Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 52(4)(2020) pp. 41-51

$nI\alpha g\text{-closed sets}$ and Normality via $nI\alpha g\text{-closed sets}$ in Nano Ideal Topological Spaces

M.Parimala Department of Mathematics, Bannariamman Institute of Technology, Sathyamangalam, Tamilnadu, India, Email: rishwanthpari@gmail.com

D.Arivuoli Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India, E-mail : arivuolisundar@yahoo.in

R. Udhayakumar*, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology(VIT University), Vellore-632014, India, E-mail : udhayaram_v@yahoo.co.in, udhayakumar.r@vit.ac.in

Received: 10 June, 2019 / Accepted: 05 March, 2020 / Published online: 01 April, 2020

Abstract.: We have defined a new generalised closed set called $nI\alpha g$ closed sets in nano ideal topological spaces. Also, association of $nI\alpha g$ closed sets with various existing closed sets are studied. Characterisations and equivalent conditions of $nI\alpha g$ closed sets are proved. Normality via $nI\alpha g$ closed sets are also been studied in this paper.

AMS (MOS) Subject Classification Codes: 54A05, 54A10, 54B05. Key Words: nIg closed sets, $nI\alpha g$ closed sets, $nI\alpha g$ -normal spaces.

1. INTRODUCTION

Introduction of ideals in topology was initiated by Kuratowski [10]. Ideals we mean a subset j satisfying

i. $\mathcal{P} \in j$ and if $\mathcal{Q} \subset \mathcal{P}$ for any subset \mathcal{Q} , then $\mathcal{Q} \in j$

ii. $\mathcal{P} \in j$ and $\mathcal{Q} \in j$, then $\mathcal{P} \cup \mathcal{Q}$ should also be in j.

Jankovic et al. [7] defined the local function \mathcal{P}^* , in ideal topology. $\mathcal{P}^*=\{x \in \chi : v \cap \mathcal{P} \notin j, \forall v \in \tau\}$. Here $\tau(x) = \{v \in \tau : x \in v\}$. Kuratowski's closure operator is defined as $cl^*(\mathcal{P}) = \mathcal{P} \cup \mathcal{P}^*$ in the *-topology $\tau^*(I, \tau)$. *I*-open sets were introduced by Jankovic et al. [8] and the work was extended by Hamlett et al. [7]. Various decompositions in

ideal spaces under various closed sets are endeavoured by Ekici [4]. A significant approach on Iq^* -openness as Iq^* -openness can be placed between topology and Levine's openness in ideal spaces was made by Erdal [2]. Recently, generalised closed sets in ideal spaces have been studied in some papers [[2],[3],[4],[5],[6], [9], [13], [14]]. The initiation of nano topology was done by Lellis Thivagar [12]. He has defined nano topology by considering a subset χ of the universal set v and its equivalence relation on v, combined with approximations and the boundary regions. Bhuvaneshwari et al. [1] initiated ng closed sets in nano topology. Parimala et al. [15] had worked on ideals in nano topological spaces. Characteristics of nano local function were studied by Parimala et al. [15]. nIq closed sets were best studied by Parimala et al. [16]. This work aims the introduction of $nI\alpha q$ closed sets in nano ideal topological spaces (NITS). The $nI\alpha g$ closed sets are compared with some existing sets. Many equivalent condition on these sets are proved. $nI\alpha g$ -normal spaces are also discussed.

2. NOTATIONS AND PRELIMINARIES

In the following sequel the following notations are used.

- nano topological spaces NTS.
- ii. nano ideal topological spaces NITS .
- iii. nano open sets NOS.
- iv. nano closed set NCS.
- v. open set OS.
- vi. closed set CS.

Definition 2.1. [11] When v be the universal set and \Re , the equivalence relation defined on v, then lower approximation $Low_{(\Re)}$, upper approximation $Upp_{(\Re)}$ and the boundary region $Bou_{(\Re)}$ are defined as follows.

