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Abstract

Modeling infectious diseases helped out to understand and overcome epidemics. This paper is
based on epidemic model SIR, which fits well to many epidemiological diseases. Basic idea of
Homotopy Analysis Method (HAM)is discussed and employed to compute an approximation to the
solution of nonlinear system of differential equations. The effect of vaccination on the dynamics of
childhood disease described by SIR model is monitored using HAM. The qualitative analysis reveals
the vaccination reproduction number for disease control and eradication. MATLAB is used to carry
out the computations. Graphical results are presented and discussed quantitatively.
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1. Introduction

When we talk about epidemic diseases then
importance of vaccination could not be ruled out.
When West recommended practicing vaccination
(measles case) to all infants of 15 month age and
repeat at the age of 6 approximately, it resulted in an
increase in immunization. This recommendation is
based on continuous-time constant vaccination
strategy. Similarly period observations show that
vaccination has increased the level of permanent
immunity against epidemic disease [l1]. Many
infectious diseases caught children easier than others
and named as childhood disease. Such diseases attack
within age of 5 years. One fact is that in this period
children are very much attached with their fellows, so
disease spread rapidly. Some most common
childhood diseases are measles, mumps, chicken pox,
etc. Vaccination proved to be very effective against
childhood disease [2]. To prevent the spread of
childhood disease we need to germinate a structure
that would foretell superfine vaccine coverage level.

2. SIR Model

SIR model is considered as a basic epidemic
model. Most of the childhood diseases that propagate
in population adjust quite simply into this model.
Usually, diseases caused by a virus such as influenza,
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measles, and chickenpox, are of SIR type. This model
was proposed by Kermack and Mckendrick in 1927.
Many epidemiological diseases could be described by
SIR model. Consider the flow of SIR model with
constant vaccination strategy [3].
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Fig.1 SIR Model with constant vaccination

where

S = Susceptible individuals

I = Infected

R = Recovered people with permanent
immunity

1 = Natural death rate

B = average contact rate

R = Recover rate

n = Birthrate

P = new born vaccinated each year (0<P<1)



Solution of a Vaccination Based SIR Epidemic Model by Homotopy Analysis Method

Where p, B, v and m are considered as positive
parameters.  Furthermore, we assumed that
vaccination is 100% effective and the natural death
rates p and birth rate w are not same, this cause N to
be not constant [4]. A susceptible will move to I-
compartment when comes in contact with an infected
individual, an infected individual move to R
compartment after recovery. Vaccinated individuals
are also coming into R-compartment. Now SIR
model can be formulated as

ds SI

AP = p s (1
dl Sl

E:ﬂﬁ_(}/+'u)l (2)
Z_T:PﬂN +/A - uR 3)

Weknow N=S+1+R
Adding (1) to (3), we have

=N @

We have a case of varying total population.

2.1 Dimensionless Transformation

We want to convert the varying total population
into a constant total population, for this we have to
choose new variables

. R
s=—, i= r=—
N

Ll
N b
S+i+r=1=N=1
dN _
w0
from equation (4), we have birth rate equal to death
rate

Now total population is constant i.e.,

T=u

Putting respective values in (1), (2) & (3), new
system is

ds .

E—(l—P)ﬂ'—ﬁsl—ﬂS (5)
—di = fsi—(y + )i (6)
dt 4
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dr .
—=Pr+ p—ar 7
at n (7

2.2 Qualitative Analysis

We will analyze system in two categories

1. Infection free equilibrium (i =0)
2. Endemic equilibrium (i # 0)

Subsystems in the closed set form are

I'={(s,i)eR+|0<s+i<1}

To find fixed points, from eq (5) & (6)

0=(1-p)7z—psi—7s ®)

0=/5i—(y +7)i ©)
Case I. Infection free equilibrium

When disease dies out naturally then from eq (9)

(fs—y—m)=0 &

s=(1-P)

i=0
From eq (8);

The solution comes on an infection free

equilibrium E, asymptotically
Eo=(1-P,0)

Reproduction number and basic reproduction
numbers are:

R :i & RV:M
v+ y+r

respectively

This is a threshold which determines the
stability of equilibrium,

Case Il. Endemic Equilibrium

An unstable disease free equilibrium i.e., Rv>1
give rise to endemic equilibrium E,,.

