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1. Introduction

Various toxigenic strains of Aspergillus section Fla-
vi produce lethal aflatoxins (G1, G2, B1 and B2) 

in agricultural commodities (Ismaiel and Papenbrock, 
2015) and are a frequent cause of infections in humans 
and animals (Elad and Segal, 2018). The section Flavi 
included 33 species, and the species relationship with-
in the section is still unclear. The classical means for 
the identification of these species still primarily de-
pend on cultural and morphological traits. However, 
it is often tricky to differentiate these species because 
the phenotypic differences are not divergent and are 
easily ostentatious by the surroundings and are also 
mystified by the high degree of intra- and interspecies 
variations (Lee et al., 2004). Among different species 
within section Flavi, A. minisclerotigenes exhibit-

ed a close phylogenetic relationship with A. flavus. 

A. flavus is an extremely competitive cosmopolitan, 
notorious plant pathogen with wide host range, 
which has been initially described two centuries ago 
(Link, 1809). A. flvaus produces only produce B type, 
but there are also reports indicated the production of 
G type aflatoxins toxin as well (Frisvad et al., 2019). 
A. minisclerotigenes has been described 10 years back 
(Pildain et al., 2008), and is present in Central, East 
and Southern Africa and Australia (Probst et al., 
2014). It can grow on many substrates like maize, 
almond, groundnut and spices and produce both B 
and G aflatoxins (Makhlouf et al., 2019).

For food safety purposes, correct species identification 
is of high importance and by using a polyphasic 
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strategy based on the combination of phenotypic 
and genotypic characteristics may contribute to the 
differentiation of toxigenic Aspergillus species within 
Flavus group. The current study was aimed to employ 
a polyphasic strategy that included phenotypic as well 
as genomic criteria (based on ITS and ISSR analysis) 
to discriminate the A. minisclerotigenes from A. flavus. 

2. Materials and Methods

2.1 Isolation and identification
Soybean (Glycine max) and okra (Abelmoschus 
esculentus) seeds from storage house, Lahore 
Pakistan during 2014, were found contaminated by 
morphologically similar molds. These seeds after 
surface sterilization with Clorox for one minute 
thoroughly washed with distilled water and incubated 
on moist blotter paper for 5 days at 27 °C. The grown 
spores were transferred to Malt Extract Agar (MEA) 
and Czapek Dox Agar (CZA) media and incubated 
for 3-4 days at 30 °C. The pure cultures were used 
for pathogen identification using macroscopic and 
microscopic features (Pildain et al., 2008).

2.2 Extrolite analysis
Isolated pathogens were preliminary characterized 
for their aflatoxigenicity based on emission of blue 
or green fluorescence after UV light excitation at 
365 nm after growth on coconut cream agar (CCA) 
medium (Lin and Dianese, 1976).

A portion of CCA medium (6-7 cm) without fungal 
mycelium was cut and put into the 250 mL of 
Erlenmeyer flask filled with 50 mL of chloroform, 
incubated at 27 °C in shaking incubator at 200 
rpm for 3 hours. Chloroform contents were filtered 
(Whatman No. 1) and separated into separate bottles. 
Extracts were allowed to dry at 35 °C for 5 days and 
dissolved into 2 mL of commercial methanol and 
aflatoxins of different isolates were saved at 4°C 
for qualitative analysis of aflatoxins by thin–layer 
chromatography (Guezlane-Tebibel et al., 2013). 

Both strains were analyzed by spotting crude extract 
(55 μL) of aflatoxins along with the standard of AFBs 
(AFB1 and AFB2). The TLC plates used were coated 
with silica gel 60 F254 on aluminum sheet, 20 x 20 
cm. TLC plates were developed in chloroform and 
acetone (90:10, v/v) solvent system (Reddy et al., 
2004). The mobile phase was allowed to run 3/4 of 
the TLC plate. The plates were dried in the dark and 

then observed under UV light at 365 nm and samples 
spots were compared with standard aflatoxins spotted 
on the same plate.

