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Abstract. Most of the real life problems embroil uncertainties,
imprecision and vagueness. Fuzzy multisets and Pythagorean fuzzy
sets, initially suggested by Yager, are significant mathematical mod-
els to handle such real world problems. By combining these two
notions, we introduce a new kind of hybrid mathematical model:
Pythagorean fuzzy multisets (PFM-sets). We present some prime
concepts of Pythagorean fuzzy multisets and establish various alge-
braic operations on them along with some important results. We
render two applications to multi-attribute group decision making
(MAGDM), accompanied by algorithms and flow charts, estab-
lished on PFM-sets: One in therapeutic analysis linking medical
and mathematical sciences and the other in pattern recognition.
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1. Introduction

The ground stone of contemporary mathematics is believed to be founded upon
two mainstays: mathematical rationality and set philosophy. These two pillars un-
deniably compose the language bridging in more or less all fields of mathematics. In
fact, the prompt advancement of science has directed towards an imperative require-
ment for the growth of current set theoretic mathematical and carefully worked-out
modeling. A (crisp) set is always concomitant with a characteristic function. Tak-
ing into account the uncertainty element, Zadeh [62] in 1965, suggested fuzzy sets
in which a membership function is allocated to each affiliate of the universe of
discourse. Following the footsteps of Zadeh, numerous theories and approaches
treating uncertainty, imprecision and vagueness have been proposed so far.
In 1983, Atanassov [6, 7] introduced intuitionistic fuzzy sets (IF-sets) bearing mem-
bership and non-membership functions. Atanassov also familiarized geometrical
elucidation of the elements of intuitionistic fuzzy objects [8] and introduced in-
tuitionistic fuzzy multi-dimensional sets and intuitionistic fuzzy negations [9]-[12].
Amongst a number of higher order fuzzy models, intuitionistic fuzzy sets arrange for
a supple structure to elaborate imprecision. IFS reflects better the ever-changing
trait of human manners and attitude of behaving about things and situations at
different situations. A person who articulates the level of belongingness of some
given element to a set, usually does not put across its counter-part viz. level of
non-belongingness. This psychosomatic fact describes that negating linguistically
does not always happen together with logical negation. The name intuitionistic
fuzzy set is owing to George Gargove, with the inspiration that their fuzzification
negates the renowned law of excluded middle which is one of the principal accepted
wisdom of intuitionism – a philosophy of mathematics that was introduced by the
Dutch mathematician Brouwer (1881-1966). It is founded upon the notion that
mathematics is a conception of the brain. The accuracy of a mathematical state-
ment can simply be conceived via a mental structure that shows it to be honest,
and the communication between mathematicians only serves as a way to produce
the same mental operation in different brains. The notion of intuitionism looks like
expedient in modeling many real life state of affairs including psychological investi-
gations, logical reasoning, and negotiation processes etc.
Many areas of modern mathematics have been merged by encroaching upon a rudi-
mentary standard of a given theory only because advantageous structures could
be set this way. Contrary to ordinary sets, multisets permit us to have multiple
occurrences of the members. Blizard [13, 14] introduced multiset theory as a gener-
alization of crisp set theory. As a broad view of multiset, Yager [58] introduced the
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notion of fuzzy multiset (FMS). Pythagorean fuzzy set (PF-set), also known as IF-
set of type-2 [8], introduced by Yager [59]-[61] is the extension of intuitionistic fuzzy 
set (IF-set) introduced by Atanassov [6]. Yager also presented Pythagorean mem-
bership grades with applications to the multi-criteria decision making (MCDM). 
Peng et al. [36], and Guleria and Bajaj [25] presented Pythagorean fuzzy soft 
sets (PFS-sets). Some of the prominent researchers who presented different hybrid 
structures of fuzzy sets and their applications include Akram et al. [1]-[3], Ali et al.
[4, 5], Davvaz and Sadrabadi [15], Ejegwa and Modom [17], Rajarajeswari and Uma 
[38], Feng et al. [18]-[20], Garg [21]-[24], Kumar and Garg [26], Karaaslan [27, 28], 
Naeem et al. [31, 32], Peng et al. [33]-[37], Riaz et al. [39]-[45], Riaz and Hashmi 
[46, 47], Riaz and Tehrim [48]-[50], Shinoj and John [51, 52], Tehrim and Riaz [53], 
Wei [54], Xu [55], Xu et al. [56, 57], Zhang and Xu [65], and Zhan et al. [66]-[68]. 
Zararsiz [63] discussed similarity measures of sequence of fuzzy numbers and fuzzy 
risk analysis presenting fabulous application using center of gravity points. Zararsiz 
[64] calculated entropy and similarity measure values by using the amplitude and 
the duration of QRS-complexes of sport horse and gave some v √aluable comments. 
Malik and Riaz [29]-[30] introduced G-subsets and G-orbits of Q∗( n) under action of 
the Modular Group. Zhang and Zhan [69] introduced novel classes of fuzzy soft β-
covering based fuzzy rough sets with applications to multi-criteria fuzzy group 
decision making.
The goal of this article is to introduce Pythagorean fuzzy multisets that has natural 
applications in multiple-valued logic, multi-sensor, multi-source and multi-process 
information fusion. Pythagorean fuzzy multisets provide a strong mathematical 
model to take in hand multi-attribute group decision making (MAGDM). While 
tackling real world problems, intuitionistic fuzzy multiset cannot deal with the 
situation if the sum of membership degree and non-membership degree of the pa-
rameter gets larger than 1. It makes decision making demarcated, and affects the 
optimum decision. PFM-sets assist us in handling such situations. PFM-sets pro-
vide a large number of applications to MAGDM problems in artificial intelligence, 
image processing, medical diagnosis, forecasting, recruitment problems and many 
other real life problems.
The article is sorted out as pursues. In Section 2, we bring to mind some rudiments 
of fuzzy set, multiset, fuzzy multiset, intuitionistic fuzzy set, intuitionistic fuzzy 
multiset and Pythagorean fuzzy set. We introduce, in Section 3, PFM-set and its 
properties with the assistance of examples. In Section 4, we propose Algorithm 1 for 
multi-attribute group decision making (MAGDM) based on PFM-sets to medical 
diagnosis which correlates once thought pole apart fields Mathematics and Medical 
science. In Section 5, we propose Algorithm 2 for MAGDM to pattern recognition. 
Furthermore, we explain the procedural steps of Algorithm 1 & Algorithm 2 with 
the assistance of flow charts. The effectiveness of proposed methods are also jus-
tified by the numerical examples. The idea of linkage of MAGDM with PFM-sets 
may be efficiently employed in diverse sectors of real life problems. We present the 
superiority of our proposed model over the prevailing models in section 6. Finally, 
in Section 7, a brief conclusion is presented.
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2. Preliminaries

In this subdivision, we concisely call to mind some primary notions of different
kinds of sets that would be employed in the remnant part of this article.

