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Abstract 
Vector quantization (VQ) efficiently competes with contemporary speaker identification 

techniques. However, VQ-based real-time speaker identification systems suffer latency due to 
distance computation between a large number of feature vectors and code vectors of speakers’ 
codebooks to find the best match in the database. The identification time depends on dimension 
and count of extracted feature vectors as well as the number of codebooks. Previous speedup 
techniques in VQ-based speaker identification decrease test vector count through pre-
quantization and prune out unlikely speakers. However reported speedup factors come with 
accuracy degradation. This paper proposes techniques to speedup closest code vector search 
(CCS) based on stationarity of speech. In this paper proximity relationship is substantiated 
among code vectors extracted through LBG process of codebook generation. Based upon the 
high correlation of proximate code vectors, circular partial distortion elimination (CPDE) and 
toggling-CPDE algorithms have been proposed in this paper to speedup CCS. Further speedup 
is proposed through pruning test feature vector sequence for unlikely codebooks during best 
match speaker search. Our empirical results show that an average speedup factor up to 5.8 for 
630 registered speakers of TIMIT 8kHz corpus and 6.6 for 230 speakers of NIST-1999 database 
have been achieved through integrating the proposed techniques. 
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1. Introduction 

Automated speaker identification (ASI) is 
defined as identifying a person based on her or his 
speech against speaker models [1]. These speaker 
models are prepared from a sequence of feature 
vectors extracted through processing available 
speech samples of persons at registration time. A 
similarity measure is then calculated while 
comparing the sequence of feature vectors X  
extracted from a test speech sample with models 
of registered speakers. An ASI system finds the 
best matching model amongst the registered or 
known speakers [2]. 

Most multi-user speech processing systems 
employ ASI front end to adapt to the current user 
to deliver better user specific services. Glaser and 
Bimbot [3] used speaker identification for 
verification tasks in real-world telecom 

applications. A fast real-time ASI system trained 
for wanted persons can be used to track their 
appearance on digital telephone networks. Real 
time speaker identification requirement has 
increased emphasis on speeding up feature 
matching techniques. Since Vector quantization 
(VQ) often outperforms GMM [2] in ASI in terms 
of accuracy and speed, this paper focuses on VQ. 

Mel-frequency cepstrum coefficients 
(MFCC) are commonly used in ASI systems [4]. 
VQ based speaker model training maps the 
sequence of feature vectors, 

{ 1 , }d
i iX x i T x= ≤ ≤ ∈ , extracted from 

available speech samples of a speaker, to a set of 
M  centroids or code vectors called codebook, 

{ 1 , }d
m mC c m M c= ≤ ≤ ∈  through 

identifying M clusters of similar vectors in X  
such that .M T<<  Linde Buzo Gray (LBG) 
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clustering algorithm is mostly used [5] to compute 
VQ codebooks that are stored in a database of 
registered speakers. 

Consider a sequence of feature 
vectors { 1 , }d

i iX x i T x= ≤ ≤ ∈ , extracted from 

test speech samples of a person. During pattern 
matching an ASI system computes quantization 
distortion of X with codebook C of each 
registered speaker according to Equation (1), 
wherein the test speaker is identified as the 
registered speaker whose codebook has minimum 
distortion [1]. 

1
( , ) ( , )

T

i
i

D X C e x C
=

=∑  (1) 

Where 
1

( , ) min
m

i i mc C m M
e x C x c

∈ ≤ ≤
= −  defines 

distortion of a test vector, ,ix  with a codebook, 
,C  based on Euclidean distance (EUD). The 

computation of ( , )ie x C  is regarded as closest 
code vector search (CCS). According to Equation 
(1) the time order complexity of computing 
minimum total distortion of X  with M  sized 
codebooks of N  registered speakers is given as 

( )O d M NT [4]. It specifically requires 
2 d M N T× × × ×  floating point additions and 
d M N T× × ×  floating point multiplications to 
complete N T×  number of CCSs. The research-
based efforts on speeding up ASI systems attempt 
to expedite CCS computation on application 
specific aspects of VQ-based systems. 

Kinnunen et al., [4] used vantage point tree 
(VPT) indexing to speedup CCS. They also 
combined VPT with pre-quantization of X  and 
heuristic pruning of unlikely speakers to speedup 
up ASI. However, their reported speedup factors 
come with accuracy loss. How much pre-
quantization and speaker pruning can be done 
without accuracy degradation is an unsolved 
question. Accuracy degradation, shown in [4] due 
to feature distortion by pre-quantization and 
fallibility of heuristics, underpin the need of faster 
but accurate techniques. This paper focuses on 
speeding up ASI while avoiding accuracy 
degradation. The CCS that plays crucial role in 

ASI speed performance has been improved in the 
light of a novel insight into LBG codebook 
generation process. Contrary to Paliwal and 
Ramasubramanian [9], circular partial distortion 
elimination (CPDE) and its faster variant TCPDE 
algorithms proposed in this paper have been 
deduced from our substantiation of proximity in 
code vectors of LBG-generated codebook as such. 
The performance of proposed algorithms has been 
analyzed both in terms of execution time and 
number of MACs (multiplications, additions, and 
comparisons) saved with respect to baseline 
systems. The rest of the paper is organized as 
follows: Section 2 discusses previous work on 
speeding up CCS and ASI. Section 3 describes the 
proposed speedup framework consisting of 
CPDE, TCPDE and VSP algorithms. The 
experimental parameters are described in section 
4 along with discussions on results of proposed 
techniques. Conclusions are drawn in section 5. 
More detail about speech data selection and 
feature vector extraction is included in an 
appendix. 

