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Abstract 

Many boundary value problems that arise in real life situation defy analytical solutions; hence 

numerical techniques are the best source for finding the solution of such equations. In this study Finite 

difference Method (FDM) and Fourth Order Compact Method (FOCM) are presented for the 

solutions of well known one dimensional Inhomogeneous Telegraph equation and then its validity and 

applicability is checked through applications. The results obtained are compared with the exact 

solutions for these applications. We used Fortran 90 for the calculations of the numerical results and 

Mat lab for the graphical comparison. 
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1. Introduction 

A general fourth Order differencing scheme 

proposed by H.O. Kreiss of Uppsala University is 

developed and tested to three viscous test problems to 

verify the correctness and applicability of the 

method. The method is a typical since only three 

nodes are required to attain the desired fourth order 

precision. This is proficient by a differencing 

procedure, which considers the function and all 

required derivatives as unknowns. The relations for 

these derivatives give up simple tridiagonal 

equations, which can be solved effortlessly. In 

(ORSZAG; 1974) a compact formula was mentioned. 

This method was used in that style by Ciment and 

Leventhal (1978) for hyperbolic problems. Abdul 

Majid Wazwaz [3] explained different techniques to 

solve a variety of PDEs. In Numerical Analysis by 

Richard L. Burden [4] explained in detail the finite 

difference method for different partial differential 

equations. Ozair [5,6,7] used compact methods and 

compare their results with finite difference scheme 

results. Consider the 2
nd

 order 1D linear hyperbolic 

equation. 
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and with the boundary conditions 
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for 0,0  tlx  

Eq. (1) is referred to as the second order 

Telegraph Equation with constant coefficients.  In eq. 

(1), x is distance and t is time. For 0,0    eq. 

(1) represents a damped wave equation and for  
2,,, c  are non negative integers then it is called 

telegraph equation. 

2. Finite Difference Scheme 

To set up the finite difference scheme for eq. 

(1), select an integer m and the values of  from 0 to 

  then the mesh points (xi, tn) are 

thxtxt   for t = 0, 1, 2, 3, … m 

nktntn   for n = 0, 1, 2, 3, … 

At any interior mesh points ), ni tx , then the 

Hyperbolic Homogeneous Telegraph eq. (1) becomes  
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The method is obtained using the central 

difference approximation for the 1
st
 and 2

nd
 order 

partial derivatives. 

So that (6) becomes 
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Where   i  = (xi, xi+t) 

Neglecting the truncation error leads to the 

difference equation. 
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This equation holds for each I =1, 2, …, (m – 1). 

The boundary conditions give 
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m

n uu  (8) 

for each n = 1, 2, …. 

And the initial condition implies that  

 )(0
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for i = 1, 2, …. (m – 1). 

Writing in matrix form for i = 1, 2, …. (m – 1), 

we have 
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Equations (7) and (8) imply that the thn )1(    

time steps requires values from the thn)(  and 

thn )1(   time steps. This produces a minor starting 

problem since values of n = 1 which is needed, in 

equation (7) to compute 2
1u  must be obtained from 

the initial value condition. 

 ),(|01 it xgu   lx 0  



Pak. J. Engg. & Appl. Sci. Vol.14, Jan., 2014 

 98 

A better approximation 0
1|tu  can be obtained 

rather easily, particularly when the second derivative 

of '' f  at '' ix  can be determined. 

Consider the Taylor Series 
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for some n  in ),0( 1t  and suppose the 

inhomogeneous telegraph equation also holds on the 

initial line. That is 
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This is an approximation with local truncation 

error O(k
3
) for each i  = 1, 2, … , m – 1. 

Now from the difference equation 
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for each ).1(...,2,1  mi  

3. Compact Scheme for Inhomo-
geneous Telegraph Equation: 

To derive this method for the second order 

linear hyperbolic telegraph eq. (1), with > 0,  > 0,  

 = 0, c
2 

> 0, f(x and g(x) are given functions. This 

Compact method approximates eq. (1) by two 

difference equations of fourth order using only three 

grid points say ii xx ,1  and 1ix . Let us denote 1
st
 and 

2
nd

 derivatives of u(x, t) with respect to ‘x’  by F, S 

respectively. 
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So we have a relationship between u and F. This 

is the 1
st
 difference equation. 

