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Abstract. The aim of this paper is to derive a new quantum analogue
of an integral identity by usindp, ¢)-calculus. As a consequence of
this identity, some new estimates for Ostrowski type inequality$0g)-
differentiablen-convex and)-quasi-convex functions are obtained. More-
over, some new estimates for Hermite-Hadamard type inequality foy-
differentiablen-convex and)-quas-iconvex functions are given as well.
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1. INTRODUCTION

In mathematicsg-calculus, also known as quantum calculus, is the study of calculus
with no limits. In quantum calculus, we obtajranalogues of mathematical objects that
can be recaptured as— 1~. quantum calculus first time developed by Jackson in the
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early twentieth century, but the history of quantum calculus can be traced back to some
much earlier work done by Euler and Jacobi et al. [10]. The subject of quantum calculus
has numerous applications in various areas of mathematics and physics such as number
theory, orthogonal polynomials, combinatorics, basic hypergeometric functions, quantum
theory, mechanics and theory of relativity. Quantum calculus has received exclusive in-
terest by many researchers and hence it is considered to be a corporate subject between
mathematics and physics. Interested readers are referred to [5]-[3] for some current ad-
vances in the theory of quantum calculus and theory of inequalities in quantum calculus.
In recent articles, Tariboon et al. [32, 33] presented the ideadgfrivatives andg-integral
over the definite intervelp, ¢/] of R and addressed numerous problems on quantum ana-
logues such as thg-Hlder inequality, the;-Ostrowski inequality, thg-Cauchy-Schwarz
inequality, they-Grss-Cebysev integral inequality, thesrss inequality. The most recently,
Alp et al. [2], provedg-Hermite-Hadamard inequality, some newHermite-Hadamard
inequalities, and generalizedHermite-Hadamard inequality, also they studied some in-
tegral inequalities which provide quantum estimates for the left part of the quantum ana-
logue of Hermite-Hadamard inequality througidifferentiable convex and quasi-convex
functions and other integral inequalities by classical convexity. Most recently, Tunc et al.
[35]-[36] derived the notion ofp, g)-calculus on[¢, ¢)] of R. Mathematical formulae of
(p, q)-derivative andp, ¢)-integral have been derived and new fundamental properties are
defined. The results that depend @nq)-calculus are the Minkowski inequality, dttler
inequality, Giiss and Giess-Chebysev inequality and many others. Latif et al. [15], gave
Hermite-Hadamard type integral inequalities for convexity and quasi-convexity functions
on (p, g)-calculus. Recently, Kunt et al. [21] proposed left part of Hermite-Hadamard in-
equalities by usindp, ¢)-differentiable convex as well as quasi-convex functions. Now a
days, the interest of researchers is increasing in the togie, @j-calculus because of new
results established in literature. Please see, [17]-[11] and the references cited therein.
It is well known that the theory of inequality plays a fundamental role in pure and applied
mathematics and has extensive applications. Apart from the larger number of research
results of inequalities in classical analysis, there are considerable works on the study of
inequalities so that the theory of convex functions was widely discussed and applied to var-
ious areas of science. In few years, tremendous research has been withessed on inequalities
along with a large number of articles and many productive applications.

Letg : J € R — R. A function g is called convex function od, if the following
inequality

gAd+ (1= N)Y) < Ag(d) + (1 = A)g(¥), 1.1

holds for all¢, ) € J andX € [0,1].

Recently, numerous mathematician have worked on the generalization of classical in-
equalities through different mathematical approaches. One of the most popular and useful
inequalities is the Hermite-Hadamard inequality.

In [9], Hadamard established a popular and appropriate inequality in analysis as:

o ¢
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the above famous inequality is called Hermite-Hadamard inequality, see [37]- [31].

The paper is organized as follows: In Sections 2 and 3, we will defined some notions of
n-convexity andy-quasi-convexity anép, ¢)-calculus. As an auxiliary result, we introduce

an identity correlated witlp, ¢)-differentiable functions. In Section 4 and 5, with the help

of the auxiliary result, we will establish our main results and last section is conclusion.

