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Abstract 
Modeling infectious diseases helped out to understand and overcome epidemics. This paper is 

based on epidemic model SIR, which fits well to many epidemiological diseases. Basic idea of 
Homotopy Analysis Method (HAM)is discussed and employed to compute an approximation to the 
solution of nonlinear system of differential equations. The effect of vaccination on the dynamics of 
childhood disease described by SIR model is monitored using HAM. The qualitative analysis reveals 
the vaccination reproduction number for disease control and eradication. MATLAB is used to carry 
out the computations. Graphical results are presented and discussed quantitatively. 
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1. Introduction 

When we talk about epidemic diseases then 
importance of vaccination could not be ruled out. 
When West recommended practicing vaccination 
(measles case) to all infants of 15 month age and 
repeat at the age of 6 approximately, it resulted in an 
increase in immunization. This recommendation is 
based on continuous-time constant vaccination 
strategy. Similarly period observations show that 
vaccination has increased the level of permanent 
immunity against epidemic disease [1]. Many 
infectious diseases caught children easier than others 
and named as childhood disease. Such diseases attack 
within age of 5 years. One fact is that in this period 
children are very much attached with their fellows, so 
disease spread rapidly. Some most common 
childhood diseases are measles, mumps, chicken pox, 
etc. Vaccination proved to be very effective against 
childhood disease [2]. To prevent the spread of 
childhood disease we need to germinate a structure 
that would foretell superfine vaccine coverage level. 

2. SIR Model 
SIR model is considered as a basic epidemic 

model. Most of the childhood diseases that propagate 
in population adjust quite simply into this model. 
Usually, diseases caused by a virus such as influenza, 

measles, and chickenpox, are of SIR type. This model 
was proposed by Kermack and Mckendrick in 1927. 
Many epidemiological diseases could be described by 
SIR model. Consider the flow of SIR model with 
constant vaccination strategy [3]. 

 

Fig.1 SIR Model with constant vaccination 

where 
S  = Susceptible individuals 
I  = Infected 
R = Recovered people with permanent 

immunity 
µ = Natural death rate 
β  = average contact rate 
R = Recover rate 
π = Birth rate 
P = new born vaccinated each year (0<P<1) 

I R S (1-P)π 
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Where µ, β, γ and π are considered as positive 
parameters. Furthermore, we assumed that 
vaccination is 100% effective and the natural death 
rates µ and birth rate π are not same, this cause N to 
be not constant [4]. A susceptible will move to I-
compartment when comes in contact with an infected 
individual, an infected individual move to R 
compartment after recovery. Vaccinated individuals 
are also coming into R-compartment. Now SIR 
model can be formulated as 

S
N
SINP

dt
dS µβπ −−−= )1(  (1) 

I
N
SI

dt
dl )( µγβ +−=  (2) 

RINP
dt
dR µγπ −+=  (3) 

We know N = S + I + R 

Adding (1) to (3), we have 

N
dt
dN )( µπ −=  (4) 

We have a case of varying total population. 

2.1 Dimensionless Transformation 
We want to convert the varying total population 

into a constant total population, for this we have to 
choose new variables 

N
Rr

N
Ii

N
Ss === ,,  

11 =⇒=++ Nris  

Now total population is constant i.e., 0=dt
dN , 

from equation (4), we have birth rate equal to death 
rate 

 µπ =  

Putting respective values in (1), (2) & (3), new 
system is 

ssiP
dt
ds πβπ −−−= )1(  (5) 

isi
dt
di )( πγβ +−=  (6) 

riP
dt
dr πγπ −+=  (7) 

2.2 Qualitative Analysis 

We will analyze system in two categories 

1.  Infection free equilibrium )0( =i  
2.  Endemic equilibrium )0( ≠i  

Subsystems in the closed set form are 

}10|),{( ≤+≤+∈=Γ isRis  

To find fixed points, from eq (5) & (6) 

ssip πβπ −−−= )1(0  (8) 

isi )(0 πγβ +−=  (9) 

Case I. Infection free equilibrium  

When disease dies out naturally then from eq (9) 

0&0)( =≠−− is πγβ  

From eq (8);         )1( Ps −=  

The solution comes on an infection free 
equilibrium E0 asymptotically 

)0,1(0 PE −=  

Reproduction number and basic reproduction 
numbers are: 

πγ
β

πγ
β

+
−

=
+

=
)1(&0

PRvR  respectively 

This is a threshold which determines the 
stability of equilibrium. 

