ANTIOXIDANT PROPERTIES AND PHYTOCHEMICAL PRINCIPLES OF SOME MEDICINAL PLANTS: ADENIUM OBESUM (FORSSK.) ROEM. & SCHULT., IXORA COCCINEA LINN. AND AEGLE MARMELOS LINN.

AMNA KHATOON¹, MUHAMMAD ALI VERSIANI^{1,}*, SHUMAILA SHAMSHAD¹, SAMINA ABDUL SATTAR¹, HUMA KHAN¹, AMBREEN IKRAM^{1,}, SALMAN KHALID AHMED¹, SHAHEEN FAIZI² AND SYED INTISAR HUSSAIN TAQVI³

¹Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e- Iqbal, Science Campus, Karachi-75300, Pakistan

²HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

³Department of Pharmacology, Dr. Intisar Cardiovascular Pharmacology and Toxicology Lab, Faculty of Pharmacy, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi-75300, Pakistan

*Corresponding author E-mail:mali.versiani@fuuast.edu.pk

خلاصه

یوناکلیٹڈ ھائیڈ روآسمی ٹولین (Aetium obesum, Ixora coccinea یودوں کے میتھانول استخراج، اس کے اجزاء اور ماتحت اجزاء کی Ademium obesum, Ixora coccinea یوناکلیٹڈ ھائیڈ روآسمی ٹولین (Antioxidant) اور اسکار بک تراشہ (ascorbic acid) کو معیار بناتے ہوئے ضد تکسیدی (Antioxidant) سر گرمی معلوم کی گئی۔ Ixora یوناکلیٹڈ ھائیڈ روآسمی ٹولین (Attioxidant) اور اسکار بک تراشہ (ascorbic acid) کے معد تکسیدی (Antioxidant) سر گرمی معلوم کی گئی۔ Ixora coccinea نے سب سے زیادہ پھر اسک العدام العند العدام میں العد معد تکسیدی (Attioxidant) مر گرمی معلوم کی گئی۔ Ixora coccinea نے سب سے زیادہ پھر اسک العظوم نے محکم العد معد العد معد تکسیدی (Intioxidant) مر گرمی معلوم کی گئی۔ Ixora coccinea نے سب سے زیادہ پھر اسک العظوم نے تعرب معد میں تعرب سے نیادہ پھر ایند (Intioxidant) مر گرمی طاہر کی۔ سر گرمی طاہر کی۔ سر گرمی طاہر کی۔ مر گرمی طاہر کرنے والے اجزاء کی تخلیص کے نتیج میں چھیں۔ 1) استخراجوں کے مقابلہ میں سب سے زیادہ گرمی العراض العرف العرف معلوم کی گئی جن میں سے مند العرف میں تعرب العرب العرف معلوم کی گئی جن میں سے معدوم کی گئی جن میں سے خاص مرک ہوں کے استخراج کے جنوب کے العرب معدوم کی گئی جن میں سے خاص مرک ہوں کے العرب میں تعرب معدوم کی گئی جن میں سے خاص مرک ہوں کے العرب میں تعرب معلوم کی گئی جن میں سے خاص مرک ہوں کے العرب مرک ہوں کے الی العرب معدوم کی گئی جن میں سے خاص مرک ہوں کے العرب مرک ہوں کے العرب میں الی کی کہ معلوم کی گئی جن میں سے خاص مرک ہوں کے العرب مرک ہوں کے العرب میں کہ معلوم کی گئی جن میں معلوم کی گئی جن میں مرک ہوں کے الی ای کہ معدوم کی گئی جن میں سے خاص مرک ہوں ہوں کے الی کہ معلوم کی گئی جن میں ہوں کے معرب میں معلوم کی معلوم کی معلوم کی مرک ہوں کے مرک ہوں کے الی کہ معدوم کی گئی جن میں سے معالی کی محکوم کی کہ معدوم کی مرک ہوں کے مرکز محکوم کی کہ معلوم کی کہ مرک ہوں کے مرکز محک مرکز معدوم کہ کہ مرکز میں معلوم کی کہ مرک ہوں کے مرکز مرک ہوں ہوں کے مرکز مرک ہوں ہوں کے مرکز محکوم کی محکوم کی س

Abstract

The methanolic extracts, fractions and sub-fractions of *Adenium obesum* (Forssk.) Roem. & Schult., *Ixora coccinea Linn.* and *Aegle marmelos* Linn. were screened for their free radical scavenging ability by using ascorbic acid and butylated hydroxytoulene (BHT) as standard antioxidants and evaluated through DPPH free radical scavenging assay. *I. coccinea* exhibited strongest inhibition, followed by *A. obseum*, and *A. marmelos*. The methanolic extracts of *I. coccinea* leaves proved to be the most potent antioxidant among these extracts with IC₅₀ 0.00315 \pm 0.0001 mg/mL. Upon the purification of the active fractions twenty-six (**1-26**) pure chemical constituents were isolated and examined for their antioxidant inhibition ability, out of which 5-*O*-caffeoyl quinic acid (**19**) isolated from the active fraction of *I. coccinea* flower found to be potent antioxidant with IC₅₀ value 0.0467 \pm 0.0018 mg/mL as compared to standard ascorbic acid (0.0491 \pm 0.0009) and BHT (0.0407 \pm 0.003).