Definition 2.1. [62] Presume that X is a non-empty set. A fuzzy set (an FS
for short) defined over a non-void collection X comprises ordered pairs in which
abscissa is from X and the ordinate is a mapping ζ (acknowledged as membership
function) that drives elements of X to the interval [0, 1].

Definition 2.2. [13, 14] A multiset (mset for short) over X is a couple < X, d >,
where d : X 7→ N is a function over an underlying crisp set X. A multiset M is
given by

M = < X, d >

=
[d(%i)

%i
: i = 1, 2, 3, · · · , n

]

where d(%i) is the duplicity of %i ∈ X. For example, if X = {%i : i = 1, 2, 3} then

M = {%1, %1, %2, %3, %3, %3, %3}
=

[ 2
%1

,
1
%2

,
4
%3

]

is a multiset over X.
Other synonyms used in literature for mset are bag, list, bunch, heap, sample,
weighted set, occurrence set, and fireset.

Definition 2.3. [58] Let X be a non-empty set. A fuzzy multiset (an FMS for short)
A is typified by a mapping αA : X 7→ M (conventionally called count membership),
where M is the collection of all multisets extracted from the unit closed interval.
For every % ∈ X, the affiliation sequence (usually called membership sequence) is
defined as decreasingly organized sequence of elements in αA(%) and is characterized
as

(
ζ
(1)
A (%), ζ(2)

A (%), · · · , ζ
(n)
A (%)

)
with the constraint that ζ

(i)
A (%) ≥ ζ

(i+1)
A (%).

Definition 2.4. [7] An intuitionistic fuzzy set (IFS in brief) over the underlying
non-empty set X is expressed as

A = {< %, ζA(%), ξA(%) >: % ∈ X}.
The mappings ζA and ξA in order are acknowledged as the degrees of membership
and non-membership of the element % ∈ X to the set A and drag elements of X to
unit closed interval along with the constraint that their sum must not exceed unity.
It is pertinent to notice that every FS A may be thought of an IFS of the form

A = {< %, ζA(%), 1− ζA(%) >: % ∈ X}.
Definition 2.5. [51] An intuitionistic fuzzy multiset (an IFMS for short) A over
the underlying non-empty set X is portrayed by two mappings ζA : X 7→ M (con-
ventionally called membership count) and ξA : X 7→ M (conventionally called
non-membership count), where M is the collection of all multisets extracted from
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the unit closed interval. For every % ∈ X, the membership sequence is defined as
decreasingly arrayed progression of elements in ζA(%) represented as

(
ζ
(1)
A (%), ζ(2)

A (%), · · · , ζ
(n)
A (%)

)

bearing the constraint ζ
(i)
A (%) ≥ ζ

(i+1)
A (%). The corresponding non-membership

sequence is represented as
(
ξ
(1)
A (%), ξ(2)

A (%), · · · , ξ
(n)
A (%)

)
. Further, 0 ≤ ζ

(i)
A (%) +

ξ
(i)
A (%) ≤ 1, for all i.

An IFMS may be expressed in set-builder notation as

A =
{

< % :
(
ζ
(1)
A (%), ζ(2)

A (%), · · · , ζ
(n)
A (%)

)
,
(
ξ
(1)
A (%), ξ(2)

A (%), · · · , ξ
(n)
A (%)

)
>: % ∈ X

}
.

It is remarkable to note that the non-membership sequence need not to be in as-
cending or descending order, contrary to the membership sequence.

Definition 2.6. [33] A Pythagorean fuzzy set, abbreviated as PF-set, is a family of
the form

P =
{

< %, ζP (%), ξP (%) >: % ∈ X
}

where ζP and ξP are mappings from some crisp set X to the unit interval with the
restriction that sum of their squares should not exceed unity i.e. 0 ≤ ζ2

P (%)+ξ2
P (%) ≤

1, called correspondingly the grade of association and non-association of % ∈ X to
the set P . The doublet (ζp, ξp) is called Pythagorean Fuzzy Number, abbreviated
as PFN. The space for a PF-set is a unit circular arc in the first quadrant whereas
it was a right isosceles triangle having length of the base and altitude each equal to
unity in case of an if-set. Hence we have an enlarged space for PF-sets as compared
to IF-sets. Indeed we have included 2π−1

8 extra area for PF-sets.

3. Pythagorean Fuzzy Multisets

In this section, we present the notion of PFM-sets followed by some of their
algebraic properties. We shall use ζ

(i)
Pj

to mean ζ
(i)
Pj

(%), for % ∈ X, just for the sake

of brevity. The same is the situation for ξ
(i)
Pj

.

Definition 3.1. A Pythagorean fuzzy multiset (a PFM-set for short) P over a
non-empty underlying set X is characterized by two mappings ζP : X 7→ M (tra-
ditionally acknowledged membership count) and ξP : X 7→ M (conventionally
called non-membership count), where M is the collection of all multisets drawn
from the unit closed interval. For every % ∈ X, the membership sequence is
defined as descending ordered progression of members in ζP (%) represented as(
ζ
(1)
P (%), ζ(2)

P (%), · · · , ζ
(n)
P (%)

)
where ζ

(i)
P (%) ≥ ζ

(i+1)
P (%). The corresponding non-

membership sequence is represented as
(
ξ
(1)
P (%), ξ(2)

P (%), · · · , ξ
(n)
P (%)

)
. Further, 0 ≤(

ζ
(i)
P (%)

)2

+
(
ξ
(i)
A (%)

)2

≤ 1, for all i.
A PFM-set may be expressed in set-builder notation as

P =
{

< % :
(
ζ
(1)
P (%), ζ(2)

P (%), · · · , ζ
(n)
P (%)

)
,
(
ξ
(1)
P (%), ξ(2)

P (%), · · · , ξ
(n)
P (%)

)
>: % ∈ X

}

=
{

< % :
({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

)
>: % ∈ X

}
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or more conveniently as

P =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}
.

It is remarkable to note that the non-membership sequence need not to be in as-
cending or descending order, contrary to the membership sequence.

