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Abstract 
In this paper, numerical solution of thermal conduction problem has been analyzed. Three Finite 

difference schemes have been derived for the determination of thermal coefficient and for temperature 
distribution at different time levels. Moreover, by using derived schemes a test problem has been 
solved and computed results have been compared with exact solutions for different time level, it 
reveals accuracy of these schemes as well as the physical behavior of the test problem. The general 
pattern which has been observed is that with passage of time temperature distribution increases. 
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1. Introduction 

Analysis of the variation of diffusion coefficient 
with time plays an important role for determining 
nature of the material; [4, 6, 7] these types of 
problems are encountered in physical phenomena like 
heat conduction problems in different materials 
(conductivity of medium), reaction diffusion equation 
problem etc., [8]. In this paper a thermal conduction 
problem is under consideration in which temperature 
distribution and thermal coefficient are 
simultaneously measured by finite difference 
techniques. 

Consider the Problem 
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with initial condition 

lXXFX ≤≤= 0),()0,(ψ  (2) 

with boundary conditions 

FTTTGT ≤≤= 0),(),0( 0ψ  (3) 

FTTTGTl ≤≤= 0),(),( 1ψ  (4) 

where l=length of rod, FT = final temperature 
with additional measurement 

FTTTMTX ≤≤= 0),(),( *ψ  (5) 

Where F, )(0 TG , )(1 TG  and )(TM  are known 
functions but ),( TXψ  and )(ˆ Tα  are unknown. Here 

)(ˆ Tα  is called thermal or diffusion coefficient while 
),( TXψ  is known as temperature distribution. 

Cannon [1] converted the problem (1) to (5) to a non-
linear integral equation for )(ˆ Tα . Yin and Cannon 
[2] developed finite element technique for the 
solution of the problem (1) – (5). Deghan [3] 
analyzed the problem for particular time level. The 
problem (1) to (5) can be used for determination of 
unknown properties such as the coefficient )(ˆ Tα  
which represents some physical quantity like the 
conductivity or diffusivity of medium. A case when 
unknown diffusivity depends upon temperature 
distribution was discussed by Fatuallyev [5]. In this 
paper a test problem is also solved by derived finite 
difference schemes for different time levels, solutions 
are presented in tables which reveal that 
diffusivity/conductivity varies with time and 
indirectly with temperature. 

2. Derivation of Explicit Finite 
Difference Scheme 
For the derivation we use following notations 
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Select two mesh constants h and k such that 
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,....,2,1,0 miihXi ==  
NjjkT j ...,2,1,0, ==  

Here  is a point that can also be chosen as mesh 
point, 1#1,##][ −≤≤=↑ ↓↓ miwherehiX  

Equation (5) can be written as 
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Differentiating above equation w.r.t “T”, we get 
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So from equation (1), we have 

),()(ˆ)( * TXTTM xxψα=′  (7) 

Let us now assume that 

0),( * ≠TXxxψ , hence from equation (7), we 
obtain       
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So the inverse problem (1) to (5) is equivalent to 
the following problem 
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FTTlX <<<< 0,0  

with initial and boundary conditions are  

lXXFX ≤≤= 0),()0,(ψ  (10) 

FTTTGT ≤≤= 0),(),0( 0ψ  (11) 

FTTTGTl ≤≤= 0),(),( 1ψ  (12) 

Step 2.1 
Transformation 

Let 

),(),( TXTX xxψµ =  (13) 

),( TXψ  and ),( TXµ  are continuous in given 
domain. 

( )T
T

XXTT
∂
∂∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
∂
∂

=
∂
∂

= ψ
ψµµ

)(
)(

2

2

2

2
 

Using eq (9), we get 
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Finally our problem becomes 
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Applying forward difference approximation for 
Tµ and central difference approximation for xxµ , at 

time level j respectively. So our problem becomes 
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Step 2.2 
Equation (16) takes the form 
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where 10,11 −≤≤−≤≤ Njmi  and 
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Step 2.3 
In order to find ψ  from µ , we have to solve 

following B.V.P 

0,0),,(),( ><<= TlXTXTXxx µψ  (25) 

FTTTGT ≤≤= 0),(),0( 0ψ  (26) 

FTTTGT ≤≤= 0),(),1( 1ψ  (27) 

So by using finite differences, equation (25) 
becomes 
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with boundary conditions 

0,00 ≥= jG jjψ  (29) 

0,1 ≥= jG jj
mψ  (30) 

where j
iµ ,  is the solution of equation (23). 