2. FORMULATIONS AND BAsIC FACTS

Let us recall the formulations and basic facts which are firmly concerned to this paper.
A new class of convexity was put forward by Gordji et al. [7]. This new class is known
asn-convex function. The class gfconvex function is generalization of classical convex
function.

Definition 2.1. A functiong : J C R — R is called ann-convex function, If following
inequality defined as

g (L =N+ ) < g(¢) + An(g(¥), g(¢)), (2.2
holds for all¢, ) € J and\ € [0, 1].

Note that, if we puty(g(v), g(¢)) = g(v) — g(¢) in inequality ( 2. 2 ), then we get
inequality (1. 1)

Definition 2.2. [7] A functiong : J C R — R is called anp-convex function, If following
inequality defined as

9((1 =)o+ M) <max{g(9),9(¢) +n(g(¥),9(¢))},
holds for all¢, ) € J and X € [0, 1].

Gordji et al. in [7] presented the following inequality
Letg : [¢, ] — R be amp-convex function such thatbe bounded above an([¢, ¢]) x
g ([¢,¥]), then

o(S50) -4 [ atators v =g

< ! /1" s < 9O T90) | 1 (9(9).9(¥)) +n(9(),9(0))
V=9 Js 2 +
For more information about-convex functions, see [7, 8].

Moreover, in the literature Ostrowski inequality is another one of the most significant
mathematical inequalities. Many mathematicians have worked on and around it in several
different ways with many applications in Analysis and Probability etc. It is stated in [23]
as follows:

Letg : [¢,4] — R be a continuously differentiable function s, ¢] and||g’||cc =

sup ‘g/ (z)’ < oo, then
z€(¢,1)

’

9

<

@¢V+fo’
2(¢— )
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holds for allz € [¢, ] .
Now we defined some basic definitions and propertieg-oalculus which is first time
introduced by Tariboon et al. [32, 33].

Definition 2.3. [33] A functiong : [¢, 1] — R s said to be continuous, quantum derivative
of g at A € [¢, 9] with0 < ¢ < 1is characterized by the expression
9g(A) —g(gr+ (1 —q)¢)
s AFED
(1-q)(A—9)

#Dqg(N) =
we haveyD,g(¢) = (%me Dyg(N).

Definition 2.4. [33] A functiong : [¢, %] — R is said to be continuous, quantum-integral
over|[¢, ¥ with 0 < g < 1 is characterized by the expression

A oo
/¢ 9(@)odgr = (1— YA —6) S g (a"A + (1 - ") 9)

n=0
for X € [@,¢]. If v € (¢, \), theng-integral on[y, A] is stated as

/:g(x)qsdqx = /; 9(2)pdgx — /(;g(xmdqx.

Alp et al. [2], addressed generalizedHermite-Hadamard type inequality on quantum
calculus:

Theorem 2.5. [2] Letg : [¢,%] — R be a quantum convex function ovier, )] with
€ (0,1). Then we have

qp+ P q9(p) + g()
<1+q> = ¢/ Doy < T T

Motivated by this ongoing research on quantum analoguesg-éhifferentiable convex
functions. Tung et al. [35] derived notion gf, ¢)-calculus on the interval$p, 1] of R.

Definition 2.6. [35] A functiong : [¢,v] — R is said to be continuous, thefp, q)-
differentiable function of at A € [¢, ¢¥] with0 < ¢ < p < 1 is defined as:

Dy ag(\) = 9PA+ A —p)d) —glgr+ (1 —q)¢) £ 6.

(r—a9)(\—9) ’
we haveyD,, ,9(¢) = dl)g D, q9(N).