2. Related Work 
The experimental study of Kinnunen et al., 

[4] is one of the comprehensive works which is 
frequently referenced for speaker identification 
speedup. The VPT indexing employed in [4] to 
speedup CCS in their ASI systems resulted in 
24% speedup for codebook of size 256. VPT is a 
balanced binary tree of code vectors which in the 
best case takes 2(log )O M  EUD computations to 
complete a CCS [4]. Their paper also studied 
feature vector pre-quantization to reduce T which 
tends to distort the speaker specific characteristics 
ingrained in X . Further speedup studies of [4] are 
based on heuristic pruning of unlikely codebooks. 
In all, Kinnunen et al., [4] studied three speed 
controlling parameters namely, ,M N and T  by 
combining afore mentioned speedup techniques. 
The parameter d  left unconsidered in [4] has 
been studied in [7] for speeding up ASI through 
partial distortion elimination (PDE) proposed in 
[5] and [8]. 

PDE speedups CCS by terminating 
computation of d  dimensional EUD distance, as 
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the sum 2

1
( [ ] [ ])

d

i m
j

x j c j
=

−∑ becomes equal or 

greater than currently minimum squared distance 
at j d< . Ramasubramanian and Paliwal [6] have 
reclassified previously proposed techniques to 
speedup CCS under approximation and 
elimination frame work. Most of these techniques 
focus on reducing the effect of the 
parameter M by explicitly approximating the 
closest code vector and eliminating unlikely ones. 
These techniques suffer from high overhead of 
approximation and elimination which increases 
with dimensionality [9].  

An improvement is proposed in [9] for PDE 
(to be called CSPDE in this paper) by reordering 
of code vectors of LBG generated codebook in 
decreasing order of clusters size. CSPDE [9] used 
20 seconds long raw speech sampled at 8 kHz to 
obtain vectors of dimension d = 4, 5, 6, 7, 8, 9, 10 
by shifting 1 value for the next vector. The 
multiplication operations saved for codebooks 
sizes { }2 | 4 10,d d d d× ≤ ≤ ∈  were {32.7%, 

20.9%, 19%, 20.8%, 10.6%, 10.2%, 4.3%} [9] 
respectively, compared with the plain PDE. The 
results however, showed a decrease in elimination 
efficiency of CSPDE as compared to PDE for 
larger vectors and larger codebooks. The static 
and implicit approximation of CSPDE that has 
resulted in small elimination for large vectors is 
due to high entropy of code vectors [6, 9]. Since 
ASI systems calculate ( , )D X C for all registered 
codebook to find the best match so sorted code 
vectors of other 1N −  codebooks might not be 
favorable for speeding up CCS on the whole. 

The overall problem addressed in this paper 
is speeding up VQ based ASI without accuracy 
loss. The stationarity of speech has largely been 
unfocussed in previous studies for faster CCS. We 
propose algorithms that track the variation of 
speech in X  by altering the scan order of code 
vectors, taking advantage of proximity of code 
vectors to hit the closest code vector the earliest. 
Our algorithms depart from Voronoi view of 
codebooks that depict random placement of code 
vectors in d  space and highlight proximity 
relationship of code vectors. In this paper speed 
controlling parameter d  and T  of ASI systems 
are empirically investigated with more emphasis 
on previously less emphasized parameter d . 

3. The Proposed Techniques 
It is concluded in [9] that LBG-generated 

codebooks have no favorable order for speeding 
up PDE. This conclusion is misconstrued and 
insufficient. Voronoi view [13] of LBG-generated 
codebook, as shown in Figure 1(a), does not show 
any proximity relationship among the code 
vectors. In this paper, we present view of an 
intrinsic structure of LBG-generated codebook 
that is natural to the construction process of LBG 
algorithm. LBG process of codebook generation 
provides us information that can be utilized for 
efficient scan ordering. 

LBG progressively generates double sized 
codebook from the lastly generated codebook 
starting from codebook of size 1. This is done by 
splitting each cluster of training vectors in 
previous codebook into a pair of smaller clusters 
followed by tuning of new clusters. Each cluster 
splitting step creates one new code vector away 
from the previous code vector in one direction of 
the d  axis and another one in correspondingly 
opposite direction of the d axis of the code vector 
space d . The tuning step of LBG iterates 
through the training vectors, ,~X  till distortion 
fails to improve. Each iteration checks 
membership of the training vectors in the new 
clusters, updates the new code vector based on the 
latest membership and the computes the recent 
total distortion. This progress in codebook 
development through LBG in terms of 
relationship between indexes of code vectors in 
latest codebook and the previous codebook is 
shown in Figure 1(b). 

