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Abstract. The objective of this article is to develop the link between prob-
ability distribution theory and subdivision schemes. The distribution the-
ory is a field of statistics and subdivision is a field of Computer Aided
Geometric Design, both are independent fields. The analysis of subdi-
vision schemes using probability distribution theory is presented. In our
analysis, we explore the important properties such as mean, variance, mo-
ments about the origin, moments about mean, measures of skewness and
measures of kurtosis of subdivision schemes presented in Chinese Annals
of Mathematics, Series B (8(5): 1077-1092, 2017).
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1. INTRODUCTION

Initially, subdivision schemes were introduced for the modeling of curves and surfaces.
During the last decade the subdivision schemes collaborate with different fields. Hed et al.
[2] presented an algorithm for subdivision schemes. The hierarchical structures of music
compositions were also presented in their work. Brakhage [3] used subdivision schemes
for grid generation and grid conversion. Charina et al. [4] presented and analyzed new grid
transformer and grid operator with subdivision schemes. Their operator can be used for
the solution of differential equations. They also presented a univariate binary and ternary
subdivision schemes by using the grid transformer. Ejaz et al. [8] presented two collocation
algorithms which are based on interpolating and approximating subdivision schemes for the
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solution of differential equations. They concluded that the algorithm based on approximat-
ing schemes give better results comparing to the interpolating schemes based collocation
algorithm. Weimer and Warren [9] used subdivision schemes for the solution of partial
differential equations.

Traditionally subdivision schemes are analyzed by emphasizing on the geometrical prop-
erties (i.e. order of approximation, polynomial reproduction, continuity and Hölder regu-
larity) of the schemes. In the previous five years, the subdivision schemes collaborated
with statistics for refining of data. Dyn et al. [5] presented least squares based subdi-
vision schemes for noisy data, but these schemes cannot deal with data containing out-
liers. Mustafa et al. [6] introduced the iterative reweighted least squares based subdivision
schemes to deal with outliers and impulsive noise. Mustafa [7] presented a numerical way
for the model selection from the family of subdivision schemes. He has used the statistical
tools such as training errors, curvature and residual sum of squares for the model selec-
tion. The authors in [5, 6, 7] emphasis more on numerical computing and less on analytical
findings. In this paper, we present analytic proof of the statistical entities such as, mean,
variance, moments about origin, moments about mean, measures of skewness and mea-
sures of kurtosis.

The shape preservation of a given data is an important topic in the field of data visual-
ization. In this study, we investigate whether or not the shapes are preserved by the subdi-
vision schemes while the data is negatively skewed, positively skewed and symmetrical etc.

We have used the statistical tool named probability distributions to achieve the goal. It is
a mathematical function which provide the probability of occurrence of different possible
outcomes in an experiment. Let i ∈ N0 be a discrete random variable then a mathematical
function f : i → R is called probability density function if it satisfies two conditions

• f(i) ≥ 0, ∀ i,
•

∑
i f(i) = 1.

The paper is structured as follows: In Section 2, we rewrite the family of schemes
introduced by Mustafa [7]. Section 3 is devoted for the statistical analysis of the family of
schemes. Section 4 is for numerical experiments. Conclusions are drawn in Sections 5.

2. A GENERALIZED FAMILY OF SCHEMES

In this paper, we consider the family of approximating schemes [7] and discuss its sta-
tistical properties. The properties of other existing schemes with positive mask in the liter-
ature will be explored similarly.
If m and n represent the complexity and arity of the schemes then the family of schemes is
defined as:
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where the coefficients ai,j (also called mask) are defined as:

ai,j = N0,m

(
(m− i)− (2n− α)

2n

)
, i = 0, 1, 2, · · · ,m− 1, (2. 2)

where (j, α) = {(1, 1), (2, 3) · · · (n2 , n+ 1), for even integer n},
(j, α) = {(1, 1), (2, 3) · · · (n+1

2 , n), for odd integer n},

N0,m(t) =
t

m− 1
N0,m−1(t) +

m− t

m− 1
N0,m−1(t− 1), m ̸= 1 (2. 3)

and

N0,1(t) =

{
1 if t0 ≤ t ≤ t1,
0 otherwise.