- $\begin{array}{ll} \text{i)} & Low_{(\Re)} = \cup \left\{ \Re(\chi) : \Re(\chi) \subseteq \chi, x \in \upsilon \right\}.\\ \text{ii)} & Upp_{(\Re)} = \cup \left\{ \Re(\chi) : \Re(\chi) \cap \chi \neq \phi, x \in \upsilon \right\}. \end{array}$
- iii) $Bou_{(\Re)} = Low_{(\Re)} Upp_{(\Re)}$.

Definition 2.2. [12] Properties of $Low_{(\Re)}$, $Upp_{(\Re)}$ and $Bou_{(\Re)}$ are stated below.

- i) $Low_{\Re(L)} \subseteq L \subseteq Upp_{\Re(L)}$.
- ii) $Low_{(\Re)}(\phi) = Upp_{(\Re)}(\phi) = \phi.$
- iii) $Low_{(\Re)}(v) = Upp_{(\Re)}(v) = v.$
- iv) $Upp_{(\mathfrak{R})}(L \cup M) = Upp_{(\mathfrak{R})}(L) \cup Upp_{(\mathfrak{R})}(M).$
- v) $Upp_{(\mathfrak{R})}(L \cap M) \subseteq Upp_{(\mathfrak{R})}(L) \cap Upp_{(\mathfrak{R})}(M).$
- vi) $Low_{(\mathfrak{R})}(L \cup M) \supseteq Low_{(\mathfrak{R})}(L) \cup Low_{(\mathfrak{R})}(M).$
- vii) $Low_{(\mathfrak{R})}(L \cap M) = Low_{(\mathfrak{R})}(L) \cap Low_{(\mathfrak{R})}(M).$
- viii) $Low_{(\mathfrak{R})}(L) \subset Low_{(\mathfrak{R})}(M)$ and $Upp_{(\mathfrak{R})}(L) \subseteq Upp_{(\mathfrak{R})}(M)$ while $L \subseteq M$.
- ix) $Upp_{(\mathfrak{R})}(L^c) = [Low_{(\mathfrak{R})}(L)]^c$ and $Low_{(\mathfrak{R})}(L^c) = [Upp_{(\mathfrak{R})}(L)]^c$.
- x) $Upp_{(\mathfrak{R})}[Upp_{(\mathfrak{R})}(L)] = Low_{(\mathfrak{R})}[Upp_{(\mathfrak{R})}(L)] = Upp_{(\mathfrak{R})}(L).$
- xi) $Low_{(\mathfrak{R})}[Low_{(\mathfrak{R})}(L)] = Upp_{(\mathfrak{R})}[Low_{(\mathfrak{R})}(L)] = Low_{(\mathfrak{R})}(L).$

Definition 2.3. [12] Let (v, \Re) be the approximation space and the set $\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set <math>\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set <math>\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set <math>\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set <math>\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set <math>\tau_{\Re}(X) = \{v, \phi, Low_{(\Re)}, Upp_{(\Re)}, Bou_{(\Re)}\}, where we have the provided equation of the set the provided equation of the provided equation$ $X \subseteq v$ is called nano topology based on v according to X. Here $\tau_{\Re}(X)$ satisfies the axioms of topology. $(v, \tau_{\Re}(X))$ is called NTS. The members of $\tau_{\Re}(X)$ are NOS and the

complements are NCS.

Remark 2.4. [12] In $(v, \tau_{\Re}(X))$, the set $\mathcal{B} = \{v, Low_{(\Re)}, Bou_{(\Re)}\}$ is called the basis.

Definition 2.5.[15] The nano local function of (v, \mathcal{N}, I) can be defined as $\mathcal{P}_n^* = \{x \in \mathcal{N}\}$ $v, G_n \cap \mathcal{P} \notin I$, for every $G_n \in G_n(x)$.

Definition 2.6. [15] In (v, \mathcal{N}) let the ideals be $j, j', \mathcal{P}, \mathcal{Q}$ be subsets of v. Then

i) \mathcal{P} subset $\mathcal{Q} \Rightarrow \mathcal{P}_n^*$ subset \mathcal{Q}_n^* .