Therefore, proximity of code vectors in an 
LBG-generated codebook follows a trend. The 
code vectors occurring more adjacent in the 
codebook tend to be more similar than the ones 
falling farther apart. Three dimensional plot of 
Figure 2 depicts the distance data averaged from 
codebooks of 230 speakers of NIST 1999 speech 
data. The distances between every pair of code-
vectors of 230 codebooks were computed for 
32 32 1024× =  pairs of indexes for each 
codebook of size 32 15× .  An average distance 
of 230 codebooks was calculated for each pair of 
index. The symmetry in Figure 2 shows an overall 
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Fig.1 LBG Codebook: (a) Typical Voronoi view 

(b) LBG codebook generation, more 
similar code vectors placed at more 
adjacent indexes 

 
Fig. 2 Proximity plot of code vectors in terms of 

distance between  pairs of code vectors of 
32 sized codebooks of NIST-1999 data. 

trend of decrease in distance between code 
vectors if difference between their indexes in less. 
This proximity relationship among code vectors 

sets bases of multiple favorable routes for CCS as 
capitalized in the proposed algorithms of this 
paper. 

To efficiently utilize proximity of adjacent 
code vectors and stationarity of X, we propose 
CPDE (Algorithm 1) for making CCS fast. CPDE 
starts each CCS at code vector index vi for every 
test vector using heuristic approximation based on 
stationarity of X. For 2ix i T≤ ≤ value of vi  

must be the index of closest code vector found in 
previous CCS made for 1ix − . For 1x , value of vi  

may be set 1 vi M≤ ≤ by the calling Algorithm 3. 
The test feature vectors and codebooks are inputs 
for CPDE. 

Algorithm 1: Computing vector 
distortion with CPDE 

1: Set m vi= ; ′ = ∞σ ; 1k =  
2: Do 

2.1: Set  1j = ; 0=σ  
2.2: Do 

2.2.1: Set  2( [ ] [ ])i mx j c j= + −σ σ  

2.2.2: 2.4 :if goto′≥σ σ  

2.2.3: Set  1j j= +  

  while  j d≤  

2.3: Set  ; vi m′ = =σ σ  
▼ Select next code vector or the first 

one 

▼  if last was scanned currently 

2.4: Set  1; 1m m if m M then m= + > =  

2.5: Set  1;k k= +  

while k M≤  
3: Set  ( , )ie x C ′= σ  

CPDE can be reduced to PDE algorithm by 
eliminating step 2.4 as well as the two 
assignments involving vi  and then replacing k  
by m  in the algorithm. CSPDE is in fact PDE 
with rearranged codebooks. CPDE locates the 
closest code vector earlier than PDE and sets 
σ ′ to the lowest value during CCS that causes 
elimination condition, ,′≥σ σ  to occur at smaller 
values of j  for remaining code vectors. CPDE 
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follows a unidirectional circular scan of 
codebook. In some cases, CPDE delays testing of 
the closest code vector which is lying on the 
opposite side of the circular scan. 

 
Fig. 3 Typical search paths for PDE, CSPDE, CPDE 

and TCPDE for vi = 9. 

To reduce the likelihood of this delay, CPDE is 
further improved by checking next adjacent code 
vectors through switching back and forth between 
clockwise and anti-clockwise directions. TCPDE 
locates the closest code vector earlier more frequently 
than CPDE and causes comparatively higher level of 
elimination to speedup CCS further. Figure 3 shows 
typical search paths for various PDEs studied in this 
paper. Algorithm 2 describes TCPDE which toggles 
during CCS. 

Algorithm 2: Computing vector 
distortion with TCPDE  
1: Set m vi= ; m vi′ = ; ;′ = ∞σ 1k =  

2: Do 
2.1: Set  1j = ; 0=σ  

▼ Clockwise scan of codebook 

2.2: Do 

2.2.1: Set  2( [ ] [ ])i mx j c j= + −σ σ  

2.2.2 
2])[][( jcjxIf mi −+=σσ  

2.2.3 Set 1j j= +  
while  j d≤  

2.3: Set ; vi m′ = =σ σ  

▼ For clockwise scan select previous 
code vector 

▼ or the last one if 1st was scanned 
currently 

2.4: Set 1; 1m m if m then m M= − < =  

▼ For anti-clockwise scan select 
previous code 

▼ vector or the last one if 1st was 
scanned currently 

2.5: Set 1; 1m m if m M then m′ ′ ′ ′= + > =  

2.6 Set 1j = ; 0=σ  

▼ Anti clockwise scan of codebook 

2.7 Do 

2.7.1: Set 2( [ ] [ ])i mx j c j′= + −σ σ  
2.7.2: 2.9 :if goto′≥σ σ  
2.7.3: Set 1j j= +  
while  j d≤  