Example 3.2. Let X = {%1, %2, %3} be a crisp set, then

P =

(
%1

(0.27, 0.12), (0.88, 0.56)
,

%2

(0.53, 0.24, 0.11), (0.62, 0.56, 0.67)
,

%3

(0.91, 0.57), (0.17, 0.67)

)

is a PFM-set.

Definition 3.3. The cardinality of ζP (%) (or that of ξP (%)) in a PFM-set P is
called length of the element % ∈ P and is designated as L(% : P ) i.e.

L(% : P ) = #
(
ζP (%)

)
= #

(
ξP (%)

)

where #
(
ζP (%)

)
denotes the cardinality of the membership sequence ζP (%) and

#
(
ξP (%)

)
that of non-membership sequence ξP (%).

For example, in Example 3.2

L(%1 : P ) = 2,

L(%2 : P ) = 3, and
L(%3 : P ) = 2.

If P1 and P2 are two PFM-sets extracted from X, then

L(% : P1, P2) = max
{
L(% : P1), L(% : P2)

}
.

For the sake of transience, we use L(%) to mean L(% : P1, P2).

Definition 3.4. Two PFM-sets P1 and P2 drawn from a non-empty set X are said
to be equivalent, written P1 ∼ P2, if and only if L(%, P1) = L(%, P2).

Definition 3.5. Let X be a crisp set having

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

as two PFM-sets. We say that P1 is a PFM-subset of P2, written P1 v P2, if for all
admissible values of i we have ζ

(i)
P1

(%) ≤ ζ
(i)
P2

(%) and ξ
(i)
P1

(%) ≥ ξ
(i)
P2

(%). If there is at

least one i for which ζ
(i)
P1

(%) < ζ
(i)
P2

(%) or ξ
(i)
P1

(%) > ξ
(i)
P2

(%), then P1 is called a proper
PFM-subset of P2, written P1 @ P2. P1 and P2 are said to be equal i.e. P1 = P2 if
P1 v P2 v P1.
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Example 3.6. Let

P1 =

(
%1

(0.22, 0.21, 0.17), (0.13, 0.56, 0.81)
,

%2

(0.51, 0.34, 0.29), (0.62, 0.76, 0.69)
,

%3

(0.98, 0.57), (0.11, 0.37)

)

and

P2 =

(
%1

(0.27, 0.21, 0.20), (0.01, 0.40, 0.42)
,

%2

(0.73, 0.39, 0.38), (0.62, 0.55, 0.34)
,

%3

(1, 0.74), (0, 0.29)

)

be PFM-sets over X = {%1, %2, %3}, then P1 v P2.

Definition 3.7. The union of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P1 t P2 =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

where
ζ
(i)
P (%) = max

{
ζ
(i)
P1

(%), ζ(i)
P2

(%)
}

and
ξ
(i)
P (%) = min

{
ξ
(i)
P1

(%), ξ(i)
P2

(%)
}
.

Definition 3.8. The intersection of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P1 u P2 =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

where
ζ
(i)
P (%) = min

{
ζ
(i)
P1

(%), ζ(i)
P2

(%)
}

and
ξ
(i)
P (%) = max

{
ξ
(i)
P1

(%), ξ(i)
P2

(%)
}
.
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Definition 3.9. The sum of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P1 ⊕ P2 =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

where
ζ
(i)
P (%) = ζ

(i)
P1

(%) + ζ
(i)
P2

(%)− ζ
(i)
P1

(%)ζ(i)
P2

(%)
and

ξ
(i)
P (%) = ξ

(i)
P1

(%)ξ(i)
P2

(%).

Definition 3.10. The product of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P1 ⊗ P2 =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

where
ζ
(i)
P (%) = ζ

(i)
P1

(%)ζ(i)
P2

(%)
and

ξ
(i)
P (%) = ξ

(i)
P1

(%) + ξ
(i)
P2

(%)− ξ
(i)
P1

(%)ξ(i)
P2

(%).

Definition 3.11. The difference of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P1 \ P2 =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}
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where
ζ
(i)
P (%) = min

{
ζ
(i)
P1

(%), ξ(i)
P2

(%)
}

and
ξ
(i)
P (%) = max

{
ξ
(i)
P1

(%), ζ(i)
P2

(%)
}
.

This difference is also termed as the relative complement of P2 with respect to P1.

Definition 3.12. The symmetric difference of two PFM-sets

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

and

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

drawn from X is defined as

P14P2

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

where
ζ
(i)
P (%) = max

{
min

{
ζ
(i)
P1

(%), ξ(i)
P2

(%)
}
,min

{
ζ
(i)
P2

(%), ξ(i)
P1

(%)
}}

and
ξ
(i)
P (%) = min

{
max

{
ζ
(i)
P1

(%), ξ(i)
P2

(%)
}
,max

{
ζ
(i)
P2

(%), ξ(i)
P1

(%)
}}

.

It is pertinent to observe that if we think of ”max” as ∨ and ”min” as ∧, then the
symmetric difference P14P2 corresponds to XOR operation in Boolean logic.

Example 3.13. Let

P1 =

(
%1

(0.82, 0.25), (0.19, 0.76)
,

%2

(0.71, 0.39, 0.16), (0.42, 0.39, 0.69)
,

%3

(0.88, 0.57), (0.19, 0.47)

)

P2 =

(
%1

(0.66, 0.36), (0.41, 0.72)
,

%2

(0.67, 0.13, 0.11), (0.61, 0.56, 0.49)
,

%3

(0.10, 0.09), (0.86, 0.23)

)

be PFM-sets drawn from X = {%1, %2, %3}, then

P1 t P2 =

(
%1

(0.82, 0.36), (0.19, 0.72)
,

%2

(0.71, 0.39, 0.16), (0.42, 0.39, 0.49)
,

%3

(0.88, 0.57), (0.19, 0.23)

)

P1 u P2 =

(
%1

(0.66, 0.25), (0.41, 0.76)
,

%2

(0.67, 0.13, 0.11), (0.61, 0.56, 0.69)
,

%3

(0.10, 0.09), (0.86, 0.47)

)

P1 ⊕ P2 =

(
%1

(0.94, 0.52), (0.08, 0.55)
,

%2

(0.90, 0.47, 0.25), (0.26, 0.22, 0.34)
,

%3

(0.89, 0.61), (0.16, 0.11)

)

