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Abstract

Many boundary value problems that arise in real life situation defy analytical solutions; hence
numerical techniques are the best source for finding the solution of such equations. In this study Finite
difference Method (FDM) and Fourth Order Compact Method (FOCM) are presented for the
solutions of well known one dimensional Inhomogeneous Telegraph equation and then its validity and
applicability is checked through applications. The results obtained are compared with the exact
solutions for these applications. We used Fortran 90 for the calculations of the numerical results and

Mat lab for the graphical comparison.
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1. Introduction

A general fourth Order differencing scheme
proposed by H.O. Kreiss of Uppsala University is
developed and tested to three viscous test problems to
verify the correctness and applicability of the
method. The method is a typical since only three
nodes are required to attain the desired fourth order
precision. This is proficient by a differencing
procedure, which considers the function and all
required derivatives as unknowns. The relations for
these derivatives give up simple tridiagonal
equations, which can be solved effortlessly. In
(ORSZAG; 1974) a compact formula was mentioned.
This method was used in that style by Ciment and
Leventhal (1978) for hyperbolic problems. Abdul
Majid Wazwaz [3] explained different techniques to
solve a variety of PDEs. In Numerical Analysis by
Richard L. Burden [4] explained in detail the finite
difference method for different partial differential
equations. Ozair [5,6,7] used compact methods and
compare their results with finite difference scheme
results. Consider the 2™ order 1D linear hyperbolic
equation.

a%u(x,t) au(xt) B
a 32 +5 o +(x,t) =
a2u(x,
c? —;:;( Y + p(x,t) (D)
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with the following initial conditions

u(x.0) = f(x) (2

XD g(x) )
and with the boundary conditions

u(o, t) =0 @)

u(l,t)=0 (5)
for 0<x<l, t>0

Eg. (1) is referred to as the second order
Telegraph Equation with constant coefficients. In eq.
(1), x is distance and t is time. For >0, =0 eq.

(1) represents a damped wave equation and for
a, B,y,c® are non negative integers then it is called
telegraph equation.

2. Finite Difference Scheme

To set up the finite difference scheme for eq.
(1), select an integer m and the values of ¢ from 0 to

o then the mesh points (x;, t,) are
X =tAx =th for t=0,1,2,3,...m
t, =nAt =nk for n=0,1,2,3, ...

At any interior mesh points x;,t,), then the
Hyperbolic Homogeneous Telegraph eq. (1) becomes
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aa u(xlt ) ﬂau(xi,tn) (%, ty) =

0 .t
P pit)  (6)

The method is obtained using the central
difference approximation for the 1% and 2" order
partial derivatives.

So that (6) becomes

a(At)? 0*u(x u)

n+l n-1
M —2u + 20l - > poe

(Aoz(u

n+1 n 1)

+5t— —U;

Z(At) (u;

L BA0? Bl )

n
6 5(3 +7Ui

2
__C n n n
=2 (Uiz1 —2uj +Ujg

_ A(ax)? du(&ity)
12T A

Where & = (Xi, Xi+t)

Neglecting the truncation error leads to the
difference equation.

_a _(yh

n+1 n l)
(At)2 i

—ul M+ L —u

2(an Ui
(A )z (u|+1 2uin + uin—l)

2 n ny_ +
_(ACX_)z(qu +Ui—1)—[(A0t’) Z(At)Ju'

__2a 2¢2 | n a B n-1
[7 (At)? * (At)2 )u, +((At)2 * 2(At)ju'

Taking
_a_ P |- 2a_ , 2¢® |_
((At)2+2(At)) /11'(7 (A1)? +(At)2) A2

_a_ P |-
and ((M)2+2(At)) 3

So
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n-1

=2 uM 4+ 2, ul + A5 ul
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M= ﬂ»l )2 (Uil +uily) -2 —%Uin*l
T A

By letting A£;z=&?$=W='%?=®’am
gzzzsz.
So

uf*t = A@uly +ully) + ol +oul ™+ opf

uM =yl + AUl + AUl +dul T oph (7)

This equation holds for each I =1, 2, ..., (m - 1).