The mask of the scheme plays a vital role to discuss the geometrical properties of the
schemes. So we focus on the mask of the schemes to explore more characteristics of the
schemes.
We can rewrite (2.2) in the form of probability density function f : i → R defined as
f(i, n,m, α) = ai,j = N0,m

(
(m− i)− (2n−α)

2n

)
, where i is the discrete random vari-

able. It satisfies the two basic conditions of the probability density function
• f(i, n,m, α) ≥ 0 ∀ i,
•

∑
i f(i, n,m, α) =

∑m−1
i=0 ai,j = 1.

It means that the mask of the scheme can be considered a discrete probability density
function. Which motivate us to explore the relation between the subdivision schemes and
probability distributions.

3. STATISTICAL ANALYSIS

In this section, we will discuss the important properties such as mean, variance, moment
about origin, moment about mean, measure of skewness and measure of kurtosis of the
subdivision scheme (2.1).
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3.1. Moments about origin. Here we will present the rth moments about the origin (i.e.,
ordinary moments) of the subdivision scheme. The zeroth moment is the total probability
(i.e. one), the first moment about the origin is the mean of the subdivision scheme.

Theorem 3.2. The mean of subdivision scheme (2.1) is µ′
1,m = mn−(2n−α)

2n .

Proof. As we know that the mean of the distribution can be calculated as

µ′
1,m =

m−1∑
i=0

i.ai,j .

By substituting the value of ai,j from (2.2), we have

µ′
1,m =

m−1∑
i=0

i.N0,m

(
(m− i)− (2n− α)

2n

)
.

Using (2.3), we get

µ′
1,m =

m−1∑
i=0

i.
{(m− i− 2n−α

2n

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
+

(m− (m− i− 2n−α
2n )

m− 1

)
×N0,m−1

(
m− i− 2n− α

2n
− 1

)}
.

This implies that

µ′
1,m =

m−1∑
i=0

i.
(m− i− 2n−α

2n

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
+

m−1∑
i=0

i.
(m− (m− i− 2n−α

2n )

m− 1

)
N0,m−1

(
m− i− 2n− α

2n
− 1

)
.

Expanding the first and last terms of the first and second summations respectively, we get

µ′
1,m =

m−1∑
i=1

i.
(m− i− 2n−α

2n

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
+

m−2∑
i=0

i.
( i+ 2n−α

2n

m− 1

)
×N0,m−1

(
m− i− 2n− α

2n
− 1

)
.

Now replace i by i− 1 in second summation

µ′
1,m =

m−1∑
i=1

i.
(m− i− 2n−α

2n

m− 1
N0,m−1

(
m− i− 2n− α

2n

))
+

m−1∑
i=1

(i− 1).
( i− 1 + 2n−α

2n

m− 1

)
N0,m−1

(
m− (i− 1)− 2n− α

2n
− 1

))
.

This implies that

µ′
1,m =

m−1∑
i=1

i.
(m− i− 2n−α

2n

m− 1
N0,m−1

(
m− i− 2n− α

2n

))
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+
m−1∑
i=1

(i− 1).
( i− 1 + 2n−α

2n

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

))
.

Further implies

µ′
1,m =

m−1∑
i=1

(
i.
(m− i− 2n−α

2n

m− 1

)
+ (i− 1).

( i− 1 + 2n−α
2n

m− 1

))
N0,m−1

(
m− i− 2n− α

2n

))
.

Simplified form is

µ′
1,m =

m−1∑
i=1

( i(m− 2) + α
2n

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
. (3. 4)

A further simplified form can be obtained by setting m = 2, 3, · · · . By setting m = 2 in
(3.4), we get µ′

1,2 = 2n−(2n−α)
2n . By setting m = 3 in (3.4), we get µ′

1,3 = 3n−(2n−α)
2n .

Similarly in general, we have µ′
1,m = mn−(2n−α)

2n . This completes the proof. �

Remark 3.3. We conclude the following from Figure 1:
• From Figure 1(a), the mean of lower arity subdivision schemes are greater than

the mean of higher arity subdivision schemes.
• From Figure 1(b), the mean of higher complexity schemes are greater than the

mean of lower complexity subdivision schemes.
• From Figure 1(c), in binary case, the mean of higher complexity schemes are

greater than the mean of lower complexity subdivision schemes.
• From Figure 1(d), the mean of lower arity subdivision schemes are greater than

the mean of higher arity schemes for fix complexity m = 2.