Case II.   Endemic Equilibrium 

An unstable disease free equilibrium i.e.,  Rv > 1 
give rise to endemic equilibrium Eu. 

Again from eq (9); 

is )(0 πγβ −−=  

0&0)( ≠=−− is πγβ  

Rv
Ps )1( −

=⇒  

From of eq (8); 
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)1(1)1(
−=⎟

⎠
⎞

⎜
⎝
⎛ −

−
= Rvior

s
Pi

β
π

β
π  

So, we have endemic equilibrium of the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= )1(,)1( Rv

Rv
PEu

β
π  

2.3 Stability Analysis 
The infection free equilibrium E0 is locally 

stable if Rv < 1 and endemic equilibrium Eu is 
unstable [5]. Conversely for Rv > 1, endemic 
equilibrium Eu is stable and infection free equilibrium 
E0 is unstable. In both cases local stability of 
equilibrium give rise to Global stability in the 
particular domain of s and i [6]. An examination of 
local stability of the model’s equilibria reveals that 
there is a critical vaccination proportion 

β
πγβ −−

−⇒−= Pc
R

Pc
0

11  

Pc governs the system as follow 

1. For relatively large vaccination level i.e., 
,PPc>  infection free equilibrium is locally 

stable with the coordinates 

0&1 =−= iPs  

 While endemic equilibrium is unstable. 

2. For relatively weak vaccination i.e., ,PPc<  
endemic equilibrium is locally stable with the 
coordinates 

)1(&)1(
−

−
= Rv

Rv
Ps

β
π  

 The Jacobian matrix at Endemic equilibrium Eu. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−−
=

0)1(
(

Rv
Rv

J
π

πγπ
 

RvtrcJ π−=  
)()(det πγππγπ +−+= RvJ  

As we know 

2
)(det42)( JtrcJ

trcJ
−

±  

On putting values, we have 

2
)]()([42)2(

2,1
πγππγπππ

λ
+−+−−±−

=
RvRvRv

 

For small values of γπ & , we neglect the last 
term under the square root sign 

)(42
2
1

2
2,1 2 πγπππλ +−±−≈ RvRvRv v  

For asymptotically stable, value under square 
root will be negative i.e. 

π
πγ )(4 +

≤Rv  

The endemic equilibrium Eu is locally 
asymptotically stable if 

π
πγ )(41 +

≤< Rv  

We have complex eigenvalues with negative 
real part. So Eu can be treated as a spiral sink. This 
can be explained as initially susceptible are 
increasing and we have few infected. Then infection 
starts spreading and susceptible start to decrease. 
Disease spread more rapidly than increment in 
susceptible. As a result we are left with too small 
number of individuals who are susceptible to disease, 
the outbreaks ends and susceptible begins to increase 
again. 

3. Homotopy Analysis Method (HAM) 
This new analytical technique was proposed by 

S.J. Liao in 1992. Homotopy Analysis Method is a 
general analytical approach use to solve nonlinear 
equations and solutions are obtained in the form of 
series [7]. HAM has a great potential to solve 
strongly nonlinear problems in science and 
engineering such as the viscous flows of non-
Newtonian fluids, nonlinear heat transfer, finance 
problems, Riemann problems related to nonlinear 
shallow water equations, projectile motion, Glauert-
jet flow, nonlinear water waves, groundwater flows 
and Laplace equations with certain boundary 
conditions. HAM is different than all perturbation 
and non-perturbation techniques because of the 
following facts. 

1. Large or small parameters are of no significance 
in HAM 
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2. Convergence of solution can be ensured in a 
very simple way. 