Introduction

In the human body free radicals are formed by the endogenic metabolic reactions, these are the unstable species which are responsible for oxidative damage to biomolecules. They can trigger various diseases such as cancer, aging, neurological disorders, arthritis, cirrhosis & atherosclerosis (Halliwell and Gutteridge, 1984; Maxwell, 1995; Badarinath *et al.*, 2010). Antioxidants are used to refrain the harmful effects of free radicals which reduces the risk of these disorders (Rice-Evans *et al.*, 1996; Chakraborty *et al.*, 2009). Almost all organisms have some mechanism to cope up with the damage caused by free radicals with the help of enzymes such as super-oxide dismutase,

glutathione peroxidase, catalase and antioxidant compounds viz. ascorbic acid, phenolic acids, polyphenols, tocopherol, flavonoids as well as antioxidant supplements also provides protection against the hazardous effects of free radicals (Prior and Cao, 1999). Nowadays the use of natural antioxidants is preferable. Numerous medicinally active plants have been shown such efficacy through the traditional approaches of psychoneuropharmacology (Koslow *et al.*, 1995). For this purpose, we selected three plants for their famous medicinal potential and traditional uses.

Adenium obesum, usually known as desert rose, belongs to the family Apocynaceae (Omino and Kokwaro, 1993) found all over Africa and Southern Africa (Magassouba *et al.*, 2007) and reported as a rich source of cardiac glycosides, pregnanes, triterpenes, steroids, flavonoids and carbohydrates (Versiani *et al.*, 2014; Ahmed *et al.*, 2017). Literature review revealed that *A. obesum* possesses antibacterial, antitumor, antiviral, immunomodulatory activity and toxicity whereas depth antioxidant activity has explored on the roots of *A. obesum* (Al-Ghudani and Hossain, 2015).

Ixora coccinea Linn., a traditional medicinal plant which is also known as Jungle Geranium and Flame of wood. It is distributed in the tropical and sub-tropical regions of world (Baliga *et al.*, 2012). It has been reported that *I. coccinea* possess extensive biological activities such as hepatoprotective, antimicrobial, antioxidant, antinociceptive, anti-mitotic, anti-inflammatory along with cardiovascular activity (Elumalai *et al.*, 2012; Rahman *et al.*, 2012). It is a rich source of various bio-active class of compounds such as alkaloids, flavonoids, tannins, steroids and terpenoids (Donth *et al.*, 2015; Versiani *et al.*, 2012; Ikram *et al.*, 2016; Ikram *et al.*, 2013).

Aegle marmelos Linn. Correa, known as beal fruit tree (Chakthong *et al.*, 2012). It is a sub-tropical species widely found throughout India, Ceylon, Burma, Bangladesh, Bhutan, Malaysia and Pakistan (Dhankar *et al.*, 2011). Medicinally, every part of the tree has great importance and every part is used in indian medicinal system (Brijesh *et al.*, 2009). As a whole plant, it possesses antiviral, antidiarrheal, antimicrobial, radio protective, anticancer, chemo-preventive, antiulcer, antipyretic, antioxidant, antigenotoxic, diuretic, antimalarial and anti-inflammatory properties, which helps to play a key role in prevention and treatment of several diseases (Arunachalam *et al.*, 2014). Flavonoids, alkaloids, steroids, terpenoids, saponins, tannins, coumarin derivatives, amino acid and carbohydrates have been reported from this plant (Charoensiddhi and Anprung, 2008). Due to their large number of medicinal uses with the presence of valuable constituents need to explore their antioxidant potential. Keeping this in view, the present study has been made to assess the relative antioxidant potential of *A. obesum, I. coccinea* and *A. marmelos*, which are traditionally used in various medications.

Materials and Methods

Plant materials

To isolate the active chemical constituent from *A. obesum* and *I. coccinea* different parts (leaves, twigs, pods, flowers and roots) of these plants were collected from the garden of University of Karachi. The plant was authenticed by Dr. Rubeena Dawar and Dr. Sahar Ansari respectively at the Department of Botany, University of Karachi and vouchers specimen number KUH 68671 and KUH 68501, respectively were deposited in the herbarium of the same department.

Wet and uncrushed fruits (475 g) of *A. marmelos* were purchased from the local market of Karachi. The plant material was identified by Dr. Bina Naqvi; Taxonomist at PCSIR Laboratory complex, Karachi, Pakistan. The specimen voucher (Pharm-AM-0012/2013) was deposited in the herbarium of Faculty of Pharmacy, Federal Urdu University, Gulshan-e-Iqbal campus, Karachi, Pakistan.