Lemma 3.4. The rth moment of the subdivision scheme (2.1) is

µ′
r,m =

m−1∑
i=1

( ir(m− i− 2n−α
2n ) + (i− 1)r(i− α

2n )

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
.

Proof. As we know that the rth moment about the origin of the distribution can be defined
as

E(ir) = µ′
r,m =

m−1∑
i=0

irai,j . (3. 5)

By substituting the value of ai,j from (2.2), we have

µ′
r,m =

m−1∑
i=0

ir.N0,m

(
(m− i)− (2n− α)

2n

)
.

Using (2.3), we get

µ′
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m−1∑
i=0

ir.
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2n

m− 1
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N0,m−1
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m− i− 2n− α
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)
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2n )
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(a) Fix α = 1 (b) Fix α = 1

(c) Binary (d) 2-point

FIGURE 1. Plots of mean µ′
1,m for different values of m, n and α.
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Now replace i by i− 1 in second summation
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This implies

µ′
r,m =

m−1∑
i=1
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(m− i− 2n−α

2n

m− 1

)
N0,m−1

(
m− i− 2n− α
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+
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.

Further implies

µ′
r,m =

m−1∑
i=1

( ir(m− i− 2n−α
2n ) + (i− 1)r(i− α

2n )

m− 1

)
N0,m−1

(
m− i− 2n− α

2n

)
.(3. 6)

This completes the proof. �

Lemma 3.5. The rth moment about the origin of 2-point subdivision scheme (2.1) is µ′
r,2 =

α
2n .

Proof. By substituting m = 2 in (3.6), we have

µ′
r,2 =

2−1∑
i=1

( ir(2− i− 2n−α
2n ) + (i− 1)r(i− α

2n )

2− 1

)
N0,2−1

(
2− i− 2n− α

2n

)
.

This implies

µ′
r,2 =

1∑
i=1

( ir(2− i− 2n−α
2n ) + (i− 1)r(i− α

2n )

1

)
N0,1

(
2− i− 2n− α

2n

)
.

After simplification, we get

µ′
r,2 =

α

2n
.

This completes the proof. �

Remark 3.6. The Table 1 gives the presentation of rth moments about the origin. From
this table, we conclude that the rth moments can be expressed in the form of (m − 1)th
degree polynomial. i.e. p(x) = am−1x

m−1+am−2x
m−2+ · · ·+a1x+a0 where x = α

2n .
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TABLE 1. Shows the general formulas of second, third and fourth mo-
ments about origin for m = 2, 3, 4 and 5.

r m µ′
r,m

2 2 µ′
2,2 = α

2n

2 3 µ′
2,3 = 2( α

2n )
2 + 2( α

2n ) + 1
2 4 µ′

2,4 = 3( α
2n )

2 + 6( α
2n ) + 4

2 5 µ′
2,5 = 4( α

2n )
2 + 12( α

2n ) +
32
3

3 2 µ′
3,2 = α

2n

3 3 µ′
3,3 = 3( α

2n )
2 + α

2n + 1
2

3 4 µ′
3,4 = ( α

2n )
3 + 3( α

2n )
2 + 4( α

2n ) + 2
3 5 µ′

3,5 = ( α
2n )

3 + 9
2 (

α
2n )

2 + 8( α
2n ) +

42
8

4 2 µ′
4,2 = α

2n

4 3 µ′
4,3 = 7( α

2n )
2 + α

2n + 1
2

4 4 µ′
4,4 = 6( α

2n )
3 + 14( α

2n )
2 + 8( α

2n ) +
40
12

4 5 µ′
4,5 = ( α

2n )
4 + 6( α

2n )
3 + 16( α

2n )
2 + 21( α

2n ) +
67
6

3.7. Measures of skewness and kurtosis. In this subsection, we will discuss the moments
about the mean (i.e., central moments) using the relation between moments about the origin
[1]. It is well known from distribution theory that, first moment about the mean µ1,m is
always zero. Second, third and fourth moment about the mean can be expressed as

µ2,m = µ′
2,m − (µ′

1,m)2 (3. 7)

µ3,m = µ′
3,m − 3µ′

1,mµ′
2,m + 2(µ′

1,m)3 (3. 8)

µ4,m = µ′
4,m − 4µ′

1,mµ′
3,m + 6(µ′

1,m)2µ′
2 − 3(µ′

1)
4 (3. 9)

respectively.
Here we will discuss the variance (i.e., 2nd central moment) of the subdivision schemes
(2.1).