Again from eq (9);
0=(fs—y-n)i
(Ps—y-m)=0 &

s (=P
Rv

iz0

From of eq (8);
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i:ﬁ(@—1j or i=Z(Rv-1)
AN s

So, we have endemic equilibrium of the form

Eu = ((l_ P £(Rv-l)j
Rv g

2.3 Stability Analysis

The infection free equilibrium E, is locally
stable if Rv < 1 and endemic equilibrium E, is
unstable [5]. Conversely for Rv > 1, endemic
equilibrium E, is stable and infection free equilibrium
Ey is unstable. In both cases local stability of
equilibrium give rise to Global stability in the
particular domain of s and i [6]. An examination of
local stability of the model’s equilibria reveals that
there is a critical vaccination proportion

Pc=1- L = Pc — m
RO y/j
P. governs the system as follow

1. For relatively large vaccination level i.e.,
Pc>P, infection free equilibrium is locally

stable with the coordinates
s=1-P & i=0
While endemic equilibrium is unstable.

2. For relatively weak vaccination i.e., Pc<P,

endemic equilibrium is locally stable with the
coordinates

s= P o 7 (Rvo)
Rv p

The Jacobian matrix at Endemic equilibrium Eu.

32 —7Rv -(r+r
| Z(Rv-1) 0
trcJ = —zRv

detJ =RV(y +7n)—-7(y+7)

As we know

I Jared)2—4(detJ)

- 2

On putting values, we have

— RV E(-72RV)2 — 4[RV(y + 1) — 71y + 7)]
2

A1,2=

For small values of 7 & y, we neglect the last

term under the square root sign

ﬂl,zz—%RVi%\/ﬂ'ZRV\% _ 4Rz (y + 1)
For asymptotically stable, value under square
root will be negative i.e.

4y+r)
T

Rv <

The endemic equilibrium E, is locally
asymptotically stable if
4y +r7)

T

1<Rv<

We have complex eigenvalues with negative
real part. So EU can be treated as a spiral sink. This
can be explained as initially susceptible are
increasing and we have few infected. Then infection
starts spreading and susceptible start to decrease.
Disease spread more rapidly than increment in
susceptible. As a result we are left with too small
number of individuals who are susceptible to disease,
the outbreaks ends and susceptible begins to increase
again.

3. Homotopy Analysis Method (HAM)

This new analytical technique was proposed by
S.J. Liao in 1992. Homotopy Analysis Method is a
general analytical approach use to solve nonlinear
equations and solutions are obtained in the form of
series [7]. HAM has a great potential to solve
strongly nonlinear problems in science and
engineering such as the viscous flows of non-
Newtonian fluids, nonlinear heat transfer, finance
problems, Riemann problems related to nonlinear
shallow water equations, projectile motion, Glauert-
jet flow, nonlinear water waves, groundwater flows
and Laplace equations with certain boundary
conditions. HAM is different than all perturbation
and non-perturbation techniques because of the
following facts.

1. Large or small parameters are of no significance
in HAM
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2. Convergence of solution can be ensured in a
very simple way.

3. We are free to choose base function.

3.1 Underlying concept of HAM
We begin with a nonlinear algebraic equation

N[y®]=0 (10)

N is operator which is nonlinear and y(t) exact
solution is a function of the independent variable ‘t’.
To construct homotopy we assume Sy(t) as the initial
value of y(t) and L is the auxiliary linear operator on
the exact solution y(t) such that L[y(t)]=0 when
y(t)=0. We construct such a homotopy [8].

(1= ) Ly(t)-yo®]+aN[y(H)]=H (t;q)

g<[0,1] is called the homotopy parameter. We are

free to choose the initial value yo(t) and operator L.

Enforcing the homotopy to be zero i.e., H(t;q) =0,

we have
(I=q) LLy(®)—yo(t)]+aN[y(t)]=0

Above equation is not a single algebraic
equation, it is a family. Homotopy parameter g plays
an important role to solve it, now we can write above
family as

(1-a)Lpt:q)-yo®)]+aN[gy(t;q)]=0 (In

From eq (11) we find that as q increases from 0
to 1, ¢(t;q) continuously changes from yo(t) to the

y(t) of eq(10). It is continuous deformation, called
Homotopy. Equation (11) is called deformation
equation of order zero because of ¢(t;q), Now we

use Maclaurin series to expand it

p(t:q)=yo(t)+ D ym(t)gm (12)

m=1
where ¢(t;0) is employed and

I om
t)=— —o(t:q)g_o =D
Ym(®) m! aqm @(t:0)q=0 =Dm ()
We select initial approximation Yo(t) and the
auxiliary linear parameter L in such a way that:

1. The solution ¢(t;q) of the =zero order
deformation equation exist for all ge [0, 1].

2. The deformation derivative a—m¢(t;q)
oq" _
gq=0

existform=1,2, ...