The boundary conditions give
ug =up =0 (8)
foreachn=1,2, ....

And the initial condition implies that

up = (%) ©)
fori=1,2,....(m-1).
Writing in matrix form fori=1, 2, .... (m - 1),
we have
u{Hl _'// A O 0'_ uln ] uf—l
ut Ay A uj uj
=0 A 0 +@| |+
: v A :
upi) LO 0 A wllupa] [upd]
p{™
P2
Q (10)
P

Equations (7) and (8) imply that the (n +pt

time steps requires values from the (n)th and

(n-™ time steps. This produces a minor starting

problem since values of n = 1 which is needed, in

equation (7) to compute uf must be obtained from

the initial value condition.

Ut |f:g(xi), 0<x<lI
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A better approximation u, |? can be obtained

rather easily, particularly when the second derivative
of 'f' at 'x;' can be determined.

Consider the Taylor Series

1

U =up ko i+ kUtt|| Uttt }
54 Uttt |I 120 uttttt |I
ut 3
I K _ut|| +k uttll ()n(xluun)
For n =0, we have
ui-u? (3)0 11
Ut || +% 2 Ut || (i 4n) (11)
for some g, in (0,4) and suppose the

inhomogeneous telegraph equation also holds on the
initial line. That is

2
o_¢ 0 0 0
e /=2 £706) = Zudl} =% u +3

Substituting this value in eq.(11), we get

ut—u?

k

—ulf (S 0 - Luy P -2

2
+1p0 Ky @0 )
but

u 19 =g(x;)

So on simplifying we get
2
o =19 106+ k45 Jax)
2
+(1 g‘a)u,o

This is an approximation with local truncation
error O(k®) foreach i = 1,2, ..., m—1.

27 Pi

Now from the difference equation

F(0)-+- ) 2L 0)

1 k_(f(xm) 206+ (x 1))
h?

(k )g(x)+(1 1k ju + &2 p?
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1 k%2
u: =
I 20n?

(k- o)
(1 )u —@f(x)erpI

But u? = f(x;) and letting 2% = £ we have

%_(f(x|+1))+ f(Xfl) +(k jg(x )+

(1—5——j f(x; )+ oo p? (12)

foreach i=1,2,...(m-1).

3. Compact Scheme for Inhomo-
geneous Telegraph Equation:

To derive this method for the second order
linear hyperbolic telegraph eq. (1), with > 0, B > 0,
y =0, c®> 0, f(x and g(x) are given functions. This
Compact method approximates eq. (1) by two
difference equations of fourth order using only three
grid points say x, ,,x; and x;.,. Let us denote 1% and
2" derivatives of u(x, t) with respect to ‘x’ by F, S
respectively.

u, (x,t)=F
Uy, (X,1)=S

(13)

We shall first develop a link between the values
of F and u. Since F = uy, it is clear that
i+1
ua=uls+ [ FED)de
i-1
Approximating this integral by Simpson’s Rule
and reorganizing we get

n _.n , h/en n n he *F(E 1)
Uy =Uisg +3(Fy + RO+ Fig) +g5 — 53— U

Thus to fourth order, we have

(Rl +4FR" + FL) + 3 (Uil —uiy) =0u (14)

So we have a relationship between u and F. This
is the 1% difference equation.