Proposition 3.8. The 2nd moment about the mean (i.e. variance) of the scheme against the
different values of m are given below.

• For m = 2, µ2,2 = −( α
2n )

2 + α
2n .

• For m = 3, µ2,3 = ( α
2n )

2 + α
2n + 3

4 .
• For m = 4, µ2,4 = 2( α

2n )
2 + 4( α

2n ) + 3.
• For m = 5, µ2,5 = 6( α

2n )
2 + 9( α

2n ) +
101
12 .

Proof. We can easily verify the above results by substituting m = 2, 3, 4 and 5 in (3.7). �

Remark 3.9. We conclude the following results from Figure 2:
• From Figure 2(a), the variance of higher arity subdivision schemes are greater

than the variance of lower arity subdivision schemes for fix complexity m = 2.
• From Figures 2(b) and 2(c), the variance of lower arity subdivision schemes are

greater than the variance of higher arity subdivision schemes for fix complexity
m = 3 and m = 4.
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(a) 2-point (b) 3-point (c) 4-point

(d) Binary (e) Ternary (f) Quaternary

FIGURE 2. Plots of variance µ2,m for different values of m, n and α.

• From Figures 2(d), 2(e) and 2(f), the variance of higher complexity is greater than
the variance of lower complexity subdivision schemes for fix arity: for binary,
n = 2, for ternary, n = 3 and for quaternary, n = 4.

Skewed behavior: In this section, we discuss the skewed behavior of the subdivision
scheme. The third moment about mean (i.e., third central moment) µ3,m is helpful for
the discussion of skewed behavior of the subdivision scheme. The subdivision scheme is
negatively skewed, positively skewed and symmetrical (i.e., mean= mode= median) when
µ3,m < 0, µ3,m > 0 and µ3,m = 0 respectively.

Proposition 3.10. The 3rd moments about the mean against the different values of m of
the scheme are given below.

• For m = 2, µ3,2 = 2( α
2n )

3 − 3( α
2n )

2 + α
2n .

• For m = 3, µ3,3 = −(4( α
2n )

3 + 3( α
2n )

2 + 7( α
2n ) +

3
4 ).

• For m = 4, µ3,4 = −(6( α
2n )

3 + 18( α
2n )

2 + 20( α
2n ) + 8).

• For m = 5, µ3,5 = −(9( α
2n )

3 + 81
2 ( α

2n )
2 + 129

2 ( α
2n ) + 36)

Proof. We can easily verify the above results by substituting m = 2, 3, 4 and 5 in (3.5). �

Remark 3.11. The Figure 3 shows the skewed behavior of the subdivision scheme. For
fix complexity m = 2 ( 2-point), the limiting shape produced by the subdivision scheme
depends on arity n and parameter α. We notice that:
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(a)m = 2, n = 10 (b) m = 2, n = 20 (c) m = 2, n = 40

(d)m = 2, α = 1 (e) m = 2, α = 2 (f)m = 2, α = 3

FIGURE 3. Plots of 3rd moment µ3,m for 2-point, n-ary schemes.

• The limiting shape produced by the scheme is symmetrical when α = n − ϵ and
ϵ = [1.5, 1.8]. (See Figure 3: (a), (b) (c)).

• The limiting shape is positively skewed for the parameter α = 1 and arity n ≥ 2,
as arity increases the degree of right skewness increases. (See Figure 3: (d), (e)
(f))

Remark 3.12. The Figure 4 also shows the skewed behavior of the scheme.
• From Figure 4(a), we see that as the arity of the 2-point schemes increases the

shape of the limiting curves produced by these schemes are changing from posi-
tively to negatively skewed shapes.

• From Figures 4(b) and 4(c), we see that the 3-point and 4-point n-ary schemes
produce the negatively skewed shapes.

• From Figures 4(d), 4(e) and 4(f), higher arity subdivision schemes produce the
shapes which are less negatively skewed comparing to the shapes produced by low
arity subdivision schemes for complexity (m = 2, 3 · · · , 5).

Also µ3,m < 0 for all m ≥ 3, α ≥ 1 and n ≥ 2, this implies that in general the subdivision
scheme (2.1) produce the negatively skewed shapes.