Definition 2.7. [35] A functiong : [¢, ] — R is said to be continuous, the defin{ig ¢)-
integral over[¢, Y] with 0 < ¢ < p < 1 is defined as:

A oo qn qn qn
-/¢> 9(@)gdpqx = (p— q)(A — ) S (pnﬂ A+ (1 - an) ¢>)

n=0
for X € [¢,¢]. If ¢ € (¢, A), then itis defined as

A A c
/ g(x)¢dp7qu g(x)q%dpyqx/d) 9(w)pdp g
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Latif et al. [22] introduced Hermit Hadamard type inequality fprq¢)-calculus as fol-
lows:

Theorem 2.8.[22] Letyg : [¢,1] — R be a convex differentiable function ¢, ¢)] and
0 < g <p<1. Thenwe have

q¢ + v 1 PY+(1-p)é q9(¢) + pg(v)
g( p+q )Sp(¢—¢)/¢ 9oty < T

Latif et al. [22] also presented a Lemma which is engaged (ith)-trapezoidal type
inequality as follows:

Lemma 2.9. Letyg : [¢, ] — R be a(p, ¢)- differentiable function otig, ¢). If 4D, 49 is
continuous and integrable di, v'] where0 < ¢ < p < 1, then we get

I | Po+{l-p)é qa9(®) + pg (1))
Hg (dM/%Pa q) - p(/(/}_(b)‘/(25 g(x)(z,dp_’qx — T
B 1
=20 [+ 0)oDpag N0 + (L= N

Ostrowski type inequalities fay-differentiable convex functions presented by Noor et
al. in [27].

Lemma 2.10. Letg : [¢,9] — R be ag-differentiable function or{¢, ). If ,D,g is
continuous and integrable dm, ¢)] where0 < ¢ < 1, then

1 P
M , W5 = x)—
g (0,9:9) = g(x) .
I 2 1
= 0L [ AaDigxe + (1= )ood
v—0¢ o
N2 gl
L 2L [ 2aDaghe + (1= Nedod
v—9¢  Jo
holds for allz € [¢, ¢].
In this context, the actual motivation of this paper is introducing a ceftaip)-integral

inequalities by using-convex and)-quasi-convex functions. These are obtained as special
cases whep = 1 andg — 1.

g(u)gdqu

+

3. A KEY LEMMA

Lemma 3.1. Letyg : [¢, ] — R be a(p, ¢)- differentiable function ofi¢, ). If 4D, 49 is
continuous and integrable dm, ¢’] where0 < ¢ < p < 1, then

1 o+ (1-p)é
Ky (0. 5010) = (o) =~ /¢ 9(u)odp qu
_ 2 1
_ ‘m [ AeDpagn + (1= N6y

a2 el
+q((;)/);)) /0 Ao Dpag(Ax + (1 = MN)p)odp, A,
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holds for allz € [¢, 1]

Proof. Applying Definition 2.6 and Definition 2.7 , we have

N2
(z —¢) /0)\¢Dp7qg(/\x+(1*)\)¢)0dpyq>‘

(¥ —9)
. 2 1
+ (Zf/) _32) /0 Ao Dp,qg(Az + (1 = N)ap)odp g A
=I5+ L. (3. 3)
Now
(2 =9¢)" [" gpAz+ (1—pN)g) — glghe + (1 — g\)g)
L = dp g
w9 /o (r—q)(z—9) e
¢ St (fre+ (1= 5) 0)
B /(/) - (b fo%e) n+1 n+1
_Zn 0 pg+1g (qn+137+ ( - n+1) ¢)
T —¢ IZnOP (‘1 x—i—(l——)
VO s e (e (- £)0)
(3. 4)
s 0@ - (5 -3)
VT s B (e (1-8) 9)
(z — ¢) 1 pr+(1-p)¢
— ) S — dy . 3.5
=" =5 ), 9()odpqn 59
Similarly
(¢ — ) 1 pY+(1—p)z
Ih=———= -— d . 3.6
(e ol 9(u)gdy g (3.6)
Substituting(3.5) and(3.6) into (3.3), and multiplying the resulting identity hygives the
desired identity. a