2.8 Set  ; vi m′ ′= =σ σ  
▼ Advancing scan in both directions 

2.9 Set  1k k= +  

while 2 k M× ≤  
3: Set  ( , )ie x C ′= σ  

Regarding floating point operations, the 
consecutive steps ‘ 2( [ ] [ ])i mx j c j′= + −σ σ ’ and 
‘ :if goto label′≥σ σ ’ (to be called core-steps) 
are common in PDE, CSPDE, CPDE and TCPDE. 
The core-steps involve (1, 2, 1) MACs of floating 
point numbers. A full CCS that computes all 
distances completely performs first core-step 
d M× times without performing second step but 
computes ′≥σ σ  condition M times and hence 
involves ( , 2 ,1)M d d×  MACs. All variants of 
PDE perform the core-steps d M′×  times and 
hence involve (1, 2,1)M d ′× ×  MACs, where d ′  
is average of j  values at which ′≥σ σ  condition 
occurs for M  code vectors. Table 1 shows the 
worst, best and average case analysis with 
underlying assumptions for all variants of PDE. 



Pak. J. Engg. & Appl. Sci. Vol.11, July, 2012 

 6

Table 1: FLOPS analysis for all variants of PDE 
for best, worst and average case  

Case 
Assuming 

′≥σ σ  
becomes true 

MACs 
  

(1, 2,1)×
 

Worst 
at j d= or never 

1m m M∀ ≤ ≤  
M d×  

Best 
at 1j =  

2m m M∀ ≤ ≤  
1M d+ −  

Average (worst + best) /2 
1

2
Md M d+ + −

 
Regarding integer operations, CPDE 

algorithm performs M additions and comparisons 
more than PDE, whereas TCPDE algorithm 
performs M/2 integer additions and comparisons 
more than CPDE.  

All variants of PDE as well as full CCS 
require d×M×N and d×T floating point storage 
location to store registered code books and test 
feature vector sequence, respectively. Both CPDE 
and TCPDE require only a single extra storage to 
store the index of code vector best matched with 
the previous test vector. 

Identification of a speaker X from N 
registered codebooks requires computations of 
CCS for N×T number of times as given by 
Equation (2). 

1
arg ( ( , ))min ss N

Speaker id s D X C
≤ ≤

=
 

(2) 

Using total distortion in Equation (2) instead 
of average distortion used in [4], the best 
matching registered speaker is decided through 
Algorithm 3 that computes CCS for less number 
of times than N T× . 

Algorithm 3: Computing minimum 
speaker distortion using VSP 
1: Set ; 1; 1;D s vi′ = ∞ = =  

2: Do 
2.1: Set   1i = ; 0D =  

2.2 Do 

2.2.1: Set  ( , )i sD D e x C= +  

2.2.2 2.4 :if D D goto′≥  

2.2.3 Set   1i i= +  

while  i T≤  
▼ Update currently best distortion 

and speaker Id 

2.3 Set  ;D D si s′ = =  

2.4 Set  1;s s= +  

 while  s N≤  
3: Output Test Speaker  id =  si; 

Algorithm 3 improves decision about best 
candidate speaker by updating speaker 
index si and the minimum total distortion D′  
which are initialized as 1 and ∞ , respectively. 
The pair is updated each time 

( , )sD X C D′≤ condition becomes true. 
Algorithm 3 executes a full CCS or an algorithm 
of PDE variant to compute ( , )i se x C . Algorithm 3 

avoids redundant evaluation of ( , )i se x C  by 

terminating computation of ( , )sD X C  for the 

current sC  as D D′≥  condition becomes true 

at i T< . Hence CCS is actually performed for 
N T ′×  number of times where T ′ is average of 
i  values when D D′≥  condition occurs for N 

codebooks. Effectively it results in vector 
sequence pruning (VSP) for unlikely codebooks 
since T T′ < . 

4. Experiment 
4.1 Performance Parameters and 

Evaluation 
In this paper NIST-1999 [10] and TIMIT [11] 

speech data were used for the speedup 
experimentations. MFCC feature vector of 
dimension d = 15 is used. Codebook sizes studied 
were 32, 64, 128, 256, 512, 1024 and 2048. Further 
details of data selection and feature extraction are 
included in the appendix. All programs for feature 
extraction, LBG algorithm and distortion 
computation were made using Microsoft Visual C# 
2008. Hardware used for performance testing was a 
HP Compac DX7400 Microtower with Intel(R) 
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Core(TM)2 Duo CPU E6550 @2.33 GHz with 2 
Giga byte RAM installed. Operating system used 
was Windows Vista Business version (2007). 
Speaker identification time was computed using 
‘DateTime.Now’ function of Microsoft.NET 
framework. Already extracted feature vectors and 
trained codebook stored in the hard were used for 
this purpose. 

