also did not 
empirically test their measures on any real life data 
sets. 

In the most recent work Han and Yu, presented 
a theoretical framework for feature selection stability 
based on a formal bias variance decomposition of 
feature selection error, [20]. The work highlights the 
tradeoff between the accuracy and stability of feature 
selectors and suggests that one does not have to be 
compromised for attaining the other.  

Very recently Alelyani et al. [17] provided a 
new perspective to the problem of stability 
assessment for feature selection algorithms. They 
argue, that if a certain sample of training data, S1, is 
very similar to another sample of the training data, 
S2, and the two produce almost identical feature 



Pak. J. Engg. & Appl. Sci. Vol.15, July, 2014 

 78

rankings, when the feature selector is trained on each 
respectively, we can assert the feature selector is 
stable. Similarly, if the feature rankings produced by 
them are very different, we can assert with a certain 
degree of confidence that the feature selector is 
unstable. However, if the two samples of training 
data are very different and the two produce different 
feature rankings, it would be difficult to draw any 
conclusion straight away, as even a reasonably stable 
feature selector may draw up different feature 
rankings, in such a scenario. They investigated this 
dilemma, by conducting experiments with 5 different 
data sets and 5 different well known feature selection 
algorithms. On the basis on their experimental 
results, they concluded that less is the variance in the 
samples of training data, more stable will be a feature 
selector. 

2.2 Stability Measures 
We define stability as the robustness of the 

feature rankings; a FR algorithm produces to 
variations in the training data set drawn from the 
same distribution with reference to feature rankings 
produced on all training data. Let }...{ 1 NffY =  be 
the set of all features of size N. A FR algorithm 
produces a ranking of all features given as 

}...{ 1 Nrrr =   where Nri ≤≤1 . 

Determination of stability of feature rankings 
calls for a similarity measure or alternatively a 
dissimilarity measure, which can be used to compare 
and thus quantify the stability prevalent across 
feature rankings. 

Kalaous et al. [16], for computing similarity 
between rankings r and ir′ , use Spearman’s rank 
correlation coefficient given by: 
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where ir and ir′  are ranks of feature i in rankings r 

and r′  respectively. Values yielded by Spearman’s 

rank correlation range from [−1, 1]. A value of 1 
implies that the two rankings are identical or that 
there is perfect correlation in the two rankings, vice 
versa a value of -1 indicates that the rankings have 
exactly inverse order or there is perfect negative 

correlation.  A value of 0, on the other hand, suggests 
that there is no correlation between the two ranks. 

Spearman’s rank correlation coefficient 
provides for a reasonable measure for gauging the 
variability in the ranks of the given rankings, 
however, we propose the use of Kendall’s Tau, for 
establishing the robustness of the selected features. 
Kendall’s Tau, which represents the difference 
between the probability that the two rankings are in 
the same order and the probability that they are out of 
order has certain attractive qualities over Spearman’s 
rank correlation [21] as it provides a more concrete 
intuitive explanation and a better estimate of 
corresponding population parameter. 

With an underlying premise of concordance and 
discordance amongst features, Kendall’s Tau is 
defined as: [22] 
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Notion of concordance entails that if ),( jj yx  

are two features, belonging to the thj  feature ranking 
and ),( kk yx  are the same two features, but now 

belonging to thk  feature ranking, the two features are 
concordant only if ),( jj yx  and )( kj yy <  or 

)( kj xx >  and kj yy > . Discordance is established 

when )( kj xx <  and kj yy >  or kj xx >  and 

kj yy <  Special situation where, kj xx =  or 

kj yy =  or both kj xx =  and kj yy = , are called 
“ties” and are specially accounted for. Differing on 
handling of tied ranks, Kendall’s Tau has two 
variants: Tau b and Tau c. Our work necessitates the 
use of Tau b, as it is intended for binary and ordinal 
data. Tau b can intuitively be expressed as the excess 
of concordant over discordant pairs as a percentage 
of concordant, discordant, and approximately one-
half of tied pairs. Similarity outcomes generated by 
Kendall’s Tau, also, lie in the range [-1,1], with a 
value of 1 signifying perfect correlation and a value 
of -1 indicating perfect negative correlation between 
rankings. 