3. The power series of ¢(t;q) converges atq = 1.

So the solution series

p(t;q)=uo(t)+ Y ym(t)

m=1

or Y= Ym(®)
m=0

for briefness , we write in form of vector a
yO={yo®), yl(t),  y2(t)... ym()}

This analytical approach is liberated from any
physical parameters; HAM is strong enough that its
efficiency will not affect whether a nonlinear
equation contains small physical parameter or large.
Equations like (11) are not always convergent at g=1,
it might be divergent. To overcome this difficulty
Liao introduced an auxiliary parameter h=0 so
zeroth order deformation equation becomes

(1-g)L{e(t;q) - yo()] - ahH (N [e(t; a)] = 0 (13)

where H(t) is the auxiliary function independent of
and we have the great freedom to choose it. Now the
modified equation (13) is our zero order deformation
equation. Now we start differentiating equation (13)
with respect to Q;

6 .
~L[e(t;q)- yot)]+(1-q)L [%_ 0}

_ hH@®) N[e(t; g)]ghH (t) N

3 [o(t; )]
q
_y O0t:0) +(1_q)|_52¢(t;Q) _
aq a92
—2hH (1) ON [p(t;q)] ghH () (O2N[p(t; 9)])
aq 092

_3 920(t:9) Fa-q)L Bpt;q) _
0q2 93
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92N [e(t; )] ghH (1) (3N[e(t; )]

=3hH (t)
a92 aq3
At mth derivative
—mXmL om-1 ot q)+(1- )La—m(ﬂ(t;Q)=
agm — agqm

- 0
=mhH () aan_l N[¢(t;q)]qhH(t)aq—Tn N[o(t:q)]

Where
0, if m<1
Xm = .
{1, if m>1
Or
om om-—1
L[(l—q)a—w(t;q)—me co(t;q)}
gm ogm-—1
mhH (t)ol hH (t)om
PO N+ UM Nfp(q)
gm—1 oqm

Substitute g=0 and divide by m!;

1
{ @tg) (ﬂ( q)} —hH(t)am 1
m —-1)! 1 m—1
UL L aq o Nt )]
am-1
We know ym(t)= nlﬂ 2m? ¢(t;q) in above equation,
we have
L[ym(t) — Xmym—1(t)]=hH (t)BRm(ym —1(t)) (14)
Where
1 oM —
Rm(ym-1(t))= WOQT N[o(t;q)] (15)
{o, m<1
Xm =
1, m>1
Obviously the higher order deformation

equation (14) is governing by the linear operator L,
and the term Rm(ym-—1(t)) which can be expressed

for any nonlinear operator N. According to definition
(15), the right hand side of eq (14) is only dependent
upon ym—1(t). Thus, we gain yl(t), y2(t). By mean
of solving the linear higher order deformation
equation (14) one by one in order.

4. Solution of Model

We have to solve the equations 5 to 10.
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To solve the system by Homotopy analysis
method we assume the continuous mapping

s(t) > ol(t;0), i(H) > ¢'2(t;q), r(t) > ¢'3(t;q)

Now we chose the auxiliary operator as

Lilpict;q)] = % ?i(t;q) i=1,2,3

With the property
Li(Ci) =0 where Ci is constant integral

Defining non-linear operators N;, N,, N3 for
equation (5), (6) & (7)
0
N1[e'I(t; Q)]=—§01(t D-(1-P)z+
ﬁco 1(t; 9) '2(t;q) + 7' I(t; )
’ a !
N2[p 2(t;q)]=§</) 2(t;0) -
ﬂ(p'l(t;q)¢'2(t;q)+(y+7r)(p'2(t;q)
3(t; :— "3(t;
N3[p'3(t; )] il (tg)-
Pr—yp'2(t;0) + 79'3(t;q)

Now we can write family of zero order
deformation equations as follow

(1-9)L[p'1(t;q) —S0(t) |=ghtH IN1[¢I(t; )] (16)
(1-g)Lfp2tg)-i0M)]=ah2H2N2Ap2(:q)]  (17)
(1-)L[p'3(t;q) - ro(t)]=ah3H3N3[e'3(t:g)]  (18)
Subject to initial conditions
P'1(0;0)=50,  @'2(0;q)=i0,  '3(0;0)=r0