Chemicals

Hexane, chloroform, ethyl acetate, butanol, methanol, dimethylsulfoxide (DMSO) and ascorbic acid ($C_6H_8O_6$) were purchased from Merck (Dramstadt, Germany). 1,1-diphenyl-2-picrylhydrazyl (DPPH) was purchased from Sigma-Aldrich and butylated hydroxytoulene (BHT) was purchased from BDH Laboratory Supplies, Poole, BH15ITD, England. Vacuum liquid chromatography (VLC) was performed on silica gel 60GF₂₅₄ and flash column chromatography (FCC) on silica gel 60 (E. Merck 1.09385) (Model Aldrich), while size exclusion chromatography was acheived by using Sephadex LH-20 (Amershem Bioscience), pre-swollen in the specified solvent before loading on to the column.

Extraction, fractionation and purification

Powder of Flower (500 g) of *A. obesum* was extracted in methanol and the crude extract (AOFM, 100 g) was partitioned between aqueous, ethyl acetate (AOFMEA, 20 g), butanol (AOFMBut, 5 g), methanol (AOFMM, 10 g),

51

and 70% methanol (AOFM-70, 25 g). The EA-phase (AOFMEA) was dried with sodium sulfate (anhydrous), charcoaled and evaporated invacuo to give a thick residue which was subjected to normal pressure column chromatography on gradient system by using hexane, chloroform and methanol and afforded the five pure compounds obeside D (1, 10 mg), obebioside D (2, 5 mg), Δ^{16} -digitoxigenin- β -D-glucopyranosyle- β -D-digitalose (3, 19 mg), β -sitosterol (4, 3 mg) and stigmasterol (5, 10 mg) (Ahmed *et al.*, 2017). Fruits (wet pods, 481 g), fruit (dry pods, 20 g), leaves (112 g) and roots (3 Kg) of A. obesum, were extracted in methanol and got residue AOWPM, AODPM, AOLM and AORM, respectively. The methanolic extract of wet pods (AOWPM) was partitioned between aqueous and ethyl acetate phase. The anhydrous ethyl acetate phase was charcoaled and evaporated invacuo to give a residue. The residue was further fractioned by using petroleum ether (100%), petroleum ether: ethyl acetate (1:1), ethyl acetate (100%) and methanol (100%). The ethyl acetate soluble sub-fraction of ethyl acetate was subjected to normal pressure column chromatography on gradient system as mentioned above and obtained two pure chemical constituents neritaloside (6, 4 mg) and ursolic acid (7, 5 mg) (Ahmed et al., 2017). Petroleum ether: ethyl acetate soluble sub-fraction of ethyl acetate fraction was purified by vacuum liquid chromatography (VLC) followed by gel filtration column (Sephadex, LH-20) chromatography of combined VLC fractions 31 to 40 gave two pure compounds dihydroifflanoic acid (8, 10 mg) and (7, 21 mg) (Ahmed et al., 2017) while normal pressure column chromatography of combined VLC fraction nos. 51 to 100 (500 mg) on gradient solvent system using hexane, ethyl acetate and methanol by increasing 5% polarity afforded a pure compound honghelin (9) (Ahmed et al., 2017). In another work 3 Kg of the fruits (pods) were soaked in MeOH (5 L) at room temperature for a month and get the

extract (150 g) which was partitioned by using water and ethyl acetate. The ethyl acetate phase (27 g) was further fractionated by using hexane and methanol. The later fraction (21.5 g) was subjected to flash column chromatography followed by normal pressure column chromatography and reversed phase High Pressure Liquid Chromatography (HPLC, Dionex 300, C18 column, 250mm × 25mm, isocratic system, flow rate 0.2 ml/min, 100 % acetonitrile, 254 nm) afforded eight pure compounds obeside B (10, 5 mg), obeside C (11, 7 mg), betulinic acid (12, 3 mg), oleanolic acid (13, 5 mg), 7 (25 mg), 8 (30 mg), 6 (11 mg) and gitoxigenin- β -D-glucopyranosyle-(1 \rightarrow 4)- β -D-digitalose (14, 5 mg) (Ahmed *et al.*, 2017)(Fig 1).

