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Abstract

In this paper, the Laplace Decomposition Method (LDM) is employed to obtain approximate
analytical solutions of the Burger Equation. The results show that the method converges rapidly and
approximates the exact solution very accurately using only few iterates of the recursive scheme.
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1. Introduction

The Laplace Decomposition Method (LDM) is a
numerical algorithm to solve nonlinear ordinary,
partial differential equations. Khuri [1,2] used this
method for the approximate solution of a class of
nonlinear ordinary differential equations. So we are
using same procedure on the partial differential
equation. In this section we consider the non linear
homogeneous Burger equation;

Uy =Uy, —UUy (1)
The initial condition is

u(x,0)=1-2 )

After applying the same procedure we have
come to know that the results obtained are very much
close to results as by using Adomian Decomposition
Method.

2. Methodology

In this part we will use an Algorithm for
Laplace Transform on the partial differential
equations which are nonlinear. Here we will consider
the general form of inhomogeneous nonlinear partial
differential equations with initial conditions given
below

Lu(x,t) +Ru(x,t)+ Nu(x,t)=h(x,t) (3)
u(x,0)=f (), (x,0)=9(x) (4)
where L is second order differential operator
2
L= %
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R is the remaining linear operator, N u
represents a general nonlinear differential operator
and h(x, t) is a source term. The first step we will
take Laplace transform on equation (3).

LILue] + LR ux, 1]
+ LN u(x, 8] = £ [h(x,)] )

By applying the Laplace
differentiation property, we have

transform

2 £ [u(x,0)] — sf(x) — g(x) +
[Ru(x,t)[+ L[Nu(x,t)] = L[h(x,1)] (6)

Llu(xn] = 1 f(x) +S—12 g(x¥)+ S_lz LIh(x,)]
—S—lz£[Ru(x,t)] —S—lz LINu(x,1)] (7

The second step is that we are going to represent
the solution in an infinite series given below:

U=> o Un (%) (®)

The nonlinear operator is written as

Nu)=>"" AW ©)
where  A,(u) are Adomian polynomials of

Ug,Uq, Uy, ...,U, and it can be calculated by formula
given below:

Av=3 LN (520 AU on=012...  (10)

Substituting the equation (8), equation (9) and
equation (10) in equation (7), which give us this
result
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Ll:iun(x,t)} 1109 +Si2 9(x) +Si2_£[h(x,t)]
n=0

-SiZL[Rzazoun(x,t)]—s%L[za‘;oAn(u)] (11)

Or

|:§£{Un (X,t)}:l = % f(x) +Si2 g(x) +Si2£[h(x’t)]

RIS OSEo AW (12
S S

When we compare the left and right hand sides
of equation (12) we obtain

Lo (1) :% £(%) +Siz a(x) +Si2£[h(x,t)] (13)

L[ul(x,t):—S%L[Ruo(x,t)]—sizﬁ[%(u)] (14)

£[uz<x,t>=—si2£[Ru1(x,t)]—si2£[Ao(u)] (15)

The recursive relation, in general form is
1 1
£[un+1(x,t)]=—S—2£[Run(x,t)]—s—2£[Aq(U)] (16)

Applying inverse Laplace transform to Eq. (13)
to Eq. (16), so our recursive relation is as follows:

Ug(x,t) =K (x,1) a7

un+1<x,t>=—£1Li2£[Run (X,t)]+si2£[A1(U)]} (18)

where K(x,t) represents the term from source term

and with the initial conditions. Now first of all, we
are applying Laplace transform on the right hand side
of Eq. (18) and then taking the inverse Laplace
transform we get the values of ug,uy,Uy,....,Up,

respectively.

3. Application 1

In this section we consider the homogeneous

partial differential equation
Ut =Uyy —UUy (19)

The initial condition is

40

2

u(x,0) :1—; (20)

Applying the algorithm of Laplace transform on
equation (19), we have

SLu(x, 1)]-u(x,0) = Luy (X )] - Lluuy]

Using given initial condition on Eq. (21) , we
have

(21)

U] :1_5 T Lug (8] Auuy ] 22)
Or
u(x,s) :% 23 ua]-Lque] @3

Then applying the inverse Laplace transform to
Eqg. (23), we get

ut) = 2} o fri oot

£'fruug (24)

The Laplace Decomposition Method (LDM)
assumes a series solution of the function u(x,t)

which is given by
U=>no Un(xt)