P1 ⊗ P2 =

(
%1

(0.54, 0.09), (0.52, 0.93)
,

%2

(0.48, 0.05, 0.02), (0.77, 0.73, 0.84)
,

%3

(0.09, 0.05), (0.89, 0.59)

)

P1 \ P2 =

(
%1

(0.41, 0.25), (0.66, 0.76)
,

%2

(0.61, 0.39, 0.16), (0.67, 0.39, 0.69)
,

%3

(0.86, 0.23), (0.19, 0.47)

)

P14P2 =

(
%1

(0.41, 0.36), (0.66, 0.72)
,

%2

(0.61, 0.13, 0.16), (0.67, 0.39, 0.49)
,

%3

(0.86, 0.23), (0.19, 0.47)

)
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Definition 3.14. The complement of the PFM-set

P =

{
%({

ζ
(i)
P (%)

}n

i=1

)
,
({

ξ
(i)
P (%)

}n

i=1

) : % ∈ X

}

is defined as

P c =

{
%({

ξ
(i)
P (%)

}n

i=1

)
,
({

ζ
(i)
P (%)

}n

i=1

) : % ∈ X

}
.

Example 3.15. The complement of PFM-set cited in Example 3.2 is

P c =

(
%1

(0.88, 0.56), (0.27, 0.12)
,

%2

(0.67, 0.62, 0.56), (0.11, 0.53, 0.24)
,

%3

(0.67, 0.17), (0.57, 0.91)

)
.

Observe that we shuffled the entries of ζ (and obviously the corresponding entries
in ξ) so that the elements of ζ emerge as a descending sequence.

Theorem 3.16. If P1 and P2 are PFM-sets drawn from X such that P1 v P2, then
P c

2 v P c
1 .

Proof. Since P1 v P2, so ζ
(i)
P1
≤ ζ

(i)
P2

and ξ
(i)
P1
≥ ξ

(i)
P2

. By definition, the sequence of

membership and non-membership count for P c
1 is

(
ξ
(i)
P1

, ζ
(i)
P1

)
and for P c

2 is
(
ξ
(i)
P2

, ζ
(i)
P2

)
which quickly yields the desired result. ¤

Theorem 3.17. If P1 and P2 are PFM-sets drawn from X such that P1 \ P2 =
P1 u P c

2 .
Proof. Let

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}
.

Then, by definition

P1 u P
c
2 =

(
%

��
ζ
(i)
P1

(%)
	n

i=1

�
,
��

ξ
(i)
P1

(%)
	n

i=1

� : % ∈ X

)
u
(

%
��

ξ
(i)
P2

(%)
	n

i=1

�
,
��

ζ
(i)
P2

(%)
	n

i=1

� : % ∈ X

)

=

(
%�

min
�

ζ
(i)
P1

(%), ξ
(i)
P2

(%)
	n

i=1

�
,
�

max
�

ξ
(i)
P1

(%), ζ
(i)
P2

(%)
	n

i=1

� : % ∈ X

)

= P1 \ P2.

¤

Theorem 3.18. If P1 and P2 are two PFM-sets drawn from X, then the idempotent
and commutative laws hold under the operations of t and u i.e.

(i) P1 t P1 = P1

(ii) P1 u P1 = P1

(iii) P1 t P2 = P2 t P1

(iv) P1 u P2 = P2 u P1.
Proof. Follows immediately from definitions of t and u. ¤



Pythagorean Fuzzy Multisets and their Applications to Therapeutic Analysis & Pattern Recognition 25

Theorem 3.19. If P1 and P2 are PFM-sets drawn from X, then De Morgan’s laws
hold i.e.

(i) (P1 t P2)c = P c
1 u P c

2

(ii) (P1 u P2)c = P c
1 t P c

2 .
Proof. Let

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

be two PFM-sets defined over X, then

P1 t P2 =

{
%(

max{ζ(i)
P1

(%), ζ(i)
P2

(%)}n
i=1

)
,
(
min{ξ(i)

P1
(%), ξ(i)

P2
(%)}n

i=1

) : % ∈ X

}

⇒ (P1 t P2)c =

{
%(

min{ξ(i)
P1

(%), ξ(i)
P2

(%)}n
i=1

)
,
(
max{ζ(i)

P1
(%), ζ(i)

P2
(%)}n

i=1

) : % ∈ X

}

= P c
1 u P c

2

which establishes (i). The proof of (ii) is parallel. ¤

Theorem 3.20. If P1 and P2 are PFM-sets drawn from X, then
(i) (P1 ⊕ P2)c = P c

1 ⊗ P c
2

(ii) (P1 ⊗ P2)c = P c
1 ⊕ P c

2 .
Proof. Let

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

be two PFM-sets defined over X, then

P1 ⊕ P2 =

(
%

��
ζ
(i)
P1

(%) + ζ
(i)
P2

(%)− ζ
(i)
P1

(%)ζ
(i)
P2

(%)
	n

i=1

�
,
��

ξ
(i)
P1

(%)ξ
(i)
P2

(%)
	n

i=1

� : % ∈ X

)

⇒ (P1 ⊕ P2)
c

=

(
%

��
ξ
(i)
P1

(%)ξ
(i)
P2

(%)
	n

i=1

�
,
��

ζ
(i)
P1

(%) + ζ
(i)
P2

(%)− ζ
(i)
P1

(%)ζ
(i)
P2

(%)
	n

i=1

� : % ∈ X

)

=

(
%

��
ξ
(i)
P1

(%)
	n

i=1

�
,
��

ζ
(i)
P1

(%)
	n

i=1

� : % ∈ X

)
⊗
(

%
��

ξ
(i)
P2

(%)
	n

i=1

�
,
��

ζ
(i)
P2

(%)
	n

i=1

� : % ∈ X

)

= P
c
1 ⊗ P

c
2

which proves (i). The proof of (ii) may be furnished in the same fashion. ¤

Theorem 3.21. If P1, P2 and P3 are PFM-sets drawn from X, then
(i) P1 t (P2 t P3) = (P1 t P2) t P3

(ii) P1 u (P2 u P3) = (P1 u P2) u P3
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(iii) P1 t (P2 u P3) = (P1 t P2) u (P1 t P3)
(iv) P1 u (P2 t P3) = (P1 u P2) t (P1 u P3).