The fresh leaves (2 Kg) and twigs (2.2 Kg) of I. coccinea were extracted with methanol which gave thick residues IXLM (213 g) and IXTM (225 g) on evaporation. IXLM was partitioned into six fractions by using nonpolar to polar solvents petroleum ether, dichloromethane, dichloromethane: ethyl acetate (1:1), ethyl acetate, ethyl acetate: methanol (1:1) and methanol which afforded IXLM₁, IXLM₂, IXLM₃, IXLM₄, IXLM₅ and IXLM₆ fractions respectively along with insoluble fraction. In fraction IXLM₄ some white crystals are settled down which were separated and identified as D-mannitol (15, 30 mg) (Versiani et al., 2012). IXLM₁ was purified through preparative thin layer chromatography (PTLC) (silica gel, hexane: ethyl acetate, 6.5: 3.5) and obtained a pure compound 17β dammara-12, 20-diene-3\beta-ol (Ixorene 16, 5 mg) (Ikram et al., 2013). Fresh flowers of I. coccinea (746 g) were extracted in methanol and obtained a thick residue IXFM which was partitioned by using water (IXFMAq) and ethyl acetate (IXFMEA). EA-phase (IXFMEA) was fractionated into petroleum ether, petroleum ether: ethyl acetate (1:1), ethyl acetate and methanol, afforded four fractions IXF₁ (5.4493 g), IXF₂ (200 mg) IXF₃ (2.62 g) IXF₄ (5.14 g) together with insoluble material respectively, in which IXF_1 form three layers which were separated into IXF_1BA , IXF_1BB and IXF_1BC . Some solid material settled down in fraction IXF_4 and obtained as IXF_{4b} fraction. To purify the fraction IXF₂, performed vacuum liquid chromatography (VLC) followed by preparative thin layer β -D-tetraacetoxyglucoside (18, 10 mg) obtained (Versiani *et al.*, 2012). Fraction IXF₃ and IXF₄ were subjected to normal pressure column chromatography which afforded 5-O-caffeoylquinic acid (19, 30 mg) and 19,21-epoxytirucall-7-en-3-ol (Ixoroid 20, 10 mg) (Versiani et al., 2012) respectively, while upon the purification of fraction IXF₁BC (3 g) obtained 5α -pregn-9(11)-17(20)-diene (21, 10 mg), 17- β -Dammara-12,20-diene-3- β -isovelarate (Ixorene isovalerate 22, 10 mg), 17- β -dammara-12,20-diene-3- β -30,80-dimethyloctanoate (23, 10 mg), 3acetoxyursolic acid (24, 5 mg) and 3-β-hydroxy-18-β-urs-12ene-29-oic acid (Ixoroid acid 25, 15 mg) (Ikram et al., 2016)(Fig 2).

A. marmelos fruits were soaked into 70% methanol, filtered and evaporated in vacuuo to give extract (AMFM, 250 g). The extract (AMFM) was fractionated from non-polar to polar fractions by using hexane, ethyl acetate, butanol and methanol which gave the soluble fractions AMFMH, AMFMEA, AMFMBut and AMFMM respectively. For further sub-fractionation of ethyl acetate fraction, AMFMEAHEA, AMFMEAEA and AMFMEAM were obtained by using hexane: ethyl acetate (1:1), ethyl acetate and methanol respectively. AMFMButEA, AMFMButEA, AMFMButM and AMFMButMI (white crystals) were the hexane: ethyl acetate (1:1), ethyl acetate, methanol sub-fractions and insoluble fractions of butanol soluble fraction respectively. On evaporation of the solvents of sub-fraction AMFMButHEA a solid material was obtained which was re-crystallized and got a pure off-white shiny crystalline compound identified as a well-known constituent marmelosin (**26**, 10 mg)

(Dhankar *et al.*, 2011). AMFMMH (hexane), AMFMMHEA (hexane: ethyl acetate; 1:1), AMFMMEA (ethylacetate) and AMFMMM (methanol) were the sub-fractions of methanolic soluble fraction of main extract of *A. marmelos* fruits.

All of these extracts, fractions, sub-fractions and pure isolated compounds of A. obesum, I. coccinea and A. marmelos were evaluated for their antioxidant activity (Table 1).

1.2.2. Determination of radical-scavenging activity

DPPH [1, 1-diphenyl-2-picrylhydrazyl] is a free radical which is stable in nature. It shows the absorbance at 520 nm and has the violet color which then become colorless after the action of antioxidants. The free radical scavenging potential was carried out by using DPPH assay according to standard protocol (Badrinath *et al.*, 2010; Ikram *et al.*, 2016).

Statistical analysis

Data were expressed as mean \pm standard deviations (SD) of three replicated determinations and IC₅₀ values of all experiments were calculated by using EZ-Fit Enzyme Kinetic software. All statistical analysis was carried out by using SPSS version 20.0