Dunne et al. [23] suggest using average 
normalized Hamming distance for determining the 
variation in the selected feature subsets. We extend 
their solution to the feature ranks, where each feature 
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ranking of N features is regarded as a vector of N  
dimensions. Hamming distance between these 
vectors i.e. feature rankings quantify the number of 
mismatched ranks. It computes the percentage 
difference in matched and unmatched ranks. It 
assumes values in the range [0, 1]. With 1 indicating 
complete mismatch in rankings and 0 indicating 
complete harmony between two feature rankings. 
Hamming distance, in contrast with the previous two 
measures, is a measure of dissimilarity between 
feature ranks. 

Lastly, we propose the cosine similarity between 
the two N dimensional vectors which in our case are 
feature rankings of N features, 

Similarity 
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where, r and r′  are the two feature rankings under 
evaluation. Cosine similarity, too, gives output in the 
range [-1, 1]. For cosine similarities resulting in a 0 
value, in can be interpreted that the two rankings, are 
independent i.e. they do not share any commonality. 
If the cosine similarity results in output 1 that implies 
that the angle between them is 0º and the two 
rankings are completely similar. 

3. Stability Evaluation Schema 
For assessing the stability of FR algorithms, we 

propose an algorithm, given in Table 1. The proposed 
algorithm trains the FR algorithm on the entire 
training data available to obtain the reference 
ranking. It then conducts random sampling of the 
training data set while ensuring that the randomly 
sampled training data set maintains the same balance 
with respect to class, as the original training data. It 
follows that, with deploying the above similarity 
measures for computing the similarity of reference 
ranking and rankings obtained after training the FR 
algorithm on sampled training data. Final stability is 
estimated by averaging the similarities. 

4. Experimental Setup 
4.1 Data Set 

Experiments were conducted on three different 
data sets: NOVA, HIVA [24] and LUCAS0 [25]. 

Table 1 Stability Evaluation Schema (SES) 

Input: Training Data TR, Test Data TS, Feature 
Ranking algorithm FRA 

Output: Stability Estimate 
S ← Ø 
M←Randomly selected large number 
 Train  FRA (TR) 
Rref← Test  FRA (TS) 
 
for i = 1 to M, do 
 TRnew ← RandomlySample (TR) such that 
ClassBalance (TRnew) = = ClassBalance (TR) 
 Train FRA (TRnew) 
 Ri ← Test FRA( TS) 
 S← S Ụ SimilarityMeasure (Rref, Ri) 
end for 
Stability ← Average S 
Return 

NOVA finds its roots in the 20-Newsgroup 
dataset, [26] and is essentially a text classification 
dataset. The two classes are: religion and politics, 
where each text is an email that needs to be classified 
into one of these categories or classes. Data is sparse 
binary and comprises of 16,969 features, which 
represent the vocabulary used for words. NOVA is a 
partially unbalanced data set with 28.5% instances 
belonging to the positive class.  

HIVA determines the compounds which play an 
active role against HIV AIDS infection. The two 
classes are: active and inactive. Data is sparse binary 
and comprises of 1,617 features, which represent the 
properties of the molecules of the HIV AIDS 
opposing compounds. HIVA is a predominantly 
unbalanced data set with 3.5% instances belonging to 
the positive class. 

LUCAS along with other datasets is used to 
model the curative, preventive and diagnostic aspects 
of lung cancer. LUCAS0, a derivative of LUCAS, 
contains 11 features with 72.15% instances belonging 
to the positive class.  

GINA is utilized for segregating the two digit 
even numbers from the two digit odd numbers in 
handwriting recognition tasks. GINA has sparse 
continuous input variables, which we converted into 
binary for our experimental purpose, without 
affecting the inherent sparseness of the dataset. 
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GINA has 970 features and is a balanced data set 
with 49.2% instances belonging to the positive class. 

For each one of the data sets, the features are 
pre-identified and marked. Characteristics of the data 
sets are summarized in Table 2. 