Step 2.4 
Next we find )(ˆ Tα  or ( )jT )(α̂  by using 

equation (8) i.e. 
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3. Derivation of Backward Implicit 
Finite Difference Scheme 
Procedure of this scheme up to equation (15) is 

same as of pervious scheme. Now applying backward 
difference approximation for Tµ  at time level j+1 
and central difference approximation for xxµ  at time 
level j+1, therefore  

1
1

11
1 )21( +

+
++

− −++−= j
i

j
i

j
i

j
i vvv µµµµ  (32) 

for 1...,,2,1,0,11 −=−≤≤ Njmi , 

where j

j

h
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=  with initial and boundary conditions 

given in equations (18), (19), (20). Remaining steps 
are same as we did in explicit finite difference 
scheme. 

4. Derivation of another (Crank 
Nicolson) Implicit Finite Difference 
Scheme 
Procedure of this scheme up to equation (15) is 

same as of explicit scheme. This scheme is derived 
by averaging forward difference scheme at time level 
‘j’ and backward implicit scheme at time level ‘j+1’. 
So finally we get 
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with initial and boundary conditions as given in 
equations (18), (19), (20). Remaining steps are same 
as we did in explicit finite difference scheme. 

5. Test Problem 
Consider the given partial differential equation 
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Table 1   Test  Problem (Explicit Finite Difference Scheme) 

 
  T =   2.500000000000000E-002 

X(i) Exact Solution Computed Solution Error 

0.00 1.0249999999999999 1.0249999999999999 0.0000000000000000 

0.25 1.3161260521049349 1.3168817374673603 0.0007556853624253 

0.50 1.6899393024676312 1.6910318236838500 0.0010925212162187 

0.75 2.1699250170279916 2.1708165606831527 0.0008915436551611 

1.00 2.7862388741705213 2.7862388741705213 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha           Error 

 0.9756097560975611 0.9754852362462738 0.0001245198512873 

 
T =   0.600000000000000 

X(i) Exact Solution Computed Solution Error 

0.00 1.6000000000000001 1.6000000000000001 0.0000000000000000 

0.25 2.0544406667003865 2.0551960859266041 0.0007554192262176 

0.50 2.6379540331202054 2.6390461687427007 0.0010921356224953 

0.75 3.3872000265802797 3.3880912459718098 0.0008912193915300 

1.00 4.3492509255344727 4.3492509255344727 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha Error 

 0.6250000000000000 0.6237782078707389 0.0012217921292611 

 
T =    1.25000000000000 

X(i) Exact Solution Computed Solution Error 

0.00 2.2500000000000000 2.2500000000000000 0.0000000000000000 

0.25 2.8890571875474182 2.8898123059240093 0.0007551183765910 

0.50 3.7096228590752882 3.7107145594100239 0.0010917003347357 

0.75 4.7632500373785183 4.7641408976429274 0.0008908602644091 

1.00 6.1161341140328513 6.1161341140328513 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha Error 

 0.4444444444444444 0.4431585557097645 0.0012858887346799 
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Table 2   Test Problem (Implicit Finite Difference Scheme) 

 
  T =   2.500000000000000E-002 

X(i) Exact Solution Computed Solution                      Error 

0.00 1.0249999999999999 1.0249999999999999 0.0000000000000000 

0.25 1.3161260521049349 1.3167879263705291 0.0006618742655942 

0.50 1.6899393024676312 1.6908961979311268 0.0009568954634955 

/0.75 2.1699250170279916 2.1707058809473208 0.0007808639193292 

1.00 2.7862388741705213 2.7862388741705213 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha           Error 

 0.9756097560975611 0.9748690852770776   0.0007406708204835 

 
T =   0.600000000000000 

X(i) Exact Solution Computed Solution Error 

0.00 1.6000000000000001 1.6000000000000001 0.0000000000000000 

0.25 2.0544406667003865 2.0534333484503255 0.0010073182500610 

0.50 2.6379540331202054 2.6364977164476300 0.0014563166725754 

0.75 3.3872000265802797 3.3860116007254772 0.0011884258548025 

1.00 4.3492509255344727 4.3492509255344727 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha   Error 