Proposition 3.13. The 4th moments about mean against the different values of m of the
scheme are given below.
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(a) 2-point (b) 3-point (c) 4-point

(d) Binary (e) Ternary (f) Quaternary

FIGURE 4. Plots of 3rd moment µ3,m for different values of m, n and α.

• For m = 2, µ4,2 = −3( α
2n )

4 + 6( α
2n )

3 − 4( α
2n )

2 + α
2n .

• For m = 3, µ4,3 = 9( α
2n )

4 + 6( α
2n )

3 + 54
4 ( α

2n )
2 + 36

8 ( α
2n ) +

13
16 .

• For m = 4, µ4,4 = 11( α
2n )

4 + 50( α
2n )

3 + 82( α
2n )

2 + 56( α
2n ) +

49
3 .

• For m = 5, µ4,5 = 18( α
2n )

4 + 108( α
2n )

3 + 501
2 ( α

2n )
2 + 531

2 ( α
2n ) +

5207
48 .

Proof. We can easily verify the above results by substituting m = 2, 3, 4 and 5 in (3.6). �
Remark 3.14. The propositions 3.8-3.13 give the presentation of rth moments about mean.
We conclude that the rth moments can be expressed in the form of rth degree polynomial.
i.e. p(x) = arx

r + ar−1x
r−1 + ar−2x

r−2 + · · ·+ a1x+ a0 where x = α
2n .

Measure of kurtosis: Kurtosis is the measure of whether the data are heavy tailed or
light tailed relative to a normal distribution. That is, data set with high kurtosis tends to
have heavy tail or outliers. Data set with low kurtosis tend to have light tail, or lack of
outliers. Measures of kurtosis can be calculated by [1]. These are given below

β1,m =
(µ3,m)2

(µ2,m)3
, (3. 10)

and

β2,m =
µ4,m

(µ2,m)2
. (3. 11)

The shape of the distribution depends on β2,m. If β2,m < 3, β2,m > 3 and β2,m = 3 then
the distribution is platykurtosis, leptokurtosis and normal distribution.
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TABLE 2. Shows the general formulas of β1,m and β2,m for m = 2, 3, 4
and 5.

m β1,m =
(µ3,m)2

(µ2,m)3 β2,m =
µ4,m

(µ2,m)2

2 β1,2 = 4(n−α)2

α(2n−α) β2,2 = 4n2−6nα+3α2

α(2n−α)

3 β1,3 = 4(2α3+3nα2+14n2α+3n3)2

(α2+2nα+n2)3 β2,3 = 54α2n2+36n3α+13n4+12nα3+9α4

(α2+2nα+n2)2

4 β1,4 = (3α3+18α2n+40αn2+32n3)2

2(α2+4nα+6n2)3 β2,4 = 300α3n+984α2n2+1344αn3+784n4+33α4

12(α2+4nα+6n2)2

5 β1,5 = 243(27α2n+86αn2+96n3+3α3)2

(18α2+54nα+101n2)3 β2,5 = 3(54α4+648α3n+3006α2n2+6372αn3+5207n4)
(18α2+54nα+101n2)2

Using the above distribution theory, we will discuss the kurtosis behavior of the subdivision
scheme. In Table 2, we present the general formulas of β1,m and β2,m for different values of
m. The parameters m, n and α are the shape parameters, which characterize the skewness
and kurtosis of the subdivision schemes.

(a) α = 1 (b) α = 1.5 (c) α = 2

FIGURE 5. Plots of β2,m for m = 2 and different values of α and n.

(a) Binary (b) Ternary (c) Quaternary

FIGURE 6. Plots of β2,m for different complexity m and arity n.
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Remark 3.15. We have the following concluding remarks from Figure 5 and Figure 6

• From Figure 5, we see that the kurtosis behavior of 2-point n-ary subdivision
schemes rapidly changes from platykurtosis to leptokurtosis.

• From Figure 6, 3-point, n-ary subdivision schemes are leptokurtosis, 4-point, n-
ary subdivision schemes are approximately normal and 5-point, n-ary subdivision
schemes are platykurtosis.

In general, for all m ≥ 5, α ≥ 1 and n ≥ 2 the subdivision scheme (2.1) are platykurtosis.

3.16. Alternative method for calculating the mean of subdivision scheme. Here, we
present the alternative method for computing the mean of the subdivision scheme.