4. MAIN RESULTS

Theorem 4.1. Let g : J C R — R be a(p, q)-differentiable function o/° with0 < ¢ <
p < 1. If 4D, 4g is continuous and integrable du, 1] such that,D,, ,g| is ann-convex
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function on[¢, 1], whereg, ¢ € J° with ¢ < v, then

|Kg (0,¢;p;9)]
gla—¢)° [ 1 1
< W — ¢) L?+q |¢Dp’qg (¢)| + mn(LﬁDmg (33)\7|¢Dp,q9 (¢)|)}
+q<“"””2[ 10D ()] (0D (0] 4Dy ()]
W—9) lp+q " PP Apg+ g2 TP e

holds for allz € [¢, ¢].

Proof. Utilizing Lemma 3.1 and the fact th&t D, ,g| is n-convex function orjg, 1], we
get

o 2 1
|Kg (6, 95059)] = M /o Ao Dp gg(Az + (1 = N)$)odyp g\
_ 2 1
+(](Z_;)/O ApDpgg(Az + (1 = A))odp, g A
N 2 1
< q(;/c_j;)/o Mo Dp,ag(Az + (1 = A)@)| odp,g A
o 2 1
+ Q(Zf_;) /0 Mo Dpgg(Ax + (1 = N)Y)[ odp,gA
N 2 1
< T A 6D0a (0] M 15D (] 10Dpag (9))]
_ 2 1
N fo_;) / M6Dp.ag ()] + X7 (|6 Dp.gg (@)1 [0 Dp.gg (10))] o6lp, g
—o)’ [ 1 1
< L LDy g (04 e (D ()] Dy ()]
LAl =)’ P N T )
v—0 |ptq " P pg g Tl el |
Hence, we get the outcome that we need. O

Theorem 4.2. Let g : J C R — R be a(p, g)-differentiable function on/¢ with 0 <
g <p <1 If 4D,,qgis continuous and integrable d,+] such that/,D, ,g|" is an
n-convex function ofp, ¢)] whereg, ¢ € J° with ¢ < 1, then

q(z—¢)° pP—q : r 1
Ky (9,95 p59)| < W — o) <p1+s—q1+s> (|¢Dp,q9 (¢)] er

r oy L Q(’L/)_'/E)Q P—q %
<140y () |sDpag @) + L= (pmqus)

1

r

T 1 T s
x <|¢Dp,qg<w>| (g oDy () >)
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holds for allz € [¢, 4] and fors,r > 1,2 + 1 =1,

s

Proof. Utilizing Lemma 3.1, application of &lder inequality ang-convexity of|,D,, 49|
on[¢, ¢], we get

q(x - ¢)°

1
|Ky (6,005 9)| = W/O A3 Dpqg(Az + (1 = X)@)odp,gA

1
W /0 AsDypqg(AT + (1 = A\)9)odp,g A

1
s

< W (/01 AS) (/01 lo Dp.gg(A\z + (1 — A)(b)rodp,qA)i

1
s

¥ q(jf‘qj (f 1 ) (] o Dpag(hr + (1 - ) odmx)i

<q(fv¢>)2( pP—q )
T Y —¢ \ptts—gits

3=

X </01 U6 Dp,ag ()" + X1 (|6 Dp.g9 (2)]" [ Dp.ag (9)[")] odp,q)\>
+qw—wf( P—4q )i

w _ (Z) pl-&-s _ q1+s

3=

1
x ( [ 16P0ag (O + 306Dy @)1 JoDypas ()] odp,qA)

<q(x—¢)2( pP—q )
T o Y—¢ \plts—gits

T 1 T s %
x <¢Dp,qg<¢>| o 16Dyag @I 16 Drg (6)] >)

p+q
+q(w—l‘)2 P—q :
v—¢ \p'ts—qglts

i

T 1 T T
x <¢Dp,qg<w>| (D9 @ 0Dy () ))