4.2 Feature Ranking Algorithms 
Feature ranking algorithms are broadly grouped 

into three categories: correlation based, information 
theoretic and probabilistic. We selected one 
algorithm from each category: Relief [27], Mutual 
Information [28] and Diff-criterian [29]. Relief, 
motivated by instance based learning, is an FR 
algorithm, which operates by assigning a relevance 
weight to each feature. The relevance is assessed in 
the context of nearest neighbors with a feature that 
distinguishes well amongst instances from different 
classes while possessing the same value for instances 
of the same class receiving a high weight. Relief, 
despite its limitations; with the most prominent being 
its inability to deal with redundant features, has found 
application in many domains and is hugely popular. 
It’s not only noise tolerant but also has a low 
execution time. 

Diff-criterian is a probabilistic measure and it 
assigns weights to features by determining their 
density value in each class. Weight assigned to the 

thi  feature, iF is: 
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Mutual Information, being a popular 
information theoretic measure of feature ranking 
assigns weights based on the information possessed 
by a feature about the class of the instance. It is 
estimated by finding the relative entropy or Kullback- 

 

 

 

 

 

 

Leibler distance between the joint distribution 
),( CFp i  of two random variables C and iF  and 

their product distribution )()( CpFp i  where C 

denotes the class and iF  denotes the thi  feature. 
Weights are assigned to a feature based on the mutual 
information between the feature and the class 
variable. Features which have greater mutual 
information will be assigned a higher weight and will 
thus rank higher in the final feature rankings. 

5. Results 
Table II, provides stability results for relief, diff-

criterian and mutual information when the Kendall’s 
Tau (SK), Spearman rank correlation (SS), hamming 
distance (SH) and cosine similarity (SC) are employed 
as stability measures. Figure 1, 2, 3 and 4 illustrate 
the stability profiles of NOVA, HIVA, LUCAS0 and 
GINA respectively. 

SK and SS, both are tools from statistic to 
measure rank correlations. In practice, SS normally 
produces a higher value as compared to SK when both 
are employed in the same situation. However, it’s 
safe to interpret the lower of the two values i.e. SK 
and SS, when the two yield different results. This rule 
has been followed, in the analysis conducted ahead. 

HIVA 
All three feature selection algorithms have been 

least stable for HIVA data set. Mutual information 
and diff criterian showed maximal stability for 
HIVA, with rank correlation coefficients SK and SS 
indicating a stability of approximately 40%. 
However, relief performs very poorly with 
approximately 2% stability. Least stability, shown by 
HIVA dataset can be attributed to its severely 
unbalanced  nature  as  the  instances  belonging  to  
the  positive class are a mere 3.5% in contrast  to  the 

 

 

 

 

 

 

Table 2  Characteristics of Data Sets 

Data Features Train Test Features/ Instances Positive Class Application Domain 
NOVA 16,969 1,754 17,537 9.674 28.5% Text Classification 
HIVA 1617 4229 38449 0.383 3.5% Drug Discovery for HIV 

LUCAS0 11 2000 10000 0.0055 72.15% Lung Cancer 
GINA 970 3153 31,532 0.2797 49.2% Handwriting Recognition 
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instances belonging to the negative class which 
comprise a whopping 96.5%. In the experiments 
conducted, sampling of the training data was 
balanced with respect to the class variable. If the 
sampling is done oblivious of the class variable and 
the balance is not retained, stability results for HIVA 
data set can be expected to be even lower. In real life 
scenarios, the latter case is most likely to occur as 
perturbations in training data are most likely to be a 
result of unwanted noise, which is random in nature. 
Relief, where calculation of feature rankings are 
dependent on the nearest neighbors, is least stable in 
a scenario where the dataset in unbalanced. As the 
nearest neighbors are likely to change with sampling 
of training dataset, algorithms assessment of a 
features worth, which is based on nearest neighbors, 
is most likely to fluctuate, resulting in lower stability. 
This effect will be even more pronounced in a case 
where the dataset is extremely unbalanced with 
respect to the class variable, as is the case with 
HIVA. Diff-criterian which assesses features 
importance based on the difference of its density in 
each class is less likely to show instability in the 
wake of fluctuations in the training data, as feature 
density  is  likely  to  be  retained  in  sampling where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

balance with respect to class variable is ensured. 
Similarly, for mutual information algorithms, 
sampling of training data is less likely to effect the 
algorithms’ assessment of a features importance. 