Theorem 3.17. If b(z) is the Laurent polynomial of the difference scheme of 2-point, n-
ary subdivision schemes then for z = 2n−n(n+2)+α

n2 , we get the mean of 2-point, n-ary
subdivision schemes.

Proof. This result can be proved by induction on n. For m = n = 2 in ( 2. 2 ), we get the
mask of 2-point binary scheme a22 = 1

4 [1, 3, 3, 1]. The Laurent polynomial of a22 is defined
as

a(z) =
1

4

(
1 + 3z1 + 3z2 + z3

)
=

(
1 + z

4

)2

b(z), where b(z) = 1 + z.

By substituting z = −4+α
4 in the Laurent polynomial b(z) of the difference scheme, we get

b

(
−4 + α

4

)
=

α

4
=

nm− (2n− α)

2n
, for m = n = 2.

Which is the mean of 2-point binary scheme.
Now by substituting m = 2 and n = 3 in (2.2), the Laurent polynomial of the 2-point
ternary scheme is

a(z) =

(
1 + z + z2

3

)2

b(z), where b(z) =
3

2
(1 + z).

If we substitute z = −9+α
9 in b(z), we get

b

(
−9 + α

9

)
=

α

6
=

nm− (2n− α)

2n
, for m = 2 and n = 3.

Which is the mean of 2-point ternary scheme.
Hence in general by substituting z = 2n−n(n+2)+α

n2 in the Laurent polynomial of the dif-
ference schemes of 2-point, n-ary subdivision schemes, we get µ1,m = nm−(2n−α)

2n . This
completes the proof. �

4. NUMERICAL EXPERIMENTS

In this section, we present the numerical experiments of the family of m-point, n-ary
subdivision schemes. We apply these schemes on different types of data like negatively
skewed, positively skewed and symmetrical data etc. First, we apply the 2-point, 3-point
and 5-point binary schemes on negatively (left) skewed data. From the first row of Figure
7, we see that the shapes produced by these schemes also preserve the negatively skewed
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nature of data. Similarly, the second row of Figure 7 shows the response of binary schemes
on the positive (right) skewed data. In case of symmetrical data, the shapes produced by
these schemes are symmetrical. It is shown in Figure 3: (a), (b), (c).

In Figure 8, we apply the binary schemes of different complexity on the data obtained
from discontinuous function. The Gibbs phenomenon has not been seen in the discontinuity
zones of the data. This support the arguments presented in [10].

(a) 2-point (b) 3-point (c) 5-point

(d) 2-point (e) 3-point (f) 5-point

FIGURE 7. Numerical experiments of binary schemes for different val-
ues of m on negative and positive skewed data.

5. CONCLUSIONS

In this paper, statistical analysis of the subdivision schemes has been presented using
the theory of probability distribution. We discussed the important properties such as mean,
variance, moments about the origin, moments about the mean, measures of skewness and
measures of kurtosis of the subdivision schemes. We have concluded the following in
general:

• The mean of m-point binary subdivision schemes increases with the increase of
m while in general the mean of m-point, n-ary (n ≥ 3) subdivision schemes
decreases.
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(a) 2-point binary (b) 3-point binary (c) 5-point binary

FIGURE 8. Plots of binary schemes for Gibbs phenomenon.

• In general, we conclude that as the arity and complexity of the schemes increases
the variance of subdivision schemes increases.

• The 2-point, n-ary schemes produce symmetrical shapes when data is symmetri-
cal for n = α. These schemes produce positively skewed shapes when date is
positively skewed in nature for different values of n and α. But in general the
m-point (m ≥ 3), n-ary schemes produce negatively skewed shapes when data is
negatively skewed.

• The 2-point, n-ary schemes produce the shapes which change from platykurtosis
to leptokurtosis shapes for different values of α. All the 3-point, n-ary schemes
produce the leptokurtosis shapes, 4-point, n-ary schemes produce normal shapes
and 5-point, n-ary schemes produce the platykurtosis shapes.

This work is first attempt to link between univariate subdivision schemes and univariate
probability distribution. This paper will open the door for new research directions. Some
possible directions are:

• What are the relations between continuous probability distribution, B-splines and
subdivision schemes?

• How can we relate bivariate subdivision schemes with multivariate probability dis-
tribution?
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