Results and Discussion

The antioxidant activity of extracts of different parts (fruits, flowers, leaves, roots and pods), their fractions, sub-fractions and pure isolated compounds of the selected medicinal plants were summarized in Table 1. In the present study, the methanol extracts of A. obesum, AODPM (dried pods), AOWPM (wet pods), AOLM and AOFM were showed potent inhibition with IC₅₀ values 0.2242 ± 0.0020 , 0.0951 ± 0.003 , 0.1198 ± 0.0107 , and 0.0395 ± 0.0023 mg/mL respectively and significant difference between the inhibitory effects at different concentrations was observed (P< 0.05). Fractions AOFMM-70, AOFMM and AOFMEA were also active against DPPH radical with IC₅₀ values 0.0584 ± 0.0015 , 0.2752 ± 0.0001 , and 0.1502 ± 0.0029 mg/mL (Table 1; Fig. 3). However, the roots extract (AORM) was found to be inactive at the concentration 0.5 mg/mL. All the pure compounds isolated from flowers and pods of A. obesum found to be inactive at the concentration of 0.5 mg/mL as compare with standards drugs ascorbic acid and BHT (Table 1; Fig. 3) as the pure isolated compounds were belongs to the cardiac glycosides, terpenoids and steroids. The methanol extract of I. coccinea twigs (IXTM) and leaves (IXLM) were exhibited the potent antioxidant potential with IC₅₀ values 0.0035 \pm 0.0003 and 0.00315 \pm 0.0001 mg/mL respectively as compare with standard drug ascorbic acid (Table 1; Fig. 3) and significant difference between the inhibitory effects at different concentrations was observed (P < 0.05). Among the leaves fractions IXLM₁, IXLM₂, IXLM₄, IXLM₅ and IXLM₆ have ability of inhibition with IC₅₀ values 0.0023 ± 0.0001 , $0.1881 \pm$ $0.0007, 0.0016 \pm 0.0004, 0.0267 \pm 0.0016$ and 0.0130 ± 0.0057 mg/mL respectively except IXLM₃ fraction. Two pure compounds isolated from the leaves of *I. coccinea* D-mannitol (15) and ixorene (16) were examined for antioxidant potential but both found to be inactive at the concentration of 0.5 mg/mL as compared to the standard drugs ascorbic acid and BHT. Ixorene belongs to the class of triterpenoids and was reported as new natural product (Ikram et al. 2013. The methanol extract of *I. coccinea* flower (IXFM) also showed antioxidant activity with IC_{50} value at 0.0459 ± 0.0027 and significant difference between the inhibitory effects at different concentrations was observed (P < 0.05). The fractions IXFMAq and IXFMEA, sub-fractions IXF₁, IXF₂, IXF₃, IXF₄, IXF₄, IXF₁BA, IXF₁BB, IXF₁BC were found to be more active with IC₅₀ values 0.0491 ± 0.0010 , 0.0048 ± 0.0004 , 0.0061 ± 0.0001 , $0.0032 \pm 0.0001, 0.0015 \pm 0.0003, 0.0023 \pm 0.0004, 0.0302 \pm 0.0014, 0.0652 \pm 0.0008, 0.0615 \pm 0.0001$ and 0.0478 ± 0.0001 mg/mL respectively. Compounds (17-25) isolated from the flower of *I. coccinea* were belongs to steroids, terpenoids and polyphenols, in which compounds 20, 22, 23 and 25 were reported as new natural products (Versiani et al. 2012; Ikram et al. 2016). All these isolated compounds were examined for their antioxidant potential out of which only 5-O-caffeoyl quinic acid (19) showed potent inhibition with IC₅₀ value 0.0467 \pm 0.0018 as compared to standard ascorbic acid and BHT (Table 1). On the basis of these results it is found that all parts extracts, fractions and their sub-fractions showed moderate to high antioxidant activities, while pure isolated compounds were found to be very weak antioxidants except 5-O-caffeoyl quinic acid (19) which was isolated from the active fraction of I. *coccinea* flowers and might be responsible for promising antioxidant activity of flowers.

The 70% methanolic extract of fruits of *A. marmelos* (AMFM) exhibited the antioxidant activity with IC₅₀ value 0.0933 ± 0.002 mg/mL and significant difference between the inhibitory effects at different concentrations was observed (P < 0.05). The fractions AMFMEA, AMFMBut and AMFMM were also showed antioxidant property with IC₅₀ values 0.0678 ± 0.0012, 0.2525 ± 0.017 and 0.081 ± 0.001mg/mL. The sub-fractions of ethyl acetate fraction AMFMEAHEA, AMFMButM, AMFMMHEA, AMFMMEA and AMFMMM were found to be active with IC₅₀ values 0.0578 ± 0.002, 0.1076 ± 0.0007, 0.1437 ± 0.001, 0.0794± 0.0038, 0.0495± 0.0005 and

 0.0936 ± 0.0018 mg/ ml respectively. However, the isolated pure compound marmelosin (26) and white crystalline compound (unidentified) were found to be inactive at the concentration of 0.5 mg/ mL as compared to the standard drugs ascorbic acid and BHT (Table 1).

Fig.1. Structures of the compounds isolated from Adenium obesum (Forssk.) Roem. & Schult.

Fig.2. Structures of the compounds isolated from Ixora coccinea Linn

Fig.3. Antioxidant capacity of plant extracts in comparison with A.A and BHT. Lower IC₅₀ value indicates higher antioxidant activity.

AODPM = A. obesum methanolic extract of dry pod; AOWPM = A. obesum methanolic extract of wet pod AORM = A. obesum methanolic extract of root; AOLM = A. obesum methanolic extract of leaves; AOFM = A. obesum methanolic extract of flowers; IXTM = I. coccinea methanolic extract of twigs; IXLM = I. coccinea methanolic extract of leaves; IXFM = I. coccinea methanolic extract of flowers; AMFM = A. marmelos methanolic extract of fruits; A.A = Ascorbic acidBHT = Butylated hydroxyl toluene

Conclusion

On the basis of above results it is concluded that selected medicinal plant extracts, fractions and most of the sub-fractions showed moderate to high antioxidant activities while the pure isolated compounds from these fractions were found to be very weak antioxidants, except 5-O-caffeoyl quinic acid (19) which was isolated from the active fraction of *I. coccinea* flowers and exhibited the potent antioxidant activity towards DPPH free radical. The antioxidant capacity of these plants revealed due to the emergence of bioactive composition, which are promising source of natural antioxidants and can be exploited for multiple industrial and domestic applications.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