2.3 Genetic analysis
Method of Weigand et al. (1993) was used for the 
isolation of genomic DNA from fungal species. Using 
genomic DNA as a template, ITS1/ITS4 [ITS1 forward 
(5΄-TCC GTA GGT GAA CCT GCG G-3΄) and 
ITS4 reverse primer (3΄-TCC TCC GCT TAT TGA 
TAT GC-5΄)] regions of the genome were amplified 
(White et al., 1990). The amplified fragments were 
separated in 1% agarose gel by electrophoresis. PCR 
products were purified by using a PCR purification kit 
(Enzynomics) and the fragments were sequenced in 
both orientations from Macrogen, Korea by using ITS 
forward and reverse primers. Three primers P01, P02 
and P03 were used for ISSR amplification (Table 1) 
and the amplified PCR products were separated by gel 
electrophoresis and analyzed.

Table 1: ISSR primers to amplify fungal DNA.
Primer name Primer sequence
P1 5΄- AGA GAG AGA GAG AGA GG -3΄
P2 5΄- GAG AGA GAG AGA GAG AT -3΄
P3 5΄- GAG AGA GAG AGA GAG AC -3΄

3. Results and Discussion

Two post-harvest fungal strains of A. flavus group 
named A. minisclerotigenes and A. flavus were subjected 
to a polyphasic approach for authentic identification.

3.1 Morphological characterization 
The colonies of A. miniseclerotegenious were dull green 
to greyish green in color and yellow at reverse on 
MEA (Figure 1a and c Am), 50–65 mm in diameter 
without zonation and displayed sclerotia production, 
while colonies on CZA attained a diameter of 30-
40 mm and sclerotia were present (Figure 1b and d 
Am). Uni and biseriate conidial heads bearing long 
conidiophores (0.9-1.2 mm) and globose vesicles 
(25-40 μm). The size of metulae and phialides were 
5-8 μm with 8-12 μm, respectively, while globose 
conidia (3.5-5 μm diameter) were pale green or olive 
green and smooth-walled to echinulate (Figure 1e-f ).

A. flavus colonies were 50-60 mm in diameter 
(without zonation) and exhibited sclerotia production 
on MEA (Figure 1a and c Af ). On CZA medium, 
fungal colonies were slow-growing, attained diameter 
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of a 30-40 mm (without zonation), having sclerotia, 
that were heavily produced in the center of each 
colony (Figure 1b and d Af ). Conidial heads were 
typically radiate, splitting into several poorly defined 
columns. Subglobose to globose (25-45 μm) vesicles 
were hyaline, while both metulae and phialides were 
present. Metulae with 6.5-10 × 3-4.5 μm dimensions 
completely covered vesicle surface, however, phialides 
were 8-12 × 3-5 μm in size. Subglobose to globose (3.5-
4.5 μm) Conidia were pale green and conspicuously 
echinulate (Figure 1h-j).

Figure 1: Comparison of colonies grown on MEA 
front and reverse (a and c) and on CZ (b and d). 
Microscopic study of A. minisclerotigenes (e-g) 
and A. flavus (h-j) showing seriation (uniseriate 
and biseriate) and conidial attachment. Am: A. 
minisclerotigenes; Af: A. flavus.

A vial of a pure culture of A. miniseclerotegenious 
(FCBP-1353) and A. flavus (FCBP-0529) were 
deposited in the First Fungal Culture Bank of 
Pakistan.

3.2 Aflatoxins production
The culturing of both strains on CCA medium revealed 
that both Aspergillus species were capable of producing 
aflatoxins AFBs (Figure 2). Aflatoxins analysis on 
TLC also confirmed that A. minisclerotigenes (FCBP-
1353) and A. flavus (FCBP-0529) were toxinogenic 
with consistent mycotoxigenic profile. Both were 
produced AFBs (AFB1 and AFB2) and showed clear 
bands on the TLC plate under UV light (Sultan and 
Magan, 2010) (Figure 3).

Figure 2: Comparative screening of aflatoxin 
production by A. minisclerotigenes and A. flavus 
grown on CCA. a: colony from front side; b: reverse 
colony; c: reverse colony under UV light. Am: A. 
minisclerotigenes; Af: A. flavus.

Figure 3: Aflatoxins production on TLC. S: AFBs 
Standard, Am: A. minisclerotigenes and Af:  A. flavus.
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Figure 4: Amplified ITS region of strains, 
M=1kb DNA marker; Af: A. flavusus and Am: A. 
minisclerotigenes.