4.2 Results and Discussion 
Accuracy test results of different experiments 

conducted on TIMIT and NIST-1999 speech data 
for close-set speaker identification for full CCS, 
PDE, CSPDE, CPDE and TCPDE are shown in 
Table 2. Accuracy results are based on testing all 
speakers in the two databases. Although, the 
accuracy increases with increase in codebook 
size, over fitting degradation effect is seen for 
codebook size 1024 for TIMIT data set. 
Experiments conducted for NIST-1999 in [4] used 
120 seconds long speech samples for training and 
30 seconds long ones for testing. All 692 test 
samples used in [4] belong to 205 target speakers 
only, while training and testing samples used in 
this paper are 60 seconds long. This explains 
comparatively different accuracy and absolute 
identification times for NIST-1999 listed in this 
paper since hardware used is also different. Using 
training and testing sample selection of NIST -
1999 database same as ours for only 30 registered 
speakers [12] reported an accuracy of 77% with 
GMM-UBM and graph matching techniques. 
Comparably we achieved 74.35% accuracy for 
230 NIST-1999 registered speakers. Accuracies 
are better than [7] for TIMIT data primarily due to 
larger size of feature vectors used in this paper. 

Table 2: Accuracy of VQ systems 

Accuracy % Codebook  
Size TIMIT NIST’99 
32 87.14 65.65 
64 97.30 70.43 
128 98.89 71.74 
256 99.84 73.91 
512 100.00 73.91 
1024 99.84 73.48 
2048 -- 74.35 

In order to compare approximation 
performance of PDE, CSPDE, CPDE and TCPDE, 
we counted the frequency percentage of hitting the 
closest vectors during CCS for 32 indexes of the code 
vectors for 230 codebooks of NIST-1999 data. 
Average behavior of hitting closest code vector and 
the scan order of code vectors is depicted in Figure 4. 

It shows that 55% of times, closest code 
vectors were correctly identified while scanning the 
first code vector through CPDE and TCPDE. This is 
major improvement as compared to PDE and CSPDE 
for which the frequency of hitting the correct closest 
code vector at the start of CCS is 4.2% and 3.5%, 
respectively. In Figure 4 the triangular regions show 
the improvement of TCPDE over CPDE delaying in 
locating the closest code vector during CCS. 

Incremental performance of PDE, CSPDE, 
CPDE and TCPDE of hitting the closest code vector 
with the progress in CCS is plotted in Figure 5. It 
shows that on the average for TCPDE 90% of times 
decision about closest code vector is finalized before 
half scan of the codebooks while corresponding 
values for CPDE, CSPDE and PDE are 74%, 64% 
and 45%. The higher values relate to better 
approximation achieved by the algorithm that causes 
greater elimination. 

  
Fig. 4: Average performance of PDE, CSPDE, 

CPDE and TCPDE on hitting closest code 
vector earlier in 32 sized codebooks of 
NIST-1999 data  
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Fig.5 Comparison of PDE, CSPDE, CPDE and 

TCPDE for correct  selection of closest 
code vector for 32 sized codebooks of 
NIST’99 data 

The complexity order of execution time of 
VQ systems implies that the basic core-steps are 
performed dM NT  times to identify a test speech 
speaker. Reduction in the number of times the 
basic core-steps are performed is the measure of 
the partial elimination capability of each 
algorithm proposed in this paper. Table 3 and 
Table 4 show average number of times the core-
steps are avoided as compared to full CCS for 
registered speakers of TIMIT and NIST-1999 data 
respectively. The values of ( ) /d d d′−  listed in 
the tables are computed by actually counting the 
executions of the basic steps for all the test speech 
samples of the registered speakers for both 
corpora. Size M , entropy H  and normalized 
entropy 2logH M  of each codebooks studied are 

listed in Table 3 and Table 4 for both corpora. 

Where mm

M

m
PPH 2

1
log∑

=

−=  and mP  is fraction of 

training vectors in each cluster of the codebook. 

Table 3 and Table 4 show that normalized 
entropy remains consistent against change in 
codebook size. This trend is contrary to [9] which 
indicate that normalized entropy depends only on 
dimension d of MFCC vectors. The tables show 
that reduction in the number of times core-steps 
are performed by CSPDE, CPDE and TCPDE 
with respect to PDE decreases with increase in 
codebook. This is partly due to the fact that 
reduction capability of PDE increases with 
increase in codebook size. The proposed 
algorithms CPDE and TCPDE cause substantially 

reduced d′ and increase expected speedup factor 
as compared to CSPDE. Although entropies of 
code vectors for NIST-1999 data are larger than 
TIMIT data, CSPDE results in smaller d′ for 
NIST-1999 than for TIMIT. 