3. We are free to choose base function. 

3.1 Underlying concept of HAM 
We begin with a nonlinear algebraic equation 

 0])([ =tyN  (10) 

N is operator which is nonlinear and y(t) exact 
solution is a function of the independent variable ‘t’. 
To construct homotopy we assume sy0(t) as the initial 
value of y(t) and L is the auxiliary linear operator on 
the exact solution y(t) such that L[y(t)]=0 when 
y(t)=0. We construct such a homotopy [8]. 

);(ˆ)]([)]()([)1( qtHtyqNtyotyLq =+−−  

]1,0[∈q  is called the homotopy parameter. We are 
free to choose the initial value )(tyo  and operator L. 

Enforcing the homotopy to be zero i.e., 0);(ˆ =qtH , 
we have 

0)]([)]()([)1( =+−− tyqNtyotyLq  

Above equation is not a single algebraic 
equation, it is a family. Homotopy parameter q plays 
an important role to solve it, now we can write above 
family as 

0)];([)]();([)1( =+−− qtyqNtyoqtLq ϕϕ  (11) 

From eq (11) we find that as q increases from 0 
to 1, );( qtϕ  continuously changes from )(tyo  to the 
y(t) of eq(10). It is continuous deformation, called 
Homotopy. Equation (11) is called deformation 
equation of order zero because of );( qtϕ , Now we 
use Maclaurin series to expand it 

qmtymtyoqt
m

)()();(
1

∑
∞

=

+=ϕ  (12) 

where )0;(tϕ  is employed and 

)();(
!

1)( 0 ϕϕ mqm Dqt
qm
m

m
ty =

∂
∂

= =  

We select initial approximation y0(t) and the 
auxiliary linear parameter L in such a way that: 

1. The solution );( qtϕ  of the zero order 
deformation equation exist for all ∈q  [0, 1]. 

2. The deformation derivative 
0

);(
=∂

∂

q
m qt

q
m ϕ  

exist for m = 1, 2, … 

3. The power series of );( qtϕ  converges at q = 1. 

So the solution series 

)()();(
1

tymtuoqt
m
∑
∞

=

+=ϕ  

or )()(
0

tyty m
m
∑
∞

=

=  

for briefness , we write in form of vector a 

)}(...)(2),(1),(0{)( tymtytytyty =
r  

This analytical approach is liberated from any 
physical parameters; HAM is strong enough that its 
efficiency will not affect whether a nonlinear 
equation contains small physical parameter or large. 
Equations like (11) are not always convergent at q=1, 
it might be divergent. To overcome this difficulty 
Liao introduced an auxiliary parameter 0≠h  so 
zeroth order deformation equation becomes 

0)];([)()]();([)1( =−−− qtNtqhHtyoqtLq ϕϕ  (13) 

where H(t) is the auxiliary function independent of q 
and we have the great freedom to choose it. Now the 
modified equation (13) is our zero order deformation 
equation. Now we start differentiating equation (13) 
with respect to q; 

⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

−+−− 0
);(

)1()]();([
q

qt
LqtyoqtL

ϕ
ϕ  

)];([
)()];([)(

qt
q

NtqhHqtNthH
ϕ

ϕ
∂

∂
=  

=
∂

∂
−+

∂
∂

−
2

);(2)1();(2
q

qtLq
q

qtL ϕϕ  

2
)]);([2()()];([

)(2
q

qtNtqhH
q

qtN
thH

∂
∂

∂
∂

=
ϕϕ  

=
∂

∂
−+

∂
∂

−
3

);(3)1(
2

);(23
q

qtLq
q

qtL ϕϕ  
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3
)]);([3()(

2
)];([2

)(3
q

qtNtqhH
q

qtN
thH

∂
∂

∂
∂

=
ϕϕ  

At mth derivative 

=
∂
∂

−+
−∂
−∂

− );()1();(
1
1 qt

qm
mLqqt

qm
mmXmL ϕϕ  

)];([)()];([
1

1)( qtN
qm
mtqhHqtN

qm
mtmhH ϕϕ

∂
∂

−∂
−∂

=  

Where 

 
⎩
⎨
⎧

>
≤

=
1,1
1,0

mif
mif

Xm  

Or 

⎥
⎦

⎤
⎢
⎣

⎡
−∂
−∂

−
∂
∂

− );(
1

1);()1( qt
qm
mmXmqt

qm
mqL ϕϕ  

 