"We thankfully acknowledge the Higher Education Commission (HEC) Govt. of Pakistan for the research grant on *I.* coccinea and *A. obesum* by HEC Projects (P. No. 20-1-1480/R&D/09 and P&D/12(156)/46/2008) and Federal Urdu University Arts, Science and Technology, Karachi, Pakistan, facilitated through mini project for research work on *I. coccinea* and *A. marmelos*"

Name of plant	A. obesum, I. coccinea and A. marmelos Extract/Fractions/Pure compounds % Inhibition IC ₅₀ ±SI			
.	·····	(0.5 mg/mL)	(mg/mL)	
Adenium obesum	Extracts			
	AODPM	80.42	0.2242±0.0020	
	AOWPM	85.00	0.0951±0.0030	
	AORM	16.84	-	
	AOLM	87.40	0.1198±0.0107	
	AOFM	89.84	0.0395±0.0023	
	Fractions/ Sub-fractions of flower			
	AOFMM-70	73.88	0.0584 ± 0.0015	
	AOFMM	79.30	0.2752±0.0001	
	AOFMBut	44.56	-	
	AOFMEA	63.22	0.1502±0.0029	
	Pure isolated constituents from			
	flower			
	Obeside D (1)	0.48%	_	
	Obebioside D (2)	6.53%	_	
	Δ^{16} -Digitoxigenin- β -D-	1.06%	_	
	glucopyranosyle- β -D-Digitalose (3)	1.0070		
	β -sitosterol (4)	30.24%	_	
	Stigmasterol (5)	16.92%	_	
	Pure isolated constituents from pods	100/270		
	Neritaloside (6)	1.69%	-	
	Ursolic acid (7)	13.55%	-	
	Dihydroifflonic acid (8)	0.58%	-	
	Honghelin (9)	1.44%	-	
	Obeside B (10)	12.60%	-	
	Obeside C (11)	8.59%	-	
	Betulinic acid (12)	6.21%	-	
	Oleanolic acid (13)	41.31%	-	
	Gitoxigenin- β -D-glucopyranosyle-	0.08%	-	
	$(1\rightarrow 4)$ - β -D-digitalose (14)			
xora coccinea	Extracts			
	IXTM	97.009	0.0035 ± 0.0003	
	IXLM	86.880	0.0032 ± 0.0001	
	IXFM	93.158	0.0459 ± 0.0027	
	Fractions of leaves			
	IXLM ₁	96.422	0.0023 ± 0.0001	
	$IXLM_2$	84.535	0.1881 ± 0.0007	
	IXLM ₃	9.1720	-	
	$IXLM_4$	93.514	0.0016 ± 0.0004	
	IXLM ₅	91.050	0.0267±0.0016	
	IXLM ₆	88.688	0.0130 ± 0.0057	
	Fractions of flowers			
	IXFMAq	92.184	0.0491±0.0010	
	IXFMEA	89.3260	0.0048 ± 0.0004	
	Sub-fractions of flowers			
	IXF ₁	84.8770	0.0061 ± 0.0001	
		88.0800	0.0032 ± 0.0001	
	IXF_2	00.0000	$0.00.52 \pm 0.0001$	

 Table 1 In-vitro antioxidant activity of extracts, fractions, sub-fractions and pure isolated constituents from