Proof. Let

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

P3 =

{
%({

ζ
(i)
P3

(%)
}n

i=1

)
,
({

ξ
(i)
P3

(%)
}n

i=1

) : % ∈ X

}

be PFM-sets defined over X, then

P1 t (P2 t P3) =

(
%

�
max

�
ζ
(i)
P1

, max{ζ(i)
P2

, ζ
(i)
P3
}	n

i=1

�
,
�
min

�
ξ
(i)
P1

�
, min{ξ(i)

P2
, ξ

(i)
P3
}	n

i=1

� : % ∈ X

)

=

(
%

�
max

�
ζ
(i)
P1

, ζ
(i)
P2

, ζ
(i)
P3

	n

i=1

�
,
�
min

�
ξ
(i)
P1

, ξ
(i)
P2

, ξ
(i)
P3

	n

i=1

� : % ∈ X

)

=

(
%

�
max

�
max{ζ(i)

P1
, ζ

(i)
P2
}, ζ

(i)
P3

	n

i=1

�
,
�
min

�
min{ξ(i)

P1
, ξ

(i)
P2
}, ξ

(i)
P3

	n

i=1

� : % ∈ X

)

= (P1 t P2) t P3.

This establishes (i). The proof of (ii) is parallel.
Now, we head towards proving (iv). The proof of (iii) may be furnished on the
parallel track.
For % ∈ X, we have
P1 u (P2 t P3)

=

{
%(

min
{

ζ
(i)
P1

,max{ζ(i)
P2

,ζ
(i)
P3
}
}n

i=1

)
,
(

max
{

ξ
(i)
P1

,min{ξ(i)
P2

,ξ
(i)
P3
}
}n

i=1

)
}

=

{
%(

max{{min{ζ(i)
P1

,ζ
(i)
P2
},min{ζ(i)

P1
,ζ

(i)
P3
}}}n

i=1

)
,
(

min{{max{ξ(i)
P1

,ξ
(i)
P2
},max{ξ(i)

P1
,ξ

(i)
P3
}}}n

i=1

)
}

= (P1 u P2) t (P1 u P3). ¤

Theorem 3.22. If P1, P2 and P3 are PFM-sets drawn from X, then

(i) P1 ⊕ (P2 t P3) = (P1 ⊕ P2) t (P1 ⊕ P2)
(ii) P1 ⊕ (P2 u P3) = (P1 ⊕ P2) u (P1 ⊕ P2)
(iii) P1 ⊗ (P2 t P3) = (P1 ⊗ P2) t (P1 ⊗ P2)
(iv) P1 ⊗ (P2 u P3) = (P1 ⊗ P2) u (P1 ⊗ P2).
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Proof. We prove (i) here. The other assertions may be proved employing the similar
argument. Assume that

P1 =

{
%({

ζ
(i)
P1

(%)
}n

i=1

)
,
({

ξ
(i)
P1

(%)
}n

i=1

) : % ∈ X

}

P2 =

{
%({

ζ
(i)
P2

(%)
}n

i=1

)
,
({

ξ
(i)
P2

(%)
}n

i=1

) : % ∈ X

}

P3 =

{
%({

ζ
(i)
P3

(%)
}n

i=1

)
,
({

ξ
(i)
P3

(%)
}n

i=1

) : % ∈ X

}

be PFM-sets defined over X, then for % ∈ X

P1 ⊕ (P2 t P3) =

(
%

��
ζ
(i)
P1

+ max
�

ζ
(i)
P2

, ζ
(i)
P3

	− ζ
(i)
P1

max
�

ζ
(i)
P2

, ζ
(i)
P3

		n

i=1

�
,
��

ξ
(i)
P1

min
�

ξ
(i)
P2

, ξ
(i)
P3

		n

i=1

�
)

=

(
%

��
max

�
ζ
(i)
P1

+ ζ
(i)
P2
− ζ

(i)
P1

ζ
(i)
P2

, ζ
(i)
P1

+ ζ
(i)
P3
− ζ

(i)
P1

ζ
(i)
P3

		n

i=1

�
,
��

ξ
(i)
P1

min
�

ξ
(i)
P2

ξ
(i)
P3

		n

i=1

�
)

= (P1 ⊕ P2) t (P1 ⊕ P2).

¤

Definition 3.23. The Cartesian product of two PFM-sets

P1 =

{
%(

ζ
(1)
P1

(%), ζ(2)
P1

(%), · · · , ζ
(n)
P1

(%)
)
,
(
ξ
(1)
P1

(%), ξ(2)
P1

(%), · · · , ξ
(n)
P1

(%)
) : % ∈ X

}

and

P2 =

{
%′(

ζ
(1)
P2

(%′), ζ(2)
P2

(%), · · · , ζ
(n)
P2

(%′)
)
,
(
ξ
(1)
P2

(%′), ξ(2)
P2

(%′), · · · , ξ
(n)
P2

(%′)
) : %′ ∈ X

}

drawn from X is defined as

P1 × P2 =

(
(%, %′)

�
ζ
(1)
P (%)ζ

(1)
P (%′), · · · , ζ

(n)
P (%)ζ

(n)
P (%′)

�
,
�
ξ
(1)
P (%)ξ

(1)
P (%′), · · · , ξ

(n)
P (%)ξ

(n)
P (%′)

� : %, %
′ ∈ X

)
.

Example 3.24. Let

P1 =

{
%1

(0.38, 0.29), (0.17, 0.16)
,

%2

(1, 0.16), (0, 0.69)

}

P2 =

{
%1

(0.67, 0.43), (0.42, 0.44)
,

%2

(0.13, 0.13), (0.61, 0.49)

}

be PFM-sets drawn from X = {%1, %2}, then

P1 × P2 =

(
(%1, %1)

(0.25, 0.12), (0.07, 0.07)
,

(%1, %2)

(0.05, 0.04), (0.10, 0.08)
,

(%2, %1)

(0.67, 0.07), (0, 0.30)
,

(%2, %2)

(0.13, 0.02), (0, 0.34)

)
.

Theorem 3.25. If P1, P2 and P3 are PFM-sets drawn from X, then
(i) P1 × P2 = P2 × P1

(ii) P1 × (P2 × P3) = (P1 × P2)× P3
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(iii) P1 × (P2 t P3) = (P1 × P2) t (P1 × P3)
(iv) P1 × (P2 u P3) = (P1 × P2) u (P1 × P3)
(v) P1 × (P2 ⊕ P3) v (P1 × P2)⊕ (P1 × P3)
(vi) P1 × (P2 ⊗ P3) w (P1 × P2)⊗ (P1 × P3).