 )];([)()];([
1

1)( qtN
qm

mtqhHqtN
qm

tmhH ϕϕ
∂

∂
+

−∂
∂

=  

 
Substitute q=0 and divide by m!; 

)];([
1

1)(
)!1(

1);(
1
1

)!1(
1);(

!
1

qtN
qm

mthH
m

qt
q
m

m
qt

qm
m

m
L

ϕ
ϕϕ

−∂

−∂
−

=⎥
⎦

⎤
⎢
⎣

⎡
−∂
−∂

−
−

∂
∂

We know );()( !
1 qttym qm

m
m ϕ

∂
∂=   in above equation, 

we have 
))(1()()](1)([ tymmthHtXmymtymL −ℜ=−−  (14) 

Where 

)];([
1

1
)!1(

1))(1( qtN
QM
M

m
tymm ϕ

−∂
−∂

−
=−ℜ  (15) 

 
⎩
⎨
⎧

>
≤

=
1,1
1,0

m
m

Xm  

Obviously the higher order deformation 
equation (14) is governing by the linear operator L, 
and the term ))(1( tymm −ℜ  which can be expressed 
for any nonlinear operator N. According to definition 
(15), the right hand side of eq (14) is only dependent 
upon )(1 tym − . Thus, we gain ),(1 ty  ).(2 ty  By mean 
of solving the linear higher order deformation 
equation (14) one by one in order. 

4. Solution of Model 
We have to solve the equations 5 to 10. 

To solve the system by Homotopy analysis 
method we assume the continuous mapping 

);(3)(),;(2)(),;(1)( qttrqttiqtts ϕϕϕ ′→′→→  

Now we chose the auxiliary operator as 

[ ] 3,2,1);();( =′
∂
∂

=′ iqti
t

qtiLi ϕϕ  

With the property 

0)( =CiLi  where Ci is constant integral 

Defining non-linear operators N1, N2, N3 for 
equation (5), (6) & (7) 

+−−′
∂
∂

=′ πϕϕ )1();(1)];(1[1 Pqt
t

qtN  

 );(1);(2);(1 qtqtqt ϕπϕϕβ ′+′′  

−′
∂
∂

=′ );(2)];(2[2 qt
t

qtN ϕϕ  

 );(2)();(2);(1 qtqtqt ϕπγϕϕβ ′++′′  

−′
∂
∂

=′ );(3)];(3[3 qt
t

qtN ϕϕ  

 );(3);(2 qtqtP ϕπϕγπ ′+′−  

Now we can write family of zero order 
deformation equations as follow 

[ ] )];(1[111)(0);(1)1( qtNHqhtsqtLq ϕϕ ′=−′−  (16) 

[ ] )];(2[222)(0);(2)1( qtNHqhtiqtLq ϕϕ ′=−′−  (17) 

[ ] )];(3[333)(0);(3)1( qtNHqhtrqtLq ϕϕ ′=−′−  (18) 

Subject to initial conditions 

0);0(3,0);0(2,0);0(1 rqiqsq =′=′=′ ϕϕϕ  

By Taylor’s theorem, we expand );( qtiϕ′  by a 
power series of the embedding parameter q as 
follows: 

qmtsmtsqt
m

)()(0);(1
1

∑
∞

=

+=′ϕ  

qmtimtiqt
m

)()(0);(2
1

∑
∞

=

+=′ϕ  

qmtrmtrqt
m

)()(0);(3
1

∑
∞

=

+=′ϕ  
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where 

0);(1
!

1)( =′
∂
∂

= qqt
qm
m

m
tsm ϕ  

0);(2
!

1)( =′
∂
∂

= qqt
qm
m

m
tim ϕ  

0);(3
!