NOVA 
For NOVA dataset, all three algorithms show almost 
similar stability with relief, diff-criterian and mutual 
information, respectively, showing 44.74%, 48.91% 
and 48.24% stability. Diff-criterian gives the highest 
stability with relief, demonstrating the lowest 
stability in this case too. However, unlike HIVA, the 
gulf between stability provided by mutual 
information and diff-criterian and the stability 
demonstrated by relief is not that huge. NOVA unlike 
HIVA is partially unbalanced with the instances 
belonging to the positive class comprising 28.5% of 
total instances. 

LUCAS0 

For LUCAS0 dataset, diff-criterian once again 
provides the highest stability of 52.7% followed by 
mutual information with a stability of 38.91% and 
relief lagging behind with 35.27% stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3   Stability Results 

RELIEF 
 Kendall’s Tau (SK) Spearman Rank Correlation (SS) Hamming Distance (SH) Cosine Similarity (SC)

NOVA 0.45912 0.44746 0.88772 0.8619 
HIVA 0.01499 0.022344 0.9839 0.7561 

LUCAS0 0.35272 0.44546 0.6 0.87942 
GINA 0.6531 0.6644 0.3045 0.9456 

DIFF-CRITERIAN 
 Kendall’s Tau (SK) Spearman Rank Correlation (SS) Hamming Distance (SH) Cosine Similarity (SC)

NOVA 0.48916 0.5029 0.5995 0.8757 
HIVA 0.3957 0.39354 0.59554 0.84852 

LUCAS0 0.52728 0.55636 0.30908 0.90356 
GINA 0.7562 0.7782 0.2345 0.9862 

MUTUAL INFORMATION 
 Kendall’s Tau (SK) Spearman Rank Correlation (SS) Hamming Distance (SH) Cosine Similarity (SC)

NOVA 0.48242 0.49318 0.59962 0.8733 
HIVA 0.39962 0.39932 0.59754 0.8499 

LUCAS0 0.3891 0.43638 0.3818 0.87746 
GINA 0.6568 0.6934 0.2983 0.9674 
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GINA 

Each algorithm provided maximum stability 
with GINA, which can be attributed to its balanced 
nature with respect to instances belonging to positive 
and negative classes. Diff criterian was most stable 
with approximately 76% stability, followed by 
mutual information with 67% stability and relief with 
65% stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stability, indicated in terms of SK, SS, SH, SC, 
conform to the discussion above, without any 
discrepancy in the values of similarity provided by 
any measure. 

In figure 1, 2, 3, 4, and 5, Hamming distance 
outcomes, which represent dissimilarity, have been 
converted into similarity values to enable ease of 
comparison with other similarity measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1    Stability Profile for NOVA 

 

 
Fig.2    Stability Profile for HIVA 
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Fig. 3    Stability Profile for LUCAS0 

 

Fig. 4   Stability profile for GINA 
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In general, diff-criterian is most stable, followed 

by mutual information whose stability is comparable to 
that offered by diff criterian. Relief has demonstrated 
least stability of the three algorithms under 
investigation. The global stability of each technique is 
illustrated in figure 5. 

6. Conclusions and 
Recommendations 
FR algorithms, rather feature selection 

techniques, in general,  distinguish those features that 
are most suited to the classification process, amongst 
the pool of largely irrelevant and redundant features, 
but do not guarantee any degree of classification 
accuracy as they do not construct or evaluate any 
classification model.  Similarly, stability results, 
alone cannot provide basis for the selection of an 
appropriate feature ranking algorithm. Nonetheless, 
they can influence and assist in the choice of a FR 
algorithm, when coupled with classification outputs. 
Stability results play a crucial role in enhancing the 
confidence of the users and domain experts in the 
analysis results. We presented four stability measures 
for gauging the stability of FR algorithms and also 
proposed a framework based on random sampling for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
analyzing stability. We conducted our experiments on 
four real life binary data sets and evaluated three FR 
algorithms hailing from correlation based information 
theoretic and probabilistic feature selection 
techniques. To the best of our knowledge, this is the 
first analysis of feature selectors when they are 
operated on binary data sets. 

Future work includes refining and exploring 
stability measures to provide a better insight into 
their respective advantages and disadvantages and 
suitability in a particular context. Extending and 
exploiting the similarity measures to compare and 
contrast the feature rankings generated by different 
FR algorithms. 
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