 0.6250000000000000 0.6190768220105785       0.0059231779894215 

 
T =    1.25000000000000 

X(i) Exact Solution Computed Solution Error 

0.00 2.2500000000000000 2.2500000000000000 0.0000000000000000 

0.25 2.8890571875474182 2.8867912978351629 0.0022658897122554 

0.50 3.7096228590752882 3.7063469805157943 0.0032758785594940 

0.75 4.7632500373785183 4.7605767678756461 0.0026732695028722 

1.00 6.1161341140328513 6.1161341140328513 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha Error 

 0.4444444444444444 0.4390984582854575 0.0053459861589870 



Finite Difference Schemes for the Determination of Thermal Coefficient and Analysis of its Variation with Time 

 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3   Test  Problem (Crank-Nicolson Scheme) 

 
  T =   2.500000000000000E-002 

X(i) Exact Solution Computed Solution Error 

0.00 1.0249999999999999 1.0249999999999999 0.0000000000000000 

0.25 1.3161260521049349 1.3168354287991777 0.0007093766942428 

0.50 1.6899393024676312 1.6909648739299907 0.0010255714623595 

0.75 2.1699250170279916 2.1707619245520759 0.0008369075240844 

1.00 2.7862388741705213 2.7862388741705213 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha Error 

 0.9756097560975611 0.9751809814668779 0.0004287746306831 

 
T =   0.600000000000000 

X(i) Exact Solution Computed Solution    Error 

0.00 1.6000000000000001 1.6000000000000001 0.0000000000000000 

0.25 2.0544406667003865 2.0543217898106074 0.0001188768897791 

0.50 2.6379540331202054 2.6377821677366682 0.0001718653835372 

0.75 3.3872000265802797 3.3870597674981351 0.0001402590821447 

1.00 4.3492509255344727 4.3492509255344727 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha       Error 

 0.6250000000000000 0.6214374865504045 0.0035625134495955 

 
T =    1.25000000000000 

X(i) Exact Solution Computed Solution Error 

0.00 2.2500000000000000 2.2500000000000000 0.0000000000000000 

0.25 2.8890571875474182 2.8883103715387484 0.0007468160086699 

0.50 3.7096228590752882 3.7085431594241043 0.0010796996511839 

0.75 4.7632500373785183 4.7623689430855141 0.0008810942930042 

1.00 6.1161341140328513 6.1161341140328513 0.0000000000000000 

 Exact Value of Alpha Computed Value of Alpha      Error 

 0.4444444444444444 0.4411306821158088 0.0033137623286356 
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6. Results and Discussion 
Computed results of the problem obtained by 

using derived Finite Difference Schemes and their 
comparison with exact solutions for different time 
level are presented in Tables 1-3. It is clear from the 
tables that approximate results obtained by three 
derived Finite difference schemes are very close to 
exact results which show the accuracy and 
applicability of the schemes. In Graphs 1 to 3, points 
indicate the numerical values of thermal coefficient 
α̂ (T) while lines indicate its exact values. It is clear 
from all three plots that numerical values of α̂ (T) 
obtained by three FDMs are very close to exact 
values for small time step that reveals high accuracy 
of these schemes for test problem. Graphs also 
demonstrate that value of thermal coefficient 
decreases with the passage of time. 

7. Conclusion 
Numerical solutions of thermal conduction 

problem are presented in Tables 1-3, from tables it 
revealed that: 

• With the passage of time temperature increases 
and thermal coefficient decreases so the 
material in this heat conduction problem 
resemble with conductor. 

• For T=0.025, Backward difference implicit 
scheme gives better approximation for Ψ(X, T), 
while for T=0.6 & 1.25, Crank-Nicolson 
implicit scheme gives better approximation for 
Ψ(X, T). 

• For T=0.025, 0.6 & 1.25 better approximation 
for )(ˆ Tα  are given in descending order by 
Explicit Finite Difference Scheme, Crank- 
Nicolson scheme and finally by Backward 
Difference Implicit Scheme. 
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