1)( =′
∂
∂

= qqt
qm
m

m
trm ϕ  

We know that zero order deformation equations 
(16), (17) and (18) can be written as 

[ ] ( ))(1)(11)(1)( tsmmtHhtXmsmtsmL −ℜ=−−  

[ ] ( ))(1)(22)(1)( timmtHhtXmimtimL −ℜ=−−  

[ ] ( ))(1)(33)(1)( trmmtHhtXmrmtrmL −ℜ=−−  

)0(,0)0(,0)0( rmsmsm ==  

where 

( ) [ ]);(11
1

1
)!1(

1)(1 qtN
qm
m

m
tsmm ϕ′

−∂
−∂

−
=−ℜ  

( ) [ ]);(22
1
1

)!1(
1)(1 qtN

qm
m

m
timm ϕ′

−∂
−∂

−
=−ℜ  

( ) [ ]);(33
1
1

)!1(
1)(1 qtN

qm
m

m
trmm ϕ′

−∂
−∂

−
=−ℜ  

 
⎩
⎨
⎧

>
≤

=
1,1
1,0

m
m

Xm  

As tLi
∂
∂=  then taking integration on both sides 

and substituting 1,1 =−= Hihi  in above equations, we 
have 

( )dttsmmtXmsmtsm
t

o
)(1)(1)( −ℜ−−= ∫  (19) 

( )dttimmtXmimtim
t

o
)(1)(1)( −ℜ−−= ∫  (20) 

( )dttrmmtXmrmtrm
t

o
)(1)(1)( −ℜ−−= ∫  (21) 

as 

( ) [ ]);(11
1

1
)!1(

1)(1 qtN
qm
m

m
tsmm ϕ′

−∂
−∂

−
=−ℜ  

Putting value of N1 

( )
1
1

)!1(
1)(1

−∂
−∂

−
=−ℜ

qm
m

m
tsmm  

⎥⎦
⎤

⎢⎣
⎡ ++−−
∂
∂ );(1);(2);(1)1();(1 qtqtqtPqt
t

πϕϕβϕπϕ  

( ));(1);(2);(1);(1)(1 qtsmqtqtimqttms −+−+−′= ϕϕβ  

Using initial conditions 
 0);0(2,0);0(1 iqsq =′=′ ϕϕ  

and )(0);(2),(0);(1 tiqttsqt →′→′ ϕϕ  

( ) +−′=−ℜ )(1)(1 tmstsmm  
 ( ) )(11010 tsmsmiims −+−+− πβ  

( ) +−′=−ℜ )(1)(1 tmstsmm  

 )(1)(1)(
1

0
tsmtkimtsk

m

k
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∑

−

=

πβ  

So, equation (19) becomes 

)(1)( tXmsmtsm −=  

dttsmtkimtsktms
m

k

t

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−+−′− ∑∫

−

=

)(1)(1)()(1
1

0
0

πβ  (22) 

Similarly equation (20) & (21) becomes 

)(1)( tXmimtim −=  

⎢
⎢
⎣

⎡
+−−−−− ∑∫

−

=

)(1)()(1
1

0
0

tkimtsktism
m

k

t
β  

 dttim ⎥
⎦

⎤
−+ )(1)( πγ  (23) 

)(1)( tXmrmtrm −=  

[ ]dtrmtimtmr
t

1)(1)(1
0

−+−−−− ∫ πγ&  (24) 

Equation (22), (23) & (24) form system of mth-
order deformation equations for .1>m  

Now we start iterating the above system of 
equations for different values of parameters and with 
the help of these parameters, we will observe the 
effect of high or low vaccination on childhood 
disease, hence stability will be discussed. We will 
discuss four cases [3]; 
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Table. 1   Initial values and parameters 

Case s0 i0 r0 Β  Π P Pc 

1 1 0 0 0.8 0.03 0.04 0.9 0.4625

2 0.8 0.2 0 0.8 0.03 0.04 0.9 0.4625

3 0.8 0.2 0 0.8 0.03 0.04 0.3 0.4625

4 0.8 0.2 0 0.8 0.03 0.04 0.0 0.4624

 
Case 1 

18604.0)1(
=

+
−

=
πγ

β PRv  

Since Rv < 1, E0 is stable, Eu is unstable and 
have disease eradication. 