By Taylor’s theorem, we expand ¢j(t;q) by a
power series of the embedding parameter q as
follows:

P'1(t:q)=s0(t)+ Y sm(t)gm

m=1

P'2(:q)=i0(t)+ Y im(H)gm

m=1

@'3(t;q)=ro(t)+ Z rm(t)gm

m=1
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where
sm(t) = % ;—mmw'l(t;Q)q:O
im(t) = % ;—Tq(p'Z(t;Q)q=o
rm(t) = % ;—mm¢'3(t;Q)qo

We know that zero order deformation equations
(16), (17) and (18) can be written as

L[sm(t) - Xmsm —1(t)|=h1H1(t)Rm(sm - 1(t))
Lfim(t) = Xmim —1(t)|=h2H 2(t)Rm(im - 1(t))
L[rm(t) = Xmrm —1(t)|=h3H 3(t)Rm(rm - 1(t))

sm(0) = 0, sm(0)=0, rm(0)

where
. ). L om-1 "ov
Rm(sm—1(t))= ETE— N1[p'1(t; )]
. 1 om-1 .
Rm(im - 1(t))= =D oqm =1 N2[p'2(t;q)]
1 om-1 1.
Rm(rm — 1(t))—mw N3[p'3(t: )]
{0, m<1
Xm =
1, m>1

As Lizg then taking integration on both sides

and substituting hi=—1,Hi=1 in above equations, we

have
t
sm(t)=Xmsm —1(t) - jo Km(sm-10))dt  (19)
t
im(t)= Xmim —1(t) - J'o Rm(im - 1(t))dt (20)
t
rm(t)=Xmrm —1(t) - L fm(rm-1t))dt ~ (21)
as
1 om-1 e
Rm(sm — 1(t))—mm N1[e1(t; )]

Putting value of N

1 om-1
(m-1)! ogm—1

Rm(sm-1(t))=

[%col(t;q)—(l— P)mﬂ«pl(t;q)wz(t;q)+7r¢1<t;q>}

=s'm—1(t) + Alel(t; g)im - 1(t; @) + p2(t; g)sm — 1(t; )

Using initial conditions
¢'1(0;9)=s0,  ¢'2(0;q)=i0

P'l(t;0) >s0(t), ¢'2(t;q) —>i0(t)

Rm(sm —1(t))=s'm - 1(t) +
B(s0im —1+i0sm —1)+ zsm — 1(t)

and

Rm(sm—1(t))=s'm—1(t)+
m-1
ﬂ[z sk(t)im—l—k(t)] +7sm—1(t)
k=0
So, equation (19) becomes

sm(t)=Xmsm—1(t)

m-—1
—I; [s'm—l(t)+ p’z sk(t)im—l—k(t);zsm—l(t)}dt (22)
k=0

Similarly equation (20) & (21) becomes

im(t)= Xmim —1(t)

m-1
—J'; [ism—l(t)— B skt)im-1-k(t)+
k=0

(7 +m)im—1(t) | dt (23)
rm(t)= Xmrm—1(t)
- ﬁ [Em —1t) — 7im — 1(t) + zrm — 1Jdt (24)

Equation (22), (23) & (24) form system of mth-
order deformation equations for m>1.

Now we start iterating the above system of
equations for different values of parameters and with
the help of these parameters, we will observe the
effect of high or low wvaccination on childhood
disease, hence stability will be discussed. We will
discuss four cases [3];
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Table. 1 Initial values and parameters

Case | s i ro B ¥ i =] P,

1 1 0 0 0.8 | 0.03 | 0.04 | 09 (04625

2 0.8 0.2 0 0.8 | 0.03 | 0.04 | 09 [0.4625

3 0.8 0.2 0 0.8 | 0.03 | 0.04 | 03 [0.4625

4 0.8 0.2 0 0.8 | 0.03 | 0.04 | 0.0 [0.4624

Case 1l

Rv = M: 0.18604
v+

Since Rv < 1, E is stable, E, is unstable and
have disease eradication.