Proof. Straight forward. ¤

Definition 3.26. The distance between two PFM-sets P1 and P2 of X is defined
in different ways as:

(1) The Euclidean distance:

dE(P1, P2) =

√
1
2
Σn

j=1

{(
ζ
(i)
P1

(%j)− ζ
(i)
P2

(%j)
)2

+
(
ξ
(i)
P1

(%j)− ξ
(i)
P2

(%j)
)2

}
.

(2) The Hamming distance:

dH(P1, P2) =
1
2
Σn

j=1

(
|ζ(i)

P1
(%j)− ζ

(i)
P2

(%j)|+ |ξ(i)
P1

(%j)− ξ
(i)
P2

(%j)|
)
.

(3) The normalized Hamming distance:

dn−H(P1, P2) =
1
2n

Σn
j=1

(
|ζ(i)

P1
(%j)− ζ

(i)
P2

(%j)|+ |ξ(i)
P1

(%j)− ξ
(i)
P2

(%j)|
)
.

(4) The normalized Euclidean distance:

dn−E(P1, P2) =

√
1
2n

Σn
j=1

(
(ζ(i)

P1
(%j)− ζ

(i)
P2

(%j))2 + (ξ(i)
P1

(%j)− ξ
(i)
P2

(%j))2
)
.

for each admissible value of i.

4. Multi-Attribute Group Decision Making based on PFM-Sets in
Medical Diagnosis

Decision making is a critical technique for deciding on most appropriate choice
from available alternatives. By means of stage by stage course of decision-making
assists us making more purposive and intellectual decisions by framing pertinent
data illustrating alternatives. In this section, we present an application of multi-
attribute group decision making (MAGDM) in medical diagnosis. MAGDM is a
process that arranges for an undisputed and unanimous assessment of a number
of professionals based on priorities, data values and beliefs of the decision makers
collectively to assign ranking to the alternatives and to attain the best truthful
solution to different real world problems.
Case Study:
Diabetes mellitus, commonly known as simply diabetes, is a severe condition in
which patient can’t perform its life activities normally. In its chronic condition it
badly affects vision, vascular and excretory system physiologically. Three types of
diabetes are commonly identified in the patients including Insulin Dependent Dia-
betes Mellitus (IDDM, Type-1), Non Insulin Dependent Diabetes Mellitus (NIDDM,
Type-2) and GDM (Gestational Diabetes Mellitus). In all these types of diabetes
there is a high level of glucose in the patient which disturbs the osmotic balance in
the blood.
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Glucose is produced in our bodies after the digestion of food especially carbohy-
drates. A part of this glucose is utilized by the body as a fuel to produce energy and
rest of it is converted to glycogen or proteins and is stored in the liver and muscle
cells. This conversion is controlled by a pancreatic hormone, insulin. Deficiency of
this hormone or no response to the hormone leads to constant increase in the level
of glucose in the blood.
IDDM or Type-1 Diabetes:
IDDM is also commonly known as juvenile diabetes for it occurs before the age of
30. In this type, antibodies of the patient’s body destroy β cells of the pancreas
which are basically involved in the production of insulin hormone. Other body
organs that can be affected by diabetes of type-1 include eyes, kidney, heart and
brain. Diabetes of type-1 can be cured by taking insulin. Insulin can be injected
by syringes, insulin pens and insulin pumps. Glycosylated hemoglobin test (A1C)
can help to identify overall glucose level control over past three months. If someone
is suffering from diabetes of type-1, he or she can prolong his or her life by certain
changes in the life style such as regular exercise, careful meal planning and taking
medicines according to treatment plan.
NIDDM or Type-2 Diabetes:
Nearly 95 % of diabetic patients suffer from type-2 diabetes. It is also called non
insulin dependent diabetes. Health risk associated with type-2 diabetes are almost
same but of low intensity. During diabetes of type-2, the insulin produced is either
too small or body cells especially muscle and liver cells are resistant to it. Being
obese is an important factor causing NIDDM, where pancreas has to perform over
activities for the production of insulin even then it remains insufficient for the body.
Unfortunately, there is no proper cure of NIDDM. Patients have to manage their
body weight to reduce the problem. For this purpose regular exercise, balanced diet
and regular HbA1c test have been proving to be valuable tool to reduce the risk of
NIDDM.

Figure 1. Types of diabetes

Gestational Diabetes Mellitus (GDM):
Gestation diabetes mellitus is related to the pregnancy, during which in some fe-
males (2-10 %) liver cells become least responsive to the insulin. After the birth of
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baby the problem mostly disappears automatically or a female (about 10 %) may
suffers from type-2 diabetes later on. During the gestation period high glucose level
in mother’s blood stream may be severe for the developing baby. These problems
include higher weight than normal and breathing issues after birth. On the other
hand mother has to face certain kidney, heart, eyes and some nervous problems
during this period. In case of baby over weight, normal birth is not possible and
cesarean section remains an only one option for the birth. Regular exercise, bal-
anced diet, use of insulin and counseling with health care experts have proved to
be useful in reduction of GDM.
Other Forms of Diabetes:
About 1-5 % patients suffer from other types of diabetes, which may include in-
fection in pancreas, side effects of certain drugs etc. Among these patients certain
symptoms of diabetes like abnormal thirst, short interval urination, fatigue, gain
or loss of body weight, nausea, poor wound healing, and skin contaminations etc.
appear.
Now, we present an application in medical diagnosis employing Pythagorean fuzzy
multisets. First we propose Algorithm 1 as given below.

Algorithm 1
Step 1: Choose the set of patients P = {p1, p2, · · · , pn}.
Step 2: Choose the set of diseases D = {d1, d2, · · · , di} and the set of symptoms

S = {s1, s2, · · · , sj}.
Step 3: Construct table of PF-set of diseases vs symptoms & PFM-set of patients

vs symptoms.
Step 4: Compute distance between patients & diseases employing any formula given

in Definition 3.26.
Step 5: Optimal choice is the smallest distance between patient and disease.
Step 6: State the results in layman’s language.
The flow chart explaining the procedural steps is depicted in Figure 2.