We get our required result. O

Theorem 4.3. Let g : J C R — R be a(p, g)-differentiable function on/¢ with 0 <
qg <p<1If ,D,,gis continuous and integrable d, ¢| such that/,D, ,g|" is an
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n-quasi-convex function o, /] whereg, 1) € J with ¢ < v, thenfors,r > 1,2 +1 =1,
o q(w¢)2< pP—q >‘i
‘Kg(¢7w7paq)|§ (¢—¢) p1+s_q1+s
x (max {|4Dp.qg ()" s |6 Dp,q9 (9) + 1 (Dp,a9 () s 6Dp,ag ()" })"

Jrq(w—fﬂ)Q ( P—q >é
(Y —¢) \p'ts—qlts
X (max {|¢Dp,qg (Qp)lr ) |¢Dp,qg (¢) +n ((pr,qg (¢) s Dp.qg (x))lr}> )
holds for allz € [¢, ¥].

3=

Proof. Utilizing Lemma 3.1, application of ®lder inequality and)-quasi-convexity of
¢ Dp,q9]" 0N [0, ], we get

q(z —¢)°

1
K . vspma)| = |15 =00 / Mo DyagAa + (1 — N)d)odyo)

q(¢ — )

1
+W /O Ao Dpgg(Ax + (1 = N)p)odp g A

1
s

< W (/01 /\8> </01 |0 Dp,qg(Az + (1 = /\)sb)lrodp,qk)

1
s

N2 1 1 i
#1OZE () ([ leDpagnn + 0= N0 a0
<q($—¢)2< p—q >1
T (W —0) \p'te—qglts
x (max {|¢Dp.q9 (¢)|T N6 Dp.ag (6) +1(3Dp.e9 (9), 6Dp.qg (x))l’})
+Q(w—x)2( p—q )i

(Y —¢) \pits—qlts
x (max {4 Dp g9 (V)" [ Dp.g9 () + 1 (4 Dp.qg (¥) ; $Dpqg (x))|"}) " -
The proof is completed. |

3=

1
r

Now we calculate new quantum estimates for Hermite-Hadamard type inequalities by
usingn-convexity,n-quasi-convexity andp, ¢)-calculus.

Theorem 4.4. Letg andh be two non-negative-convex functions defined on a non-empty
interval [¢, ¢] of real line R, then

1 pp+(1—p)é

¢
1 1
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where
Hi (¢,1,n) = g(@)n(h (), h(d) +h(d)n(g(¥),g(s))
and

Proof. Sinceg andh be two non-negativeg-convex functions oifip, ¢], then

g (1 =N+ ) < g(¢) + Mn(g(¥), 9(¢)) 4.7)
and

h((1 = Ao+ Mp) < h(8) + An(h(¥), h(9)). (4.8)
Multiplying inequality (4.7) to inequality(4.8), we get

g((1 =N+ M) h((1 = Ao+ A)
=9(9) h(d) +Ag (@) n(h(¥),h () + A (¢)n (g (¥),9(4))
X2 (A (), h (0)) 1 (9 (), 9 (). (4.9)

Applying (p, q)-integration on inequality4.9) with respect to\ on [0, 1], we have

1 pY+(1-p)e
m /¢> 9(@)h(@)pdp,q®
1

=g(¢)h(¢)+m[g(ﬂﬁ)n(h(w)ah(ﬂﬁ))+h(¢)n(g(¢),g(¢))]
1

R Ll (h(¥),h())n(g(¥),g(e)).