Table 3: Elimination performance of PDE 
variants for TIMIT data 

M  
H

 

Search 
Algo 
Used

 

d d
d

′−
 

% 

Expected 
Speedup 
Factor 

2logH M

32 
4.80 

PDE 
CSPDE 
CPDE 
TCPDE

58.67 
69.65 
76.73 
76.97 

1 
1.36 
1.78 
1.80 0.96 

64 
5.77 

PDE 
CSPDE 
CPDE 
TCPDE

65.37 
75.56 
79.97 
80.28 

1 
1.42 
1.73 
1.76 0.96 

128 
6.73 

PDE 
CSPDE 
CPDE 
TCPDE

70.86 
79.39 
82.27 
82.61 

1 
1.41 
1.64 
1.68 0.96 

256 
7.69 

PDE 
CSPDE 
CPDE 
TCPDE

75.02 
82.25 
83.93 
84.28 

1 
1.41 
1.56 
1.59 0.96 

512 
8.61 

PDE 
CSPDE 
CPDE 
TCPDE

77.88 
84.32 
85.15 
85.49 

1 
1.41 
1.49 
1.53 0.96 

1024 
9.46 

PDE 
CSPDE 
CPDE 
TCPDE

79.56 
85.72 
85.97 
86.31 

1 
1.43 
1.46 
1.49 0.95 

 
The expected speedup factor values with 

respect to native PDE listed in Table 3 and Table 
4 are calculated while ignoring the cost of extra 
computation incurred on management of code 
vector indices and that incurred on conditional 
branching. Ignoring time for feature vector 
extraction, Table 5 shows actual speedup 
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performance based on average speaker 
identification time for both corpora for the 
algorithms proposed to guide reimplementation of 
the techniques in real world systems. In Table 5 
speedup factor of CSPDE with respect to plain 
PDE decreases with codebook size for TIMIT 
data but unusually high for codebook size 1024. 
For NIST-1999 data, the speedup factor also 
decreases with increase in codebook size but it is 
unusually low for codebook size 64. CPDE and 
TCPDE outperform CSPDE for both corpora for 
all codebook sizes studied. 

Table 4: Elimination performance of PDE 
variants for NIST-1999 data  

M  
H

 

Search 
Algo 
Used

 

d d
d

′−
 

% 

Expected 
Speedup 
Factor 

2logH M

32 
4.90 

PDE 
CSPDE 
CPDE 
TCPDE 

53.91 
70.10 
78.08 
78.30 

1 
1.54 
2.10 
2.21 0.98 

64 
5.88 

PDE 
CSPDE 
CPDE 
TCPDE 

61.00 
75.19 
80.83 
81.08 

1 
1.57 
2.03 
2.06 0.98 

128 
6.86 

PDE 
CSPDE 
CPDE 
TCPDE 

66.95 
79.00 
82.74 
83.02 

1 
1.57 
1.92 
1.95 0.98 

256 
7.85 

PDE 
CSPDE 
CPDE 
TCPDE 

71.69 
81.62 
84.21 
84.42 

1 
1.54 
1.79 
1.82 0.98 

512 
8.82 

PDE 
CSPDE 
CPDE 
TCPDE 

75.43 
83.59 
85.27 
85.58 

1 
1.50 
1.67 
1.70 0.98 

1024 
9.77 

PDE 
CSPDE 
CPDE 
TCPDE 

78.14 
85.09 
86.13 
86.42 

1 
1.47 
1.58 
1.61 0.98 

2048 
10.66 

PDE 
CSPDE 
CPDE 
TCPDE 

80.00 
86.24 
86.71 
87.07 

1 
1.45 
1.51 
1.55 0.97 

Table 5: Time based average speedup 
performance of CSPDE, CPDE and 
TCPDE compared with PDE  

TIMIT Data NIST-1999 Data Code
Book
Size 

Search 
Algo 
Used 

ID 
Time (S)

Speedup 
Factor 

ID 
Time (S)

Speedup
Factor 

32 

PDE 
CSPDE
CPDE 
TCPDE

0.60 
0.55 
0.44 
0.40 

1 
1.09 
1.37 
1.48 

1.48 
1.24 
0.95 
0.85 

1 
1.13 
1.56 
1.74 

64 

PDE 
CSPDE
CPDE 
TCPDE

1.03 
0.96 
0.76 
0.71 

1 
1.08 
1.37 
1.45 

2.52 
2.21 
1.65 
1.57 

1 
1.05 
1.53 
1.61 

128 

PDE 
CSPDE
CPDE 
TCPDE

1.81 
1.74 
1.35 
1.26 

1 
1.04 
1.34 
1.43 

4.43 
4.01 
2.93 
2.76 

1 
1.11 
1.51 
1.61 

256 

PDE 
CSPDE
CPDE 
TCPDE

3.24 
3.15 
2.50 
2.33 

1 
1.03 
1.29 
1.39 

7.81 
7.39 
5.39 
5.06 

1 
1.06 
1.45 
1.54 

512 

PDE 
CSPDE
CPDE 
TCPDE

6.00 
5.80 
4.84 
4.48 

1 
1.03 
1.24 
1.34 

14.22 
13.76 
10.37 
9.71 

1 
1.03 
1.37 
1.46 

1024

PDE 
CSPDE
CPDE 
TCPDE

11.07 
10.48 
9.13 
8.45 

1 
1.06 
1.21 
1.31 

25.77 
25.09 
19.83 
18.44 

1 
1.03 
1.3 
1.4 

2048

PDE 
CSPDE
CPDE 
TCPDE

-- -- 

47.19 
45.57 
38.24 
35.23 

1 
1.04 
1.23 
1.34 

 