Figure 2. Flow chart representation of Algorithm 1
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4.1. Numerical Example. Let X = {pi : i = 1, 2, · · · , 5} be the set of patients
under study, and D = {di : i = 1, 2, 3, 4} be the set of types of diabetes, where

d1 = Type-1 diabetes,
d2 = Type-2 diabetes,
d3 = Gestational diabetes, and
d4 = Other form of diabetes

Suppose that S = {si : i = 1, 2, · · · , 6} is the set of symptoms, where

s1 = Short interval urination,
s2 = Gain/loss of body weight,
s3 = Dizziness or blurry vision,
s4 = Poor wound healing, and
s5 = Skin contaminations

Table 1 gives symptoms vs diabetes type, each symptom si is referred to by two
numbers, namely, the membership ζi and non-membership ξi. The objective is to
get an appropriate diagnosis for each patient.

s1 s2 s3 s4 s5

d1 (0.76, 0.32) (0.59, 0.17) (0.82, 0.24) (0.39, 0.52) (0.47, 0.72)
d2 (0.65, 0.53) (0.57, 0.43) (0.27, 0.91) (0.38, 0.64) (0.37, 0.82)
d3 (0.60, 0.12) (0.13, 0.92) (0.44, 0.83) (0.79, 0.26) (0.34, 0.32)
d4 (0.12, 0.32) (0.19, 0.52) (0.28, 0.82) (0.78, 0.24) (0.89, 0.13)

Table 1. PFNs showing symptoms vs type of diabetes

Table 2 yields information regarding patients vs symptoms in the standard form
of representing PFM-sets i.e.

(
(ζ(1), ζ(2), ζ(3)), (ξ(1), ξ(2), ξ(3))

)
. The readings are

taken at two different times to be more specific about type of diabetes.

s1 s2 s3 s4 s5

(0.57, 0.92, 0.76) (0.82, 0.77, 0.25) (0.11, 0.23, 0.06) (0.65, 0.47, 0.64) (0.37, 0.23, 0.76)
p1 (0.49, 0.18, 0.33) (0.26, 0.28, 0.19) (0.43, 0.44, 0.84) (0.56, 0.25, 0.14) (0.21, 0.58, 0.28)

(0.78, 0.89, 0.86) (0.32, 0.13, 0.40) (0.67, 0.45, 0.34) (0.53, 0.46, 0.11) (0.32, 0.56, 0.38)
p2 (0.11, 0.12, 0.24) (0.17, 0.11, 0.42) (0.54, 0.49, 0.46) (0.17, 0.59, 0.23) (0.21, 0.55, 0.48)

(0.07, 0.24, 0.28) (0.07, 0.21, 0.16) (0.32, 0.29, 0.24) (0.31, 0.29, 0.28) (0.44, 0.43, 0.44)
p3 (0.38, 0.41, 0.73) (0.22, 0.23, 0.48) (0.76, 0.77, 0.54) (0.26, 0.26, 0.38) (0.27, 0.44, 0.45)

(0.55, 0.59, 0.32) (0.22, 0.34, 0.27) (0.48, 0.44, 0.12) (0.60, 0.39, 0.42) (0.55, 0.36, 0.43)
p4 (0.51, 0.62, 0.40) (0.74, 0.36, 0.88) (0.28, 0.45, 0.13) (0.14, 0.35, 0.40) (0.19, 0.46, 0.25)

(0.64, 0.41, 0.32) (0.26, 0.33, 0.29) (0.44, 0.44, 0.35) (0.19, 0.28, 0.54) (0.31, 0.29, 0.33)
p5 (0.28, 0.37, 0.19) (0.26, 0.67, 0.29) (0.43, 0.40, 0.41) (0.05, 0.20, 0.45) (0.50, 0.47, 0.48)

Table 2. PFM information showing symptoms vs type of diabetes

We employ normalized hamming distance with n = 5, which represents number of
symptoms, to compute the distances between patients and diabetes shown in Table
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3. The patient pi having minimal distance with the diabetes dj is likely to fall prey
of dj .

d1 d2 d3 d4

p1 0.769 0.732 0.826 0.854
p2 0.619 0.794 0.678 0.944
p3 0.901 0.710 0.746 0.594
p4 0.806 0.678 0.669 0.793
p5 0.699 0.748 0.676 0.836

Table 3. Distance between the patient pi and the diabetes dj

In view of above table, we conclude that the patient p1 is likely to suffer from
diabetes of type-2, p2 from diabetes of type-1, p3 from other forms of diabetes,
whereas the patients p4 and p5 are victims of Gestational diabetes.
We depict these results with the help of Figure 3.

Figure 3. Distances between patient pi and diabetes dj

Since the height of the bar for the patient p1 is least for the disease d2, so the the
patient p1 is least distant from the diabetes of type-2 i.e. the patient p1 is likely to
fall a prey of diabetes of type-2. The rest of the chart may be interpreted on the
parallel track.

5. Multi-Attribute Group Decision Making based on PFM-Sets in
Pattern Recognition

In this section, we discuss multi-attribute group decision making (MAGDM) in
pattern recognition. Pattern recognition (PR) is a scientific discipline that aims
at classification of objects into a number of categories. This technique is suc-
cessfully employed in detection of shapes, forms and classification of patterns in
data. Popular areas of applications of PR are traffic analysis & control, speech
recognition, classification of rocks, biological signals, smell recognition, interpreting
DNA sequence, credit fraud detection, biometrics including finger prints, palm vein
technology & face recognition, medical diagnosis, weather prediction, psychology,
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computer science, voice to text changing, voice dialing, testing mental abilities/IQ
level, behavior analysis, predicting complete words, ethology, terrorist detection,
radar detection, and automated target recognition in military applications etc.
Now we propose Algorithm 2 that is given below.

Algorithm 2

Step 1: Construct the PFM-sets Pi’s to be tested for PR.
Step 2: Construct PFM-set P from whom PR is to be tested.
Step 3: Construct table of average values for each Pi & P (optional).
Step 4: Compute distance between each Pi & P utilizing any formula given in De-

finition 3.26.
Step 5: Optimal choice is the Pi having smallest distance with P .
Step 6: Describe the results in layman’s language.

The flow chart explaining the procedural steps of Algorithm 2 is portrayed in Figure
4.

Figure 4. Flowchart of Algorithm 2

5.1. Numerical Example. Let X = {%i : i = 1, 2, · · · , n} be a crisp set having
X1 = {%1, %2}, X2 = {%1, %4} and X3 = {%3, %4}. Let PFM-sets P1, P2 and P3 be
as given in Tables 4, 5 and 6 respectively.