Fort=0,

— (1= P)7z — 50i0— 750
dti_o

=-0.36=>5=—0.36t = sl
s(t)=1.0-0.36t +0.72x10"'t> —=0.96x 10 t>
+0.96x1073t% —0.786x107*t
—0.5688888892x1070t°
i(t)=0
r(t)=0.36t —0.72x107't% +0.96x 10723 —

0.96x1073t* +0.768x 107> —0.512x107°t°

ds
dti_o

= 50i0—(y + 7)i0

= i=0=i]

dr
dti_o

= Pz +7i0—2r0

= r=036t=n
For
$7,53,54 v oet , iz,i3,i4 and Ih,3,Ig .. ,

We will use equation (22), (23) and (24)
respectively.

Table.2 Approximations for case-1

Itr s(t) I(t) r(t)

0 1.0 0 0

1 036 0 0.36

2 0.72x107"! 0 —072x107"
3 ~0.96x10° 0 0.96x10°
4 0.96x10> 0 ~0.96x10°
> ~0.768 %10~ 0 0.768x10%
6 _0.5688888892x1070 0 —0515x107°

Case 2

Since Rv < 1, E is stable, E, is unstable and have
disease eradication.

s(t) =0.8—0.408t +0.1008t> —8.224x 107t —
0.1811776x1072t* +0.2838500158 x10>t° —
0.4866281149x10~*t% — 0.1973168518

x107t7 + 0.1567280763x107"t7 +
0.4557699387x 107°t° —
0.1747626667 x10~'1¢1°

i(t)=

0.2+0.42x107't-0.2823x1071t% -
0.11687x1072t3 +0.2759918751x 102 t* —
0.3762609484x107>t> +0.4741940899

x107% +0.199013997 x10~°t7 —
0.1540349563x1077t° —0.4575903832 x
107%t” +0.1747626667x10~ " 1t1°

r(t)=0.366t—0.7257x10"t? +0.93937x1072t> —
0.94814275x107t* +0.9241093251x
107915 —0.4445486401x107t° —
0.1697145904x1077t7 —0.269312x107t° +
0.1820444445x10~''t?

Case 3.

Since Rv > 1, , E, is stable, E, is stable and we

don’t have disease eradication

S(t) = 0.8—0.168t +0.336x107't? —0.2464x 10> t> —
0.12521x1073t% +0.22308195x10>t°> —
0.1932440964x107>t% —0.7803698863x10~*t’

+0.4251830616x107t° +0.1094303622 x
107t —0.0293723614x 107" t10



Solution of a Vaccination Based SIR Epidemic Model by Homotopy Analysis Method

Table.3 Approximations for case-2

Tir s(t) it) r(t)
0 0.8 0.2 0
1 ~0.408 042x10""! 0.366
2 0.1008 ~0.2823x10" ~0.7257%107!
3 -8.224x1073 ~0.11697x1072 0.93937x1072
4 ~0.1811776x1072 0.2759918751 x1072 ~0.94814275x107
5 0.2838500158 10~ ~0.3762609484x10 > 0.9241093251x10 7
6 ~0.4866281149x10 ™ 0.4741940899 x10 ™% 0.4445486401 x10 7
7 ~0.1973168518x10 7 0.199013997x10 7 ~0.1697145904 x10~"
8 0.1567280763 %10~ ~0.1540349563x1077 -0.269312x10~°
9 0.4557699387 %10~ —0.4575903832x10~° 0.182044444x10~!"!
10 ~0.1747626667x10!! 0.1747626667x10~"! 0
Table.4 Approximations for case-3
Tir s(t) it) r(t)
0 0.8 0.2 0
1 —0.168 042%10-! 0.126
2 0.336x107" ~0.903x1072 ~0.2457x107"!
3 ~0.2464x1072 —0.7217x1073 0.31857x1072
4 -0.125216x1073 0.44919875x10 > —0.32398275x107>
5 0.22308159x107 ~0.308446284 x10 74> 0.286138125x107*
6 ~1932440964 x107> 0.1860204709x10~>t° 0.1534736535x107
7 —0.7803698868 x10 0.7869655811x10~*t” ~0.6595694941 x10 76
8 0.4251830616x107 —0.41594566x107t° ~0.9237401597x107’
9 0.1094303622x107 ~0.1098674509x10>t° 0.4370887113x107°
10 -0.293723614x1077 0.293723614x1077 10 0
Table.5 Approximations for case-4

Ttr s(t) i(t) r(t)