In order to obtain the 2
nd

 equation, we start by 

evaluating (1) at the mid point ''i . Then eq. (1) 

becomes 
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We now need the term for . If we articulate 

n
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iu 1|   in Taylor series about the point  

and adding the result we get 
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where we have replaced uxx with n
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the same procedure for F then we have 
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(15) and reorganize to get the following 2
nd

  

difference equation of fourth order. 
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We have now replaced (1) by two difference 

equations (14) and (18). Now we have to look at the 

boundaries. Let us first deem the left boundary 

condition i.e., at x = 0 and denotes the points x = 0, h, 

2h by 0, 1, 2. The 1
st
 difference equation we obtain 

from the boundary condition is 
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In order to get the 2
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 equation, we begin with 

the differential equation at the point 0 and 1. 
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In a similar manner, we can derive the following 

difference equation for  and F at x = m, i.e. at the 

right boundary point. 
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Thus for ach point, we have two difference 

equations. If we write them all together, we have the 

following Fourth Order Compact Scheme for  uxx. 
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The superscript n is used to denote the time grid 

lines. 

Difference scheme using compact scheme for  

and central difference scheme for ttu  and tu . 

)(| 22

2

11

kOu
k

uuun
itt

n
i

n
i

n
i 

 
 

and 

)(| 2

2

11

kOu
k

uun
it

n
i

n
i 

 
 

We have from eqs. (19), (25), (24),(18), (26) 

and (27) as below: 
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Now for finding   for the next time level, we 

use the initial condition 

lxxgu it  0)(0
1  

Which can be approximated into the form by 

using Taylor’s series and finite differences as given 

in eq.(12). The Fourth Order Scheme can be 

expressed in matrix form. 

4. Test Problem 

Consider the inhomogeneous telegraph equation 

uuuxeu ttt
t

xx   sin1( 2  in the interval  

0 < x < 1. The boundary conditions are  

0),1(),0(  tutu  

and the initial conditions are 

xxu sin)0,(  and ,sin)0,( xxut   10  x  

The Exact Solution is xetxu t sin),(  . 

By using equation (12) we have the values for 

Solution: 

9,...,2,1,1
1 tu  

581939167.0,305943525.0 1
2

1
1  uu  

941597351.0,800970548.0 1
4

1
3  uu  

941597351.0,990054045.0 1
6

1
5  uu  

581939167.0,800970548.0 1
8

1
7  uu  

305943525.01
9 u  

Now using equation (10) we have following 

nine finite difference method values i.e., 

9,...,2,1,1,1
1  tnun  

576155935.0,302903100.0 2
2

2
1  uu  

932239884.0,793010611.0 2
4

2
3  uu  

932239884.0,980215021.0 2
6

2
5  uu  

576155935.0,793010611.0 2
8

2
7  uu  

To find the values of the fourth order compact 

method we will use equations (28-31) and following 

nine values  are obtained i.e., 

9,...,2,1,1,1
1  tnun  

576151156.0,302900920.0 2
2

2
1  uu  

932232272.0,793004162.0 2
4

2
3  uu  

932232272.0,980207027.0 2
6

2
5  uu  

576151156.0,793004162.0 2
8

2
7  uu  
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Table 1: Finite Difference Method at t=0.02 

ix  FDM Exact Error 

0.000000000 0.000000000
 

0.000000000
 

0.000000000
 

0.100000000 0.302903100 0.302898048 0.000005052 

0.200000000 0.576155935 0.576146325 0.000009610 

0.300000000 0.793010611 0.792997385 0.000013226 

0.400000000 0.932239884 0.932224336 0.000015548 

0.500000000 0.980215021 0.980198673 0.000016348 

0.600000000 0.932239884 0.932224336 0.000015480 

0.700000000 0.793010611 0.792997385 0.000013226 

0.800000000 0.576155935 0.576146326 0.000009610 

0.900000000 0.302903100 0.302898048 0.000005052 

1.000000000 0.000000000 0.000000000 0.000000000 

 

Table 2 Fourth Order Compact Method at  
t = 0.02 

ix  FOCM Exact Error 

0.000000000 0.000000000 0.000000000 0.000000000 

0.100000000 0.302900920 0.302898048 0.000002087 

0.200000000 0.576151156 0.576146325 0.000004831 

0.300000000 0.793004162 0.792997385 0.000006777 

0.400000000 0.932232272 0.932224336 0.000007936 

0.500000000 0.980207027 0.980198673 0.000008354 

0.600000000 0.932232272 0.932224336 0.000007936 

0.700000000 0.793004162 0.792997385 0.000006777 

0.800000000 0.576151156 0.576146325 0.000008831 

0.900000000 0.302900920 0.302898048 0.000002087 

1.000000000 0.000000000 0.000000000 0.000000000 

 

For graph see Figure 1 
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5. Conclusion 

In this paper, numerical solutions of the one 

dimensional linear inhomogeneous telegraph 

equation are derived using Finite Difference Method 

and Fourth Order Compact Method. Fourth Order 

Compact Method is known to be a powerful device 

for solving functional equations. From the solutions 

of inhomogeneous telegraph equation, we note that 

the fourth order compact method with ),( 34 khO , 

which also uses only three nodes, gives better results 

than the usual second order method. 
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