 A. obesum, I. coccinea and A. marmelos

Aegle

	IXF_4	92.4990	0.0023 ± 0.0004
	IXF ₄ b	95.2495	0.0302 ± 0.0014
	IXF ₁ BA	85.7788	0.0652 ± 0.0008
	IXF ₁ BB	94.1080	0.0615±0.0001
	IXF ₁ BC	98.3991	0.0478±0.0001
	Pure isolated constituents from	70.5771	0.0170±0.0001
	leaves		
	D-mannitol (15)	6.6020	-
	Ixorene (16)	4.9095	-
	Pure isolated constituents from flowers		
	Stigmast-5-en-3- O - β -D-glycoside (17)	2.890	-
	Stigmast-5-en-3-O-β-D-tetra-acetoxy glycoside (18)	2.048	-
	5-O-Caffeoyl quinic acid (19)	77.031	0.0467 ±0.0018
	19, 21-Epoxy-tirucall-7-en-3-ol	5.681	_
	(Ixoroid, 20)	5.001	-
	5α-Pregn-17-en (21)	5.133	-
	17-β-Dammara-12,20-diene-3-β-	5.941	-
	isovelarate (22)		
	$17-\beta$ -dammara-12,20-diene-3- β -3',8'-	5.502	-
	dimethyloctanoate (23) 3-Acetoxy ursolic acid (24)	2.8177	
	$3-\beta$ -Hydroxy-18- β -urs-12ene-29 β -oic	7.097	-
	acid (25)	1.091	-
e marmelos	Extract of fruit		
	Extract of fruit		
	AMFM (70% methanol) Fractions of fruit	78.087	0.0933 ± 0.002
	AMFM (70% methanol) Fractions of fruit		
	AMFM (70% methanol) Fractions of fruit AMFMEA	94.000	0.0678 ± 0.0012
	AMFM (70% methanol) Fractions of fruit	94.000 84.499	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut	94.000	0.0678 ± 0.0012
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM	94.000 84.499	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit	94.000 84.499 76.570 93.421	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.\ 0010 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA	94.000 84.499 76.570 93.421	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.\ 0010 \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA	94.000 84.499 76.570 93.421 93.384	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.\ 0010 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAAM	94.000 84.499 76.570 93.421 93.384 57.150	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.\ 0010 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAEA AMFMEAM AMFMButEA	94.000 84.499 76.570 93.421 93.384 57.150 65.214	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMButM	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMButM AMFMMH	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMButM AMFMMH AMFMMHEA	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \end{array}$ $\begin{array}{c} - \\ 0.1437 \pm 0.0010 \\ - \\ 0.0794 \pm 0.0038 \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMBUTM AMFMMHEA AMFMMHEA	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627	$\begin{array}{c} 0.0678 \pm 0.0012\\ 0.2525 \pm 0.0170\\ 0.0810 \pm 0.0010\\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMButM AMFMMH AMFMMHEA AMFMMHEA AMFMMEA AMFMMEA AMFMMMEA AMFMMM Pure isolated constituents from fruit Marmelosin (26)	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971	$\begin{array}{c} 0.0678 \pm 0.0012\\ 0.2525 \pm 0.0170\\ 0.0810 \pm 0.0010\\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAM AMFMButEA AMFMButM AMFMMH AMFMMHEA AMFMMHEA AMFMMEA AMFMMEA AMFMMEA AMFMMMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFM	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749	$\begin{array}{c} 0.0678 \pm 0.0012\\ 0.2525 \pm 0.0170\\ 0.0810 \pm 0.0010\\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAEA AMFMEAM AMFMButEA AMFMButM AMFMMH AMFMMHEA AMFMMHEA AMFMMEA AMFMMEA AMFMMMEA AMFMMM Pure isolated constituents from fruit Marmelosin (26)	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971	$\begin{array}{c} 0.0678 \pm 0.0012\\ 0.2525 \pm 0.0170\\ 0.0810 \pm 0.0010\\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAM AMFMButEA AMFMButA AMFMMH AMFMMHEA AMFMMHEA AMFMMMMEA AMFMMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMMEA AMFMMMMEA AMFMMMMMMMEA AMFMMMMMMMMEA AMFMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971 8.7895	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAEA AMFMButEA AMFMButEA AMFMBHEA AMFMMHEA AMFMMHEA AMFMMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMMEA AMFMMMEA AMFMMMMEA AMFMMMMEA AMFMMMEA AMFMMMMEA AMFMMMMEA AMFMMMMEA AMFMMMMMMEA AMFMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971 8.7895	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \rule{0ex}{3ex}{3ex} \\ \rule{0ex}{3ex} \\ 0$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAM AMFMButEA AMFMButM AMFMMH AMFMMHEA AMFMMHEA AMFMMMEA AMFMMMEA AMFMMMB Pure isolated constituents from fruit Marmelosin (26) Unidentified Compound (white crystals) Positive control Ascorbic acid Butylated hydroxytoulene	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971 8.7895	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAEA AMFMButEA AMFMButEA AMFMBHEA AMFMMHEA AMFMMHEA AMFMMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMEA AMFMMMMEA AMFMMMEA AMFMMMMEA AMFMMMMEA AMFMMMEA AMFMMMMEA AMFMMMMEA AMFMMMMEA AMFMMMMMMEA AMFMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971 8.7895	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \rule{0ex}{3ex}{3ex} \\ \rule{0ex}{3ex} \\ 0$
	AMFM (70% methanol) Fractions of fruit AMFMEA AMFMBut AMFMBut AMFMM Sub-fractions of fruit AMFMEAHEA AMFMEAHEA AMFMEAM AMFMButEA AMFMButHA AMFMMHEA AMFMMHEA AMFMMHEA AMFMMMEA AMFMMMB Pure isolated constituents from fruit Marmelosin (26) Unidentified Compound (white crystals) Positive control Ascorbic acid Butylated hydroxytoulene	94.000 84.499 76.570 93.421 93.384 57.150 65.214 80.000 42.4670 83.1276 87.4627 78.8749 3.4971 8.7895	$\begin{array}{c} 0.0678 \pm 0.0012 \\ 0.2525 \pm 0.0170 \\ 0.0810 \pm 0.0010 \\ \end{array}$ $\begin{array}{c} 0.0578 \pm 0.0020 \\ 0.1076 \pm 0.0007 \\ \rule{0ex}{3ex}{3ex} \\ \rule{0ex}{3ex} \\ 0$