For t = 0, 

000)1(
0

sisP
dt

ds

t
πβπ −−−=

=
 

136.036.0 sts =−=⇒−=  

3221 1096.01072.036.00.1)( tttts −− ×−×+−=  

5443 10786.01096.0 tt −− ×−×+  

66105688888892.0 t−×−  

0)( =ti  

−×+×−= −− 3221 1096.01072.036.0)( ttttr  

655443 10512.010768.01096.0 ttt −−− ×−×+×  

0)(00
0

iis
dt

ds

t
πγβ +−=

=
 

10 ii ==⇒  

00
0

riP
dt

dr

t
πγπ −+=

=
 

136.0 rtr ==⇒  

For 

432432 ,,...,...,, iiisss  and ...,...,, 432 rrr  

We will use equation (22), (23) and (24) 
respectively.  

Table.2   Approximations for case-1 

Itr s(t) I(t) r(t) 

0 1.0 0 0 

1 –0.36 0 0.36 

2 0.72 110−×  0 –0.72 110−×  
3 –0.96 310×  0 0.96 310×  
4 0.96 310×  0 –0.96 310×  
5 –0.768 410−×  0 0.768 410×  
6 –0.5688888892 610−×  0 –0.515 510−×  

 
Case 2 

Since Rv < 1, E0 is stable, Eu is unstable and have 
disease eradication. 

−×−+−= − 332 10224.81008.0408.08.0)( tttts  

−×+× −− 5342 102838500158.0101811776.0 tt  
−× − 64104866281149.0 t  1973168518.0  

+× − 7510 t +× − 97101567280763.0 t  
×4557699387.0  −− 9910 t  

1011101747626667.0 t−×  
=)(ti  

−×−×+ −− 211 102823.01042.02.0 tt  
−×+× −− 4232 102759918751.01011687.0 tt  

4741940899.0103762609484.0 53 +× − t  
−×+× −− 7564 10199013997.010 tt  

×−× − 4575903832.0101540349563.0 97 t  
101199 101747626667.010 tt −− ×+  

−×+×−= −− 3221 1093937.0107257.0366.0)( ttttr  

×+× − 9241093251.01094814275.0 43t  
−×− −− 65543 104445486401.010 tt  

+×−× −− 9977 10269312.0101697145904.0 tt  
911101820444445.0 t−×  

Case 3. 
Since Rv > 1, , E0 is stable, Eu is stable and we 

don’t have disease eradication 

−×−×+−= −− 3221 102464.010336.0168.08.0)( tttts  

−×+× −− 5543 1022308195.01012521.0 tt  
7463 107803698863.0101932440964.0 tt −− ×−×  

×+×+ − 1094303622.0104251830616.0 95 t  
10795 100293723614.010 tt −− ×−  
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Table.3   Approximations for case-2 
Itr )(ts  )(ti  ( ))tr  
0 0.8 0.2 0 
1 –0.408 0.42 110−×  0.366 

2 0.1008 –0.2823 110−×  –0.7257 110−×  
3 –8.224 310−×  –0.11697 210−×  0.93937 210−×  
4 –0.1811776 210−×  0.2759918751 210−×  –0.94814275 310−×  
5 0.2838500158 310−×  –0.3762609484 310−×  0.9241093251 410−×  
6 –0.4866281149 410−×  0.4741940899 410−×  0.4445486401 510−×  
7 –0.1973168518 510−×  0.199013997 510−×  –0.1697145904 710−×  
8 0.1567280763 710−×  –0.1540349563 710−×  –0.269312 910−×  
9 0.4557699387 910−×  –0.4575903832 910−×  0.182044444 1110−×  

10 –0.1747626667 1110−×  0.1747626667 1110−×  0 
 

Table.4   Approximations for case-3 
Itr )(ts  )(ti  ( ))tr  
0 0.8 0.2 0 
1 –0.168 0.42 110−×  0.126 

2 0.336 110−×  –0.903 210−×  –0.2457 110−×  
3 –0.2464 210−×  –0.7217 310−×  0.31857 210−×  
4 –0.125216 310−×  0.44919875 310−×  –0.32398275 310−×  
5 0.22308159 510−×  –0.308446284 5410 t−×  0.286138125 410−×  
6 –1932440964 310−×  0.1860204709 6310 t−×  0.1534736535 510−×  
7 –0.7803698868 410−×  0.7869655811 7410 t−×  –0.6595694941 610−×  
8 0.4251830616 510−×  –0.41594566 9510 t−×  –0.9237401597 710−×  
9 0.1094303622 510−×  –0.1098674509 9510 t−×  0.4370887113 910−×  