We get our desire result. a

Theorem 4.5. Let g : J C R — R be a(p, q)-differentiable function ory° with 0 <
g <p< 114D, 49 is continuous and integrable ahsuch that 4D, ,g| is ann-convex
function on[¢, v, whereg, ¢ € J° and¢ < 1, then

H, (6, b:p:0)] < % {1 (9.9) |6 Drag (8)]

+v2 (0, 0) 1 (| Dp.gg (V)]s 16 Dp.ag (D))}

where

2(p+q—1
v (p,q) = W
3 2 2 2
q|(p°—2+2p)+ (2p° +2) q+pg*| +2p* —2p
o~ L )+ (20 +2) g+ pe’] |

(p+a)° (0* +pa+ ¢?)
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Proof. Utilizing Lemma 2.9 andy-convexity of|;D,, ,g| on[¢, ], we get

q(Y — ¢)

1
L [ 0+ 06D+ (1= X))

IHA¢¢WWN=‘

W0 [ o+ )l oD + (1 = Vo) o

p+q /‘I (P + ) {l6Dp.q9 (D) + 211 (|6 Dp,q9 (V)]s 16 Dp.q9 (£))] 0dp,g 2

<1 —9)
pP+q

104Dag (D] 6Dpag @ [ A1~ 0+ )l oo

2((1;:_2;21) l6Dp,q9 (9)]

{¢Dp,qg<¢>| [ 10+ a)lodn

< q( —9) q[(p>—2+2p)+(2p*+2) q+pq?]+2p% —2p
p+q (p+a)%(p2+pg+4q?)

n (|¢Dp,q9 (W), |¢>Dp,q9 (®)])

We get our required result. O

Theorem 4.6. Letg : J C R — R be a(p, q)-differentiable function ow° such that
+Dp 49 be continuous and integrable ohwhere0 < ¢ < p < 1. If [,D, 49/ is an
n-convex function ofy, ¢|, then

v—9¢ [2(p+qg—1
H .« e
| g(¢7¢,p7Q)| S p+q ( (p—|—q)2

+v2 (P, @) 1 (| Dp,ag (V)" s 16 Dpag (6)1) 7,

)> T(VlO%q)wI%g9(¢ﬂr

wherev; (p, q) andwvs (p, ¢) are as defined in Theorem 4.5 and> 1.
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Proof. Utilizing Lemma 2.9, application of &lder inequality angj-convexity of| s D, ,g|",
we get

1—1

r

| (¢ vav ) = p+q </ | p+q |Odp,q/\)

9 ( [ 10+ )l aDpagn0 + (1= 00 odp,q/\>
o — ¢) <2<p+q—1>>1"

Pty (p+q)*
2ta 1,1, 09 (6)] '
A q[(p3*2+2p)+(§p2+2)q+pq2}+2p2*2p
(p+a)* (P2 +pg+q?)
1 (l¢Dp,q9 W1, l6Dp,q9 (1"
This completes the proof. a

Theorem 4.7. Let g : J C R — R be a(p, q)-differentiable function o/® with0 < ¢ <
p < 1. If 4D, 49 is continuous and integrable afi such that|,D, ,g|" is ann-quasi-
convex function offyp, 1], whereg, ¢ € J° with ¢ < 1, then

) < =0 (2 r ”) (0 {14 Dy (D)1 16 Dp9 (0)

40 (IoDp.ag (I 6 Dp.ag (9))H)7

S

holds forr > 1

Proof. Utilizing Lemma 2.9, application of &lder inequality andj)-quasi-convexity of
l6Dp.q9" ON[0, ], we get

|Hy (0, 95p39)] < 9w =9) (/ |(1— p+q))|odpq/\)

pP+q

1—1

T

X

1
([ 106+ D)lsDpagO0 + (1= N6l o)

qp—9) [2(p+q—1) ) T
pra ( (p+9)° )(maXH‘V’DP:qg((i’N |6Dyp.q9 ()]

+1(16Dp.ag (O 116 Dpoag (91 -

We get our result. O

IN
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5. CONCLUSIONS

In this paper, we have obtained some new results fofithg)-calculus of Ostrowski and
HermiteHadamard type inequalities fgr, ¢)-integral. Our work has improved the results
of [27] and can be reduced to the classical inequality formulas in special case®whén
andg — 1. Itis expected that this paper may stimulate further research in this field.
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