In order to obtain the 2" equation, we start by

evaluating (1) at the mid point 'i'. Then eq. (1)
becomes
al |7 +Bu, I +yuZ [=c? S| +p] (15)
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We now need the term for 5|7. If we articulate
ull, and u|', in Taylor series about the point (.7}
and adding the result we get

ul, +ul, =2u” +hZs| + uxxxx|i”+

(16)

350 xxxxxx(& I)ll

where we have replaced uy with S|'.
the same procedure for F then we have

If we carry out

5
Y =R =208 [P+ g I+ €D (17)

i+1

We now eliminate u, |' from these two
equations and after rearranging, we get the following
expression for S|', S|, and S|,

S|'= h_zz(uirlfl +uly —2uf") — h +(Rl—FMh)+

350 xxxxxx(‘: I)II

By a similar procedure we get the following
expressions for S [';and S|\,

S [iy= 2—:12(7Ui11 —23ui’y +16u7") — F (Rl +
4
6F +8F") + 45 Uooon (G DI
and
Slia= #(h]in—l — 23U}, +16u7") + 5 (Rl +

4
6Fi31 +8F") + 5 Uooo (& DI}

We now surrogate the expression for S| into
(15) and reorganize to get the following 2"

difference equation of fourth order.

2¢2 7N n 4c2 ), .n
h—z(Um + UH)(Y + hT]ui -

oy |7 +BY; =

2
(R —Rl)+p! (18)

We have now replaced (1) by two difference
equations (14) and (18). Now we have to look at the
boundaries. Let us first deem the left boundary
condition i.e., at x = 0 and denotes the points x = 0, h,
2h by 0, 1, 2. The 1% difference equation we obtain
from the boundary condition is

ug =0 (19)
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In order to get the 2™ equation, we begin with
the differential equation at the point 0 and 1.

c’s lo +Po = auy o +Bug lo +yu o (20)

c’s I +pr =aug lf +Bu, I +yulf (21)

From the above equations of S|, S|, and
S|, , we have the following expressions for S| and
S

Slh= ?(—2%8 +16u{ +7uy) —

+(6Fg +8F" +F,) (22)
SE=2(§ -2 +uD) A (Ff -F))  (23)
Finally we have from (14)
(F0n+F1n+F2n)+%(U8_U2)=O (24)

So we have five equations (20) to (24). If we
eliminate u), S|, S| and F[3 from these five

equations, we get the 2" difference equation, suitable
atx =0.

12¢2 n_ [ 12c?
( h? +yJu° _[ h?

—Uy [o) + B If

2 2
+y]ul"+%F0”+‘%F1"+

(' — pg) = Uy If U o) (25)

In a similar manner, we can derive the following
difference equation for  and F at x = m, i.e. at the

right boundary point.

up =0 (26)
2
(% + y)ur':]_l — (151; y)u +E8EEN
2
6% Fn +(Pm — Pm_1) = Uy [ —Uge [ 1) +
B(U Im Ut ) (27)

Thus for ach point, we have two difference
equations. If we write them all together, we have the
following Fourth Order Compact Scheme for Uyy.

ug =0
12c _ (a2 4o |0 4 62 D
+y h2 +yYMp + h '0

2
+6%F1n+(p1n - Po)
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—Uy [0)+Bug I —u [p)
4
+ h°2 )J

2h (F|+1

= oUy Iy
22t 4yl )—(
h2 i+l i-1

FY)+pi

=auy |y +B(ug I

b s,

2
+6%Frrr: +(Pm — Pma)

= at(Uy m—Uge Ima)

+B Uy Im —U¢ 1)

The superscript n is used to denote the time grid
lines.

Difference scheme using compact scheme for .,
and central difference scheme for u,; and u, .

n —2u, +ul'™
Uy i =

+O(k )
and

-1
U [ =" —+0(k?)

We have from egs. (19), (25), (24),(18), (26)
and (27) as below:

ug =0

Y )UinﬁL(g—%(—I%)Uiml +(pi' = Po) (28)
FhL+4R"+FR) =3 3 n (Ul —uly) (29)
(kz M+ SR - SRy = 2° 2C* Uy, +
ui"_l+(i—g‘—%—y)ui” +(2—ﬁ'( < Yypd (30)
up =0

PRV OIS TS

y o+ (Z—Bk—;%)ur"n:i Sppa-pl) (@D

Now for finding
use the initial condition

u; for the next time level, we
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u, Y =g(x) 0<x<l

Which can be approximated into the form by
using Taylor’s series and finite differences as given
in eq.(12). The Fourth Order Scheme can be
expressed in matrix form.