P1 ζ ξ

(0.71, 0.56, 0.39) (0.49, 0.67, 0.31)
%1 (0.53, 0.54, 0.46) (0.52, 0.66, 0.29)

(0.64, 0.61, 0.57) (0.44, 0.56, 0.12)
(0.94, 0.75, 0.73) (0.22, 0.39, 0.45)

%2 (0.82, 0.78, 0.67) (0.44, 0.53, 0.71)
(0.76, 0.52, 0.29) (0.34, 0.53, 0.59)

Table 4. PFM-set P1
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P2 ζ ξ

(0.57, 0.41, 0.17) (0.32, 0.76, 0.36)
%1 (0.65, 0.64, 0.63) (0.74, 0.74, 0.75)

(0.53, 0.43, 0.19) (0.02, 0.17, 0.82)
(0.92, 0.42, 0.07) (0.16, 0.25, 0.04)

%4 (0.87, 0.76, 0.02) (0.49, 0.40, 0.46)
(0.45, 0.37, 0.36) (0.43, 0.82, 0.06)

Table 5. PFM-set P2

P3 ζ ξ

(0.86, 0.43, 0.28) (0.31, 0.52, 0.19)
%3 (0.99, 0.87, 0.54) (0.14, 0.46, 0.16)

(0.76, 0.73, 0.63) (0.26, 0.40, 0.15)
(0.51, 0.47, 0.26) (0.43, 0.46, 0.89)

%4 (0.28, 0.24, 0.23) (0.24, 0.28, 0.28)
(0.77, 0.58, 0.53) (0.35, 0.20, 0.75)

Table 6. PFM-set P3

Let pattern P of PFM-set be referred to as given in Table 7.

P ζ ξ

(0.35, 0.27, 0.26) (0.82, 0.57, 0.82)
%9 (0.45, 0.44, 0.30) (0.29, 0.01, 0.81)

(0.76, 0.38, 0.37) (0.31, 0.05, 0.49)
(0.69, 0.64, 0.50) (0.48, 0.40, 0.72)

%10 (1.00, 0.62, 0.59) (0.00, 0.54, 0.38)
(0.63, 0.38, 0.29) (0.18, 0.87, 0.28)

Table 7. PFM-set P

The tables of average values for the PFM-sets given in Tables 4, 5, 6 and 7, respec-
tively, are given in order in Tables 8, 9, 10 and 11.

P1 ζ ξ

%1 (0.627, 0.570, 0.473) (0.483, 0.630, 0.240)
%2 (0.840, 0.683, 0.563) (0.333, 0.483, 0.583)

Table 8. Average values of PFM-set P1
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P2 ζ ξ

%1 (0.583, 0.493, 0.330) (0.360, 0.556, 0.643)
%4 (0.746, 0.516, 0.150) (0.360, 0.490, 0.186)

Table 9. Average values of PFM-set P2

P3 ζ ξ

%3 (0.870, 0.676, 0.483) (0.236, 0.460, 0.167)
%4 (0.520, 0.430, 0.340) (0.340, 0.313, 0.640)

Table 10. Average values of PFM-set P3

P ζ ξ

%9 (0.520, 0.363, 0.310) (0.473, 0.210, 0.706)
%10 (0.773, 0.546, 0.460) (0.220, 0.603, 0.460)

Table 11. Average values of PFM-set P

The Euclidean distances between P and Pi’s are computed as

dE(P, P1) = 0.7195,

dE(P, P2) = 0.6812,

dE(P, P3) = 0.8142.

These distances are portrayed in Figure 5, which is self explanatory:

Figure 5. Euclidean distances between P and Pi’s
Since the minimal distance is 0.6812, which is between the patterns P and P2, so
we conclude that the testing pattern P and the pattern P2 follow the same pattern
i.e. the pattern P2 is likely to be pattern recognizable with the pattern P .
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6. Comparative analysis and superiority of the proposed work

Fuzzy sets, intuitionistic fuzzy sets and Pythagorean fuzzy sets are important
mathematical models to deal with uncertainties but these theories have their own
limitations regarding membership grades, non-membership grades, space for mem-
bership and/or non-membership grades and multiplicity (repetition) in membership
and non-membership grades. Decision analysis over some real world problems be-
comes limited while dealing with these theories. For example, IFS fails to deal
with the situation when the sum of membership and non-membership grades ex-
ceeds unity. To solve this problem, PFS provides a larger space for membership
and non-membership grades to the decision makers. Fuzzy sets deal with uncer-
tainty but does not handle non-membership grades. None of IFS and PFS deal
with multiplicities. The proposed model of Pythagorean fuzzy multisets is more
flexible and suitable to deal with the situation when the decision makers have to
assign arbitrary number of pairs of membership and non-membership grades to the
alternatives in the larger space (The space in which sum of squares of membership
and non-membership values do not exceed unity).
The proposed technique is more flexible and practical technique to deal with un-
certainties and vagueness in the field of decision analysis. Table 12 shows that the
existing methodologies have some drawbacks and limitations, which can be over-
come by using the proposed technique. From Table 12, it is clear that Pythagorean
fuzzy multiset is more suitable technique when the input data is available in the
form of multiple (paired) information.

Model Membership Non-membership Multiplicity in Enlarged
grade grade membership grades space

FS [62] X × × ×
IFS [6] X X × ×

PF-set [60, 61] X X × X
IFMS [51] X × X ×

PFM-set (proposed) X X X X
Table 12. Comparison of Pythagorean fuzzy multiset with exist-
ing structures

7. Conclusion

We brought together the notion of Pythagorean fuzzy multisets in this clause. We
presented various algebraic operations on PFM-sets including subset, union, inter-
section, sum, product, difference, symmetric difference, complement and Cartesian
product. We also presented some peculiar mathematical properties of PFM-sets
along with their proofs. A number of examples is included to comprehend the
concepts proficiently. We have proposed two algorithms for modeling uncertainties
in the multi-attribute group decision-making (MAGDM) by using PFM-sets. The
proposed Algorithm 1 and Algorithm 2 based on PFM-sets have successfully ap-
plied for MAGDM of the real world problems including medical diagnosis & pattern
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recognition. We have explained the methodology by using flow charts. Brief but
comprehensive detail of different types of diabetes and symptoms of these types,
and the sectors where pattern recognition is employed is also included. Superi-
ority of the proposed model over the contemporary models is also discussed with
brevity. PFM-sets have tremendous potential for further exploration in theoretical
besides application perspective. One can extend this work to some new models like
Pythagorean fuzzy soft multiset, PFM N-soft, PFM N-soft expert set and PFM
rough set to derive algebraic and topological structures on these hybrid models.
These ideas may be efficiently employed in handling uncertainties in different sec-
tors of real life situations including artificial intelligence, image processing, pattern
recognition, medical diagnosis, forecasting, robotics and recruitment problems.
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