CPDE is up to 37% and 56% faster than PDE 
for TIMIT and NIST-1999 data respectively. 
Figure 4 shows that CPDE hits the closest code 
vector after half scan of the codebook for 23% of 
time. This drawback is reduced by TCPDE 
through toggling between clockwise and anti-
clockwise directions. That is why TCPDE is up to 
48% and 74% faster than PDE for the respective 
corpora. Better speed of CPDE and TCPDE than 
that of CSPDE empirically proves the existence of 
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M  favorable scan orders that are temporally 
selectable to maximize the utilization of 
stationarity in speech signal. Speedup results 
shown in Table 3 to Table 5 are without vector 
sequence pruning. In order to compare our 
framework for ASI speedup with [4] we combine 
VSP individually with CPDE and TCPDE, 
respectively represented as VSPCPDE and 
VSPTCPDE. Table 6 shows speedup performance 
of VSPCPDE and VSPTCPDE for TIMIT and 
NIST-1999 databases with respect to baseline full 
search. 

Table 6: Average performance of VSPCPDE 
and VSPTCPDE 

TIMIT Data NIST-1999 
Data Code 

Book 
Size 

Search 
Algorithm 
Type Time  

(S) 
Speedup 
Factor 

Time 
(S) 

Speedup
Factor 

32 
Baseline  
VSPCPDE  
VSPTCPDE 

1.40 
0.40 
0.37 

1 
3.53 
3.77 

3.19 
0.80 
0.76 

1 
3.97 
4.19 

64 
Baseline  
VSPCPDE  
VSPTCPDE 

2.70 
0.67 
0.62 

1 
4.01 
4.37 

6.22 
1.38 
1.3 

1 
4.52 
4.78 

128 
Baseline  
VSPCPDE  
VSPTCPDE 

5.25 
1.19 
1.10 

1 
4.41 
4.77 

12.18 
2.44 
2.29 

1 
4.98 
5.32 

256 
Baseline  
VSPCPDE  
VSPTCPDE 

10.52 
2.18 
2.01 

1 
4.83 
5.23 

24.16 
4.47 
3.9 

1 
5.41 
6.20 

512 
Baseline  
VSPCPDE  
VSPTCPDE 

21.08 
4.17 
3.83 

1 
5.05 
5.50 

48.37 
8.58 
8.01 

1 
5.64 
6.04 

1024 
Baseline  
VSPCPDE  
VSPTCPDE 

42.19 
7.87 
7.28 

1 
5.36 
5.79 

95.93 
16.41 
15.3 

1 
5.85 
6.27 

2048 
Baseline  
VSPCPDE  
VSPTCPDE 

-- -- 
191.18
31.50 
29.11 

1 
6.07 
6.57 

 
The speedup factors shown in Table 6 for 

NIST-1999 data are better than those for TIMIT 
data for corresponding codebook size. The 
combinations VSPCPDE and VSPTCPDE have 

same accuracies as given in Table 2 for the 
respective corpora and the codebook size. The 
speedup factors of VSPCPDE and VSPTCPDE in 
Table 6 are double than those for VPT combined 
with speaker pruning as reported [4]. 

5. Conclusions 
A framework for speeding up VQ based real-

time speaker identification without accuracy loss 
has been presented. The innate stationarity in test 
feature vector sequence has been capitalized to 
substantially improve partial elimination as 
compared to native PDE and CSPDE. For this, 
implicit approximation scheme of selecting the 
closest code vector from previous CCS as first 
candidate is proposed. Departing from Voronoi 
view of VQ codebook, proximity insight of LBG 
arrangement of code vector indexes has been 
utilized to propose CPDE for a higher level of 
elimination through circular scan orders of code 
vectors. CPDE is faster than simple PDE up to 
37% for TIMIT and up to 56% for NIST-1999 
data, respectively. The delayed hitting of the 
closest code vectors existing on the other side of 
circular direction is avoided by proposed TCPDE 
through toggling between clockwise and anti-
clockwise directions. TCPDE is faster than typical 
PDE up to 48% for TIMIT and up to 74% for 
NIST-1999 data, respectively. Better speed of 
CPDE and TCPDE than that of CSPDE 
empirically indicates the existence of M favorable 
scan orders that are temporally selectable to 
maximize utilization of stationarity in speech 
signal. Vector sequence pruning has also been 
utilized for codebooks proving unlikely in 
VSPCPDE and VSPTCPDE. For TIMIT and 
NIST-1999 data speedup factors achieved by 
VSPCPDE on the average are up to 5.36 and 6.07 
respectively as compared to baseline full search. 
The speeding up factors of VSPTCPDE for both 
the data are up to 5.8 and 6.6 respectively. 
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A.1 Speech Data Selection 