- $\begin{array}{ll} \text{ii)} & \jmath \subseteq \jmath' \Rightarrow \mathcal{P}_n^*(\jmath') \subseteq \mathcal{P}_n^*(\jmath).\\ \text{iii)} & \mathcal{P}_n^* = n\text{-}cl(\mathcal{P}_n^*) \text{ subset } n\text{-}cl(\mathcal{P}) \text{ where } \mathcal{P}_n^* \subset n\text{-}cl(\mathcal{P}). \end{array}$

- iii) $\mathcal{P}_{n} = \mathcal{P} \circ \mathcal{U}(\mathcal{P}_{n})^{*} \subseteq \mathcal{P}_{n}^{*}$. iv) $(\mathcal{P}_{n}^{*})_{n}^{*} \subseteq \mathcal{P}_{n}^{*}$. v) $\mathcal{P}_{n}^{*} \cup \mathcal{Q}_{n}^{*} = (\mathcal{P} \cup \mathcal{Q})_{n}^{*}$. vi) $\mathcal{P}_{n}^{*} \mathcal{Q}_{n}^{*} = (\mathcal{P} \mathcal{Q})_{n}^{*} \mathcal{Q}_{n}^{*} \subseteq (\mathcal{P} \mathcal{Q})_{n}^{*}$. vii) $\mathcal{V} \in \mathcal{N} \Rightarrow \mathcal{V} \cap \mathcal{P}_{n}^{*} = \mathcal{V} \cap (\mathcal{V} \cap \mathcal{P})_{n}^{*}$ subset $(\mathcal{V} \cap \mathcal{P})_{n}^{*}$. viii) $J \in I \Rightarrow (\mathcal{P} \cup J)_{n}^{*} = \mathcal{P}_{n}^{*} = (\mathcal{P} J)_{n}^{*}$.

Lemma 2.7. [15] In (v, \mathcal{N}, I) if $\mathcal{P} \subseteq \mathcal{P}_n^*$, for any subset \mathcal{P} , then $\mathcal{P}_n^* = n - cl(\mathcal{P}_n^*) = n - cl(\mathcal{P}_n^*)$ $cl(\mathcal{P}).$

Lemma 2.8. [15] In (v, \mathcal{N}, I) , the set operator $n - cl^*(\mathcal{P}) = \mathcal{P} \cup \mathcal{P}_n^*$ for $\mathcal{P} \subseteq \chi$.

Definition 2.9.[15] The characteristics of n- cl^* are as follows

- i) $\mathcal{P} \subseteq n cl^*(\mathcal{P})$.
- ii) $n cl^*(\phi) = \phi$ and $n cl^*(v) = v$.
- iii) $\mathcal{P} \subset \mathcal{Q}$, implies $n\text{-}cl^*(\mathcal{P}) \subseteq n\text{-}cl^*(\mathcal{Q})$.
- iv) $n cl^*(\mathcal{P}) \cup n cl^*(\mathcal{Q}) = n cl^*(\mathcal{P} \cup \mathcal{Q}).$
- v) $n cl^*(n cl^*(\mathcal{P})) = n cl^*(\mathcal{P}).$

Definition 2.10.[15] An ideal j is called \mathcal{N} -codense ideal if $\mathcal{N} \cap j = \{\phi\}$.

Definition 2.11.[15] A subset \mathcal{P} of (v, \mathcal{N}, I) is *n**-dense in itself (resp. *n**-perfect) if $\mathcal{P} \subseteq \mathcal{P}_n^*$ (resp. $\mathcal{P} = \mathcal{P}_n^*$).

Remark 2.12.[15] If \mathcal{P} is *n**-dense in itself, then $\mathcal{P}_n^* = n - cl(\mathcal{P}_n^*) = n - cl(\mathcal{P}) = n - cl^*(\mathcal{P})$. **Definition 2.13.** A subset \mathcal{P} of (v, \mathcal{N}, I) is

- i) nIg-closed, if $\mathcal{P}_n^* \subseteq \mathcal{V}$, $\mathcal{P} \subseteq \mathcal{V}$ and \mathcal{V} is *n*-open [16].
- ii) $n\alpha$ -OS, if $\mathcal{P} \subset N$ -int(n-cl(n-int $(\mathcal{P})))$ [12].
- iii) *ng*-closed, if n- $cl(\mathcal{P}) \subseteq \mathcal{V}$ while $\mathcal{P} \subseteq \mathcal{V}$ for a NOS \mathcal{V} .[1]
- iv) $nq\alpha$ -closed, if $n\alpha$ - $cl(\mathcal{P}) \subset \mathcal{V}$ while $\mathcal{P} \subset \mathcal{V}$ for a nano α OS \mathcal{V} .[17].