0 0.8 0.2 0

1 ~0.48x107" 0.42x107"! 0.6x1072

2 0 0.57x107 ~0.57x107°

3 0.416x107> 0.4977x1073 0.817x107%

4 0.26864x1074 ~0.1496125x107% ~0.1190275x10~%

5 ~0.7711584x107° 0.68491314x107 0.86245251x10~°

6 —2076444349x107> 0.19838225x10° 0.3573295998 x10 7

7 ~0.1402303147x1073 0.141400832x10 7 ~0.1170517333x107°

8 0.1075760762x10~% ~0.1048829562x107* ~0.269312x107°

9 0.4557699387x10 7 —0.4575903832x10 > 0.1820444445x10~’

10 ~0.1747626667x107° 0

0.174762666x107°
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i(1)=0.2+0.42x1071t-0.903x1072t> —0.7217x10>t> +
0.44919875x107>t* —0.308446284x1074t> +
0.1860204709x10>t% +0.7869655811x10~*t”
—0.41594566x107°t° —0.1098674509x10~>t°
+0.293723614x107"t'°

r(t)=0.126t —0.2457x10"'t? +0.31857x1072t> —

0.3239827x107>t* +0.286138125x10t> +
0.1534736535x107°t® —0.6595694941x10 7%t
—0.9237401597x1077t° +0.4370887113x10 ™ t°

Case 4
Since Rv > 1, E, is stable, E, is stable and we
don’t have have disease eradication.
S(t)=0.8—0.48x10't+0.416x107t> +
0.26864x107*t* —0.7711584x107t> —
0.2076444349x107>t% —0.1402303147 x103t’
+0.1075760762x10~*t” +0.4557699387x10~>t°
—0.1747626667x107t1°

i(1)=02+042x10""t+0.57x1073¢3 -
0.4977x1073t% —0.1496125x10~4t* +
0.68491314x107>t +0.19838225x10>t® +
0.141400832x103t7 —0.1048829562x10~*t° —
0.4575903832x107t” +0.1747626667x10 10
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5. Results and Discussion

In first two cases high level of vaccination
coverage is given and finally we reached infection
free stage in both cases. In case 1, we did not
introduce infection, all susceptible are given
vaccination and all are recovered. In other words all
susceptible moved to R-compartment without passing
through I-compartment. Hence not a single infection
is shown in Fig.2. While in case 2, we introduced
small number of infection, two kinds of individuals
are coming into R-compartment, one from S-
compartment after being vaccinated and other from I-
compartment with permanent immunity. In last two
cases low level vaccination is implied as a result we
have endemic situation at the end; disease
permanently exists and infection free equilibrium
cannot be attained.

It is clear that we can achieve infection free
equilibrium if (P>P;) where P, is threshold value,
otherwise endemic situation occurs.

6. Conclusion

HAM generates series which converge speedily
after some iteration. HAM nullifies much of
computational work that arises in finite difference
method and other parallel technique. Analytical
approximations are time-tested and ensure the
stability of HAM. Hence Homotopy Analysis Method
(HAM) is reliable to solve non-linear system of
differential equations.

References

[1] Roy M. Anderson & Robert M. May. 1985.
Vaccination and Herd Immunity to Infectious
Disease Nature, 318(6044):323-9.

67

[2]

[6]

Shaban N, Anderson M, Svensson A, Britton
T. 2008. Network, epidemics and vaccination
through contact tracing. Math. Biosci, 216(1):
1-8

0.D. Makinde. 2007. A domian decomposition
approach to a SIR epidemic model with
constant  vaccination  strategy.  applied
mathematics and competition 184, 842-848

S. Busenberg, P. van den Driessche. 2990.
Analysis of a Disease Transmission Model in a
Population with Varying Size. J. Math. Bio. 28,
257-270.

Gul Zaman and 1. Hoyo Jung. 2007. Stability
Techniques in SIR Epidemic Model. PAMM
Proc. Appl. Math. Mech. 7, 2030063—
2030064.

Buonomo B, D'Onofrio A, Lacitignola D.
2008. Global stability of an SIR epidemic
model with information dependent vaccination,
Math Biosci. 216(1):9-16.

Liao S.J. 1998. Homotopy Analysis Method: A
New Analytical Method for Nonlinear
Problems. Applied  Mathematics and
Mechanics (English Edition, Vol.19, No.10.

Liao, S.J. 2004. On the homotopy analysis
method for nonlinear problems. App Math
Comput.; 174:499-513.