NIST 1999 speaker recognition evaluation 
corpus [10] was used in the experiments to 
investigate speedup of proposed framework for 
ASI. In order to tune parameters of speaker 
identification system TIMIT [11] speech data, 
consisting of 630 speakers, was used after down 
sampling it to 8 kHz using anti-aliasing filter. 
TIMIT data consists of clean microphone speech. 
There are 10 speech sample files for each of the 
speaker, in which 2, 5, 3 files are categorized as 
‘sa’, ‘sx’ and ‘si’, respectively. All ‘sa’ and ‘sx’ 
files containing same text read by each speaker 
were concatenated to extract MFCC feature 
vectors to generate codebooks. The average 
duration of the concatenated training samples was 
22.4 second. Three ‘si’ files containing different 
text read by each speaker were concatenated to 
extract MFCC test feature vectors. The average 
duration of test samples was 8.4 second. 

NIST-1999 data for one-speaker detection 
test consist of 230 male speakers whose 
telephonic conversations were recoded in two 
different sessions. We converted µ-Law 
companded speech data into linear PCM format 
and used ‘a’ files for training and ‘b’ files for 
testing. Average duration of speech per speaker 
used for training or testing was approximately 60 
seconds. The speech sample selection both for 
TIMIT and NIST-1999 corpora conforms to text 
independent speaker identification setup. The data 
selection thus allowed speaker identification 
testing for all registered speaker for both corpora. 

A.2 Feature Extraction and Codebook 
Generation 
The digital speech samples were divided into 

frames, each of 30 milliseconds duration with  
 

 

 

 

 

 

 

40% shift among consecutive frames. To remove 
silence, 15% average frame energy threshold was 
used. Frame energy thresholding reduced the 
training feature vectors by 8.91% and 8.57% for 
TIMIT and NIST-1999 data, respectively, while 
testing vectors were reduced by 5.9% and 5.5%, 
respectively.  Hamming window was applied to 
each non-silence frame before taking Fast Fourier 
Transform (FFT) to find magnitude spectrum. 
Filter bank of 27 triangular filters spectrum 
approximating to Mel-frequency scale was 
applied to each frame as given in Equation (3). 

)700/1(log2595 10 LinMel ff +=  (3) 

Where Linf frequency is on linear scale and Melf  
is corresponding frequency in Mel scale. For 
TIMIT data, output of all 27 triangular filters was 
processed. Subsequently outputs of triangular 
filter banks were log compressed to take DCT. 
Ignoring the first value, next 15 values of DCT 
cepstrum were selected as 15-dimensional MFCC 
feature vectors. For telephone conversation based 
NIST-1999 speech data 15 dimensional MFCC 
vectors were generated while ignoring first 3 and 
last 3 triangular filters. Triangular filters bank 
sized 25, 27, 29, 31 were tried. Filterbank of 31 
filters that gave the highest accuracy was selected. 
MFCC vectors of test samples were computed 
once and stored for tests. VQ codebooks of sizes 
{2 | 5 10}n n≤ ≤  and {2 | 5 11}n n≤ ≤  were 
computed through LBG algorithm from TIMIT 
and NIST-1999 data respectively. However, code 
vectors were sorted in decreasing order of cluster 
size for experimentation of CSPDE. 

Appendix 
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ASI = Automated speaker identification 

C  = Codebook – set of M  code vectors 

sC  = Codebook of speaker with index  s 

CCS = Closest code vector search  
CPDE = Circular partial distortion 

elimination 
CSPDE = Cluster size based partial distortion 

elimination 

c  = Code vector of a codebook 

d  = Size of code vector – number of 
elements in a code vector 

D  = Total distortion of all test vectors in 
X  with a codebook 

D ′  = Threshold minimum total distortion 
DCT = Discrete cosine transform 
EUD = Euclidean distance 
FFT = Fast Fourier transform 

Linf  = Linear frequency 

Melf  = Mel frequency 

GMM = Gaussian mixture model 

H  = Entropy of code vectors in a 
codebook 

H/log2M = Normalized entropy of code vectors 
in a code book. 

LBG = Linde Buzo Gray 

M  = Codebook size--number of c  in a C  

MFCC = Mel frequency cepstral coefficient 

 

 

 

 

 

 

 

 

 

 

 

N  = Number of registered speakers in an 
ASI system 

NIST = National institute of standard and 
testing 

PDE = Partial distortion elimination 

PDEs = Refers to any of PDE, CSPDE, 
CPDE or TCPDE algorithm 

 = Real number space 

′σ  = Threshold distance between x  and 
c  

TCPDE = Toggling circular partial distortion 
elimination 

TIMIT = TI (Texas Instrument) and MIT 
(Massachusetts Institute of 
Technology) 

VPT = Vantage point tree 

VQ = Vector quantization 

VSP = Vector sequence pruning 

vi  = Code vector index best matched 
with previous test vector 

T  = Number of x  in X  

T  = Number of x  in X  

X  = Vector sequence for speaker testing 

X  = Vector sequence for speaker training 

ix  = An i -th test vector of X  

ix  = An i -th training vector of X  
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