4. Test Problem

Consider the inhomogeneous telegraph equation
in the interval
0 < x < 1. The boundary conditions are

u(0,t)=u(Lt)=0

Uy + A+ 7m%e ' sinmix = Uy +U, +U

and the initial conditions are

u(x,0)=sinzx and u; (x,0)=—sinzx, 0<x<1

The Exact Solution is u(x,t)=etsinzx .

By using equation (12) we have the values for
Solution:
uf t=12..,9

ui =0.305943525, u} =0.581939167

u3 =0.800970548, u} =0.941597351

ug =0.990054045, us =0.941597351

u} =0.800970548, U3 =0.581939167

uj = 0.305943525

Now using equation (10) we have
nine finite difference method values i.e.,

following

n+1 n=1t=12,.
u? =0.302903100, u3 =0.576155935
u3 =0.793010611, uZ =0.932239884
uZ =0.980215021, u? =0.932239884
u? =0.793010611, uZ =0.576155935

To find the values of the fourth order compact
method we will use equations (28-31) and following
nine values are obtained i.e.,

n+l n=1t=12,.
u? =0.302900920, u3 =0.576151156
u3 =0.793004162, u3 =0.932232272
uZ =0.980207027, u? =0.932232272
u? =0.793004162, u3 =0.576151156
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Comparison of the Numerical Results of FDM and

FOCM
Table 1: Finite Difference Method at t=0.02
X FDM Exact Error

0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
0.100000000 | 0.302903100 | 0.302898048 | 0.000005052
0.200000000 | 0.576155935 | 0.576146325 | 0.000009610
0.300000000 | 0.793010611 | 0.792997385 | 0.000013226
0.400000000 | 0.932239884 | 0.932224336 | 0.000015548
0.500000000 | 0.980215021 | 0.980198673 | 0.000016348
0.600000000 | 0.932239884 | 0.932224336 | 0.000015480
0.700000000 | 0.793010611 | 0.792997385 | 0.000013226
0.800000000 | 0.576155935 | 0.576146326 | 0.000009610
0.900000000 | 0.302903100 | 0.302898048 | 0.000005052
1.000000000 | 0.000000000 | 0.000000000 | 0.000000000

Table 2 Fourth Order Compact Method at

t=0.02
X; FOCM Exact Error
0.000000000 | 0.000000000 | 0.000000000 | 0.000000000
0.100000000 | 0.302900920 | 0.302898048 | 0.000002087
0.200000000 | 0.576151156 | 0.576146325 | 0.000004831
0.300000000 | 0.793004162 | 0.792997385 | 0.000006777
0.400000000 | 0.932232272 | 0.932224336 | 0.000007936
0.500000000 | 0.980207027 | 0.980198673 | 0.000008354
0.600000000 | 0.932232272 | 0.932224336 | 0.000007936
0.700000000 | 0.793004162 | 0.792997385 | 0.000006777
0.800000000 | 0.576151156 | 0.576146325 | 0.000008831
0.900000000 | 0.302900920 | 0.302898048 | 0.000002087
1.000000000 | 0.000000000 | 0.000000000 | 0.000000000
For graph see Figure 1
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5. Conclusion

In this paper, numerical solutions of the one
dimensional linear inhomogeneous  telegraph
equation are derived using Finite Difference Method
and Fourth Order Compact Method. Fourth Order
Compact Method is known to be a powerful device
for solving functional equations. From the solutions
of inhomogeneous telegraph equation, we note that

the fourth order compact method with O(h* k3),

which also uses only three nodes, gives better results
than the usual second order method.
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