Figure 5: ITS sequence alignment of A. 
minisclerotigenes. 
The BLAST results revealed 100% identity of A. minisclerotigenes 
FCBP1353 to the 8 strains including G5 (KF841549.1), E76 
( JX456215.1), E74 ( JX456193.1), E44 ( JX292091.1), E21 
( JX292090.1), CS5 ( JF412778.1), NRRL 29002 ( JF412775.1), 
CS2 ( JF412776.1) and some other A. minisclerotigenes strains.

3.3 Genetic analysis
The obtained nucleotide sequence of PCR product 
of both species were sent for DNA sequencing 
and identified as 551 bp of ITS region of A. 
minisclerotigenes and 536 bp of A. flavus (Figure 4). 
The ITS sequence of A. minisclerotigenes and blast 
results in Figure 5 also showed 100% identity to the 
8 strains of A. minisclerotigenes available in GenBank 
including G5 (KF841549.1), E76 ( JX456215.1), 
E74 ( JX456193.1), E44 ( JX292091.1), E21 
( JX292090.1), CS5 ( JF412778.1), NRRL 29002 
( JF412775.1), CS2 ( JF412776.1) and some other A. 
minisclerotigenes strains. Likewise, A. flavus (FCBP–
0529) blast analysis showed 100% identity with more 
than 25 strains including KJ473711.1, KJ013417.1, 

KF753952.1, KF656712.1, KF723010.1, KJ123911.1, 
GU172440.1, GU076485.1, KF031021.1 and some 
other A. flavus in GenBank (Figure 6). The nucleotide 
sequence of A. minisclerotigenes (FCBP-1353) A. 
flavus (FCBP-0529) were deposited to GenBank 
under the accession no. KJ564033 and KJ999747, 
respectively. The uniformity of ITS fragment size in 
several fungal groups builds nucleotide sequencing of 
ITS fragments obligatory to expose interspecific, and 
in some cases, also intraspecific variation (Hinrikson 
et al., 2005; Inglis and Tigano, 2006). The ITS region 
was very functional in resolving taxonomic difficulties 
in many fungal genera as verified by Driver et al. 
(2000) and Inglis and Tigano (2006). Hinrikson et 
al. (2005), revealed that the small variation in band 
size probably made ITS an unreliable parameter 
for separating Aspergillus species. Unlike ITS, ISSR 
profile has significant importance as an assisting 
tool for identification, genetic diversity analysis and 
differentiation among strains (Batista et al., 2008; 
Zhang et al., 2013). ISSR analysis has also been shown 
usefulness in population genetics, epidemiological 
surveys and ecological studies of A. flavus (Batista et 
al., 2008). Amplification of ISSR with three primers 
confirmed (Figure 4) genetic differences between A. 
minisclerotigenes and A. flavus (Hatti et al., 2010).

Figure 6: ITS sequence alignment of Aspergillus 
flavus.
The BLAST results revealed 100% identity of A. flavus 
(FCBP0529) to the more than 25 strains including S19 
(KJ473711.1), BC-212 (KJ013417.1), LPSC 1183 (KF753952.1), 
PTN13 (KF656712.1), KVCET2 (KF723010.1), G49 
(KJ123911.1), UPM A8 (GU172440.1), A2 (GU076485.1), 
KAR-8 (KF433946.1) and J8M-40 ( JN226905.1), 
PW2961 (KF562204.1), PW2953 (KF562196.1), MDU-5 
(KC914096.1), JP44MY8 (KF031021.1) and some other  A. 
flavus strains.
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Figure 7: DNA banding profile of PCR-ISSR 
amplification product. M: DNA marker; Am: A. 
minisclerotigenes and Af: A. flavus.

4. Conclusions

In the current study, high relatedness between 
two medically important strains of A. flavus group 
concluded that the process of differentiating them 
needs an under-species classification accomplished by 
a number of different tactics including morphological 
basis, amplified ITS fragment, ISSR molecular 
markers, which is actually a supplementary tool 
for genetic characterization and could be useful in 
distinguishing between strongly correlated species or 
strains. 
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