References

- Ahmed, S.K., Versiani, M.A., Ikram, A., Sattar, S.A. and Faizi, S. (2017). Cytotoxic cardiac glycosides from the fruits (pods) of Adenium Obesum (Forssk.) Roem. & Schult. Natural. Prod. Res. 31, 1205-1208.
- Arunachalam, D.K., Subhashini, S. and Sathesh, A.K. (2012). Wound healing and antigenitoxic activities of *Aegle marmelos* with relation to its antioxidant properties. *J Pharm. Res.* 5(3): 1492-1502.
- Al-Ghudani, M.K.N. and Hossain, M.A. (2015). Determination of total phenolics, flavonoids and antioxidant activity of root crude extracts of A. obesum traditionally used for the treatment of bone dislocations and rheumatism. Asian Pac. J. Trop. Dis. 5 (Suppl. 1): S155-S158.
- Baliga, M.S. and Kurian, P.J. (2012). *Ixora Coccinea* Linn.; Traditional uses, Phytochemistry and Pharmacology. *Chin. J. Integr. Med.* 18; 72-79.
- Badarinath, A.V., Rao, K.M., Shetty, C.M., Ramakanth, S., Rajan, T.V.S. and Gnanaprakash, K. (2010). A review on in-vitro antioxidant methods: comparisons, correlations and considerations. *Int. J. Pharm. Tech. Res.* 2: 1276-1285.
- Brijesh, S., Daswani, P., Tetali, P., Antia, N. and Birdi, T. (2009). Studies on the antidiarrheal activity of *Aegle* marmelos unripe fruit: validating its traditional usage. *BMC Complement. Altern. Med.* 9(1): 47.
- Chakraborty, P., Kumar, S., Dutta, D. and Gupta, V. (2009). Role of antioxidants in common health diseases. *Res. J. Pharm. Tech.* 2(2): 238-244
- Chakthong, S., Weaaryee, P., Puangphtet, P., Mahabusarakam, W. and Plodpai, P. (2012). Alkaloid and coumarins from the green fruits of *Aegle marmelos*. *Phytochemistry* 75: 108-113.
- Charoensiddhi, S. and Anprung, P. (2008). Bioactive compounds and volatile compounds of thaibael fruit (*Aegle marmelos* (L.) Correa) as a valuable source for functional food ingredients. *Int. Food Res. J.* 15(3): 287-295.
- Dhankar, S., Ruhil, S., Balhara, M. and Dhankar, S. (2011). Aegle marmelos (Linn.) Correa: A potential source of phytomedicine. J. Med. Plants Res. 5(9): 1497-1507.
- Dontha, S., Kamurthy, H. and Mantripragada, B. (2015). Phytochemical and Pharmacological profile of *Ixora*; A Review. *Int J. Pharma Sci. Res.* 6; 576-584
- Elumalai, A., Eswaraiah, C., Venkatesh, Y., Kumar, B.S. and Narendar, C. (2012). Phytochemical and pharmacological profile of *I. coccinea* Linn. *Int J. Pharm Life Sci* 3(3): 1563-1567.
- Halliwell, B. and Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and diseases. *Biochem. J.* 219: 1-4.
- Ikram, A., Versiani, M.A., Shamshad, S., Ahmed, S.K., Ali, S.T. and Faizi, S. (2013). Ixorene, a new dammarane triterpene from the leaves of *I. coccinea* Linn. *Rec. Nat. Prod.* 7(4): 302-306.
- Ikram, A., Versiani, M.A., Khatoon, A., Ahmed, S.K., Sattar, S.A. and Faizi, S. (2016). New dammarane and ursane-type triterpenoids from the flower of *I.coccinea* Linn. *Nat. Prod. Res.* 30(7): 768-775.
- Koslow S.H., Murthy, R.S. and Coelho, G.V. (Eds.). (1995). In Decade of the Brain, Research in Mental Health and Neuroscience, Centrally Acting Agents from Indian Plants, National Institute of Mental Health, Rockville, pp. 197.
- Magassouba, F.B., Dillo, A., Kouyate, M., Mara, F., Bangoura, O. and Camara, A. (2007). Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine. *J. Ethnopharmacol.* 114, 44-53.
- Maxwell, S.R. (1995). Prospect for the use of antioxidant therapies. Drugs. 49, 45-361.
- Omino, E.A. and Kokwaro, J.O. (1993). Ethnobotany of Apocynaceae species in Kenya. J. Ethnopharmacol. 40, 167-80.
- Prior, R.L. and Cao, G. (1999). Variability in dietary antioxidant related natural product supplements: The need for methods of standardization. J. Am. Nutraceutical Assoc. 2: 46-56.
- Rahman, A.U., Taqvi, S.I.H., Versini, M.A., Ikram, A. and Ahmed, S.K. (2012). Effect of whole flower and fractions of *Lcoccinea* on cardiovascular system, A preliminary report. *J. Chem. Soc. Pak.* 34(3): 758-766.
- Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996). Structure antioxidant activity relationships of flavonoids and phenolic acids. *Free Rad. Biol. Med.* 20: 933-56.
- Versiani, M.A., Ahmed, S.K., Ikram, A., Syed, T.A., Kousar, Y. and Faizi, S. (2014). Chemical constituents and biological activities of *Aobesum* (forsk.) Roem. et Schult. *Chem. Biodiver.*, 11(2): 171-180.
- Versiani, M.A., Ikram, A., Ahmad, S.K., Faizi, S. and Tahiri, I.A. (2012). Ixoroid: a new triterpenoid from the flowers of *I. coccinea. Nat. Prod. Comm.* 7(7): 831-834.