10 –0.293723614 710−×  0.293723614 10710 t−×  0 
 

Table.5   Approximations for case-4 
Itr )(ts  )(ti  ( ))tr  
0 0.8 0.2 0 
1 –0.48 110−×  0.42 110−×  0.6 210−×  
2 0 0.57 310−×  –0.57 310−×  
3 0.416 310−×  –0.4977 310−×  0.817 410−×  
4 0.26864 410−×  –0.1496125 410−×  –0.1190275 410−×  
5 –0.7711584 510−×  0.68491314 510−×  0.86245251 610−×  
6 –2076444349 310−×  0.19838225 310−×  0.3573295998 510−×  
7 –0.1402303147 310−×  0.141400832 310−×  –0.1170517333 510−×  
8 0.1075760762 410−×  –0.1048829562 410−×  –0.269312 610−×  
9 0.4557699387 510−×  –0.4575903832 510−×  0.1820444445 710−×  

10 –0.1747626667 610−×  0.174762666 610−×  0 
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+×−×−×+= −−− 33221 107217.010903.01042.02.0)( tttti  

+×−× −− 5443 10308446284.01044919875.0 tt  
7463 107869655811.0101860204709.0 tt −− ×+×  

9595 101098674509.01041594566.0 tt −− ×−×−  
10710293723614.0 t−×+  

−×+×−= −− 3221 1031857.0102457.0126.0)( ttttr  

+×+× −− 5443 10286138125.0103239827.0 tt  
7665 106595694941.0101534736535.0 tt −− ×−×  
9997 104370887113.0109237401597.0 tt −− ×+×−  

Case 4 
Since Rv > 1,  E0 is stable, Eu is stable and we 

don’t have have disease eradication. 

+×+×−= −− 331 10416.01048.08.0)( ttts  

−×−× −− 5544 107711584.01026864.0 tt  
7363 101402303147.0102076444349.0 tt −− ×−×  

9594 104557699387.0101075760762.0 tt −− ×+×+  
106101747626667.0 t−×−  

−×+×+= −− 331 1057.01042.02.0)( ttti  

+×−× −− 4433 101496125.0104977.0 tt  
+×+× −− 6355 1019838225.01068491314.0 tt  

−×−× −− 9473 101048829562.010141400832.0 tt  
10695 101747626667.0104575903832.0 tt −− ×+×  

−×+×−×= −−− 34232 10817.01057.0106.0)( ttttr  
+×+× −− 5644 1086245251.0101190275.0 tt  

7565 10117051333.0103573295998.0 tt −− ×−×  
9796 101820444445.010269312.0 tt −− ×+×−  
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Fig.2   Plot for case 1 
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Fig.3    Plot for case 2 
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Fig.4    Plot for case 3 
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Fig.5  Plot for case 4 
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5. Results and Discussion 
In first two cases high level of vaccination 

coverage is given and finally we reached infection 
free stage in both cases. In case 1, we did not 
introduce infection, all susceptible are given 
vaccination and all are recovered. In other words all 
susceptible moved to R-compartment without passing 
through I-compartment. Hence not a single infection 
is shown in Fig.2. While in case 2, we introduced 
small number of  infection, two kinds of individuals 
are coming into R-compartment, one from S-
compartment after being vaccinated and other from I-
compartment with permanent immunity. In last two 
cases low level vaccination is implied as a result we 
have endemic situation at the end; disease 
permanently exists and infection free equilibrium 
cannot be attained. 

It is clear that we can achieve infection free 
equilibrium if )( cPP>  where cP  is threshold value, 
otherwise endemic situation occurs. 

6. Conclusion 
HAM generates series which converge speedily 

after some iteration. HAM nullifies much of 
computational work that arises in finite difference 
method and other parallel technique. Analytical 
approximations are time-tested and ensure the 
stability of HAM. Hence Homotopy Analysis Method 
(HAM) is reliable to solve non-linear system of 
differential equations. 
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