The non linear term is handled with the aid of
Adomian Polynomials as below

Uly =310 Ay(U)

Substituting equation (25) and equation (26) in
equation (24), we have

(25)

(26)

u(x,t)=

T (E SV EVE )
rforss o Aw (27)
The recursive relation is as follows:

uo(xt) = (-2 (28)

ux) =) 2 B + L] o)

o000 =-£1 e fruonn + a0 o
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Similarly we have

) =) 3 LB 00+ 1Ay 01 e
Also the non linear terms are of the form

Ay =UglUg,

A =Up Up+Ugly

A = Ug, Up +Ug Uy +Uy Ug

A = Up Uz+U Up+Up Up+Up Ug

Therefore
2 2 2 4
=Uglg =|1-=|| 5 |=5-——=
Ao 00, ( X}(Xz) 2 x3
Now

w012 ()2 2-4]]

2 4 4 2
Ul(X,t):—Ft——gt +Ft =——1

SHETE
) (3

Up (X,t)=
et 220k (20)-(2]

6.2 2.2 62 )
L t
x4 x3 x4 X

| =

up (X, t)=—

The first few terms of u,(xt) follows
immediately

Similarly, us, ug4, Us, ..., etc. can be obtained.
Hence, all components of the decomposition (LDM)
are identified. The complete solution is

41

2(, t t?
ux,t) =1——|{1+—+—+...
(xt) X[+X+X2+]

2(, tY*
u(xt) = 1—;(1—;)

2

@

u(x,t) _1- 2

(x-1)

This is our required result in analytical form.

u(x,t) =1-

Application 2

In this section w consider the homogeneous
partial differential equation

U =Uy, —UUy (32)
The initial condition is
u(x,0)=x (33)

Applying the algorithm of Laplace transform on
equation (32), we get

sLIu(x, D] -u(x,0) =Luyx (x, )] -LIuu]

Using given initial condition on Eq. (21) becomes

(34)

sLIu(X,t)] =X+ Luyy (X, 1)]-L[uuy ] (35)
Or
U(x.8) =2 X+ g (x,D] -2 Luu, ] (36)

Then applying the inverse Laplace transform to
Eq. (36), we get

u(xt) =L 2+ L7 fu(x 0]

il i1 ) 37)

The Laplace Decomposition Method (LDM)
assumes a series solution of the function ulx. ) is

given by
U=>n"oUp (X,t)

The non linear term is handled with the aid of
Adomian Polynomials as below

(38)
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Uty =>ng An (U)

Substituting equation (38) and equation (39) in
equation (37), we have

et = £ B 13 2 Goutnn ) -

(39)

f{%ztz%‘;m(u)]} (40)
The recursive relation is as follows:
Ug (X, 1) =X (41)
Uy (1) =f1{1£{6—22uo(x,t) +1£['°0(U)]} (42)
S | ox | S
Up (x,t) :flll{a—zul(x,t) +1£[A1(U)]] (43)
S | ox | S

Similarly we have
U1 (x.1) =f{1£{a—2un<x,o}+1£w(u)]] (44)
S | o S

Also the non linear terms are of the form
Ay =UpUg,

AL = on U +Ug le

Ao =Ug Up+Up Up+Up Ug

A = Up Uz+U Up+Up Up+Up Ug
Therefore

Ay =Uglg =X1=X

Now

1 2 1
Uy (x,t) :—L‘I[gﬁ[% x]+§£[j

Uy (%) :_L‘IELQ}%L[j:_xt

A =)@+ ()
A =—2xt

42

111 2 1
Uy(x,t) =—L {g L[& (—2xt)] oL [2xtj

Uy (1) :—L‘IELQ}%L [2xtj —oxt?
The first few terms of up, (x,t) follows immediately

u(X,t) =X —xt+2xt?

Similarly, us,uys,Us,... etc. can be obtained.

Hence, all components of the decomposition (LDM)
are identified. The complete solution is

u= Z up,
n=0
u(x,t)=x(—t+2t%—..))

u(x,t)=x(1+5)*
X
@+t)
This is our required result in analytical form.

u(x,t)=

4. Results and Discussion

In this paper, we have successfully developed
LDM for solution of Burger’s Equation. By keenly
observing we have come up the result that LDM is an
extremely powerful and efficient method in finding
analytical solutions for a number of nonlinear
problems.
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