Theorem 2.14. A set which is nano open is always a nano α -open.[12]

Theorem 2.15. A $n\alpha$ -open set is always a $ng\alpha$ -open set.[17]

3. $nI\alpha g$ -closed sets

In this article (v, \mathcal{N}, I) represents nano ideal topological space. **Definition 3.1.** In (v, \mathcal{N}, I) , nano ideal α -generalized closed set (briefly $nI\alpha g$ -closed set), we mean if for a subset $\mathcal{P}, \mathcal{P}_n^* \subseteq V$ whenever $\mathcal{P} \subseteq V$ and V is a $n\alpha$ -open set. \mathcal{P} is a $nI\alpha g$ -open set if v - P is a $nI\alpha g$ -closed set.

Example 3.2. Consider the universal set $v = \{x, y, z, w\}$, the approximation space $v/R = \{\{x\}, \{z\}, \{y, w\}\}, X = \{x, y\} \subseteq v$ with the ideal $I = \{\phi, \{z\}, \{y\}, \{y, z\}\}, nI\alpha g$ -closed sets are $\{\{y\}, \{z\}, \{x, z\}, \{y, z\}, \{z, w\}, \{x, y, z\}, \{x, z, w\}, \{y, z, w\}, v, \phi\}$.

Theorem 3.3 In a (v, \mathcal{N}, I) , the following implications are true and the reverse cases need not be true in general.

- i) All NCS are $nI\alpha g$ -closed.
- ii) All n^* -CS are $nI\alpha g$ -closed.
- iii) Allng-CS are a $nI\alpha g$ -CS.
- iv) All $nI\alpha g$ -CS are nIg-CS.
- v) All $nI\alpha g$ -CS are $ng\alpha$ -closed only when \mathcal{P} is n^* -dense in itself.

Proof.

- i) Assume that v be a nano α -CS and $\mathcal{P} \subseteq v$ be a NCS. Then we may infer that n- $cl(\mathcal{P}) = \mathcal{P} \subseteq v$, implies n- $cl(\mathcal{P}) \subseteq v$. Also n- $cl^*(\mathcal{P}) = \mathcal{P} \cup \mathcal{P}_n^* \subseteq n$ - $cl(\mathcal{P}) \subseteq v$, leads $\mathcal{P} \subseteq v$ and $\mathcal{P} \cup \mathcal{P}_n^* \subseteq v$, implying $\mathcal{P}_n^* \subset v$ and v is a nano α -OS. Therefore \mathcal{P} is a $nI\alpha g$ -CS.
- ii) Assume that v, a nano α -OS and \mathcal{P} , a n^* -CS. Therefore we get $\mathcal{P}_n^* \subseteq \mathcal{P} \subseteq v$, which implying $\mathcal{P}_n^* \subseteq v$ and $\mathcal{P} \subseteq v$ and v is nano α -OS. Hence \mathcal{P} is a $nI\alpha g$ -CS.
- iii) Consider a *ng*-CS \mathcal{P} and a NOS v and $\mathcal{P} \subset v$. As \mathcal{P} is *ng*-CS, we have n $cl(\mathcal{P}) \subseteq v$. Also we have $\mathcal{P}_n^* = n - cl(\mathcal{P}_n^*) \subseteq n - cl(\mathcal{P}) \subseteq v$, which implies $\mathcal{P}_n^* \subseteq v$ and $\mathcal{P} \subseteq v$. v is *n*-OS. As every *n*-OS is a nano α -OS, proof follows.
- iv) Consider v as a NOS and \mathcal{P} be a subset of v. Referring Theorem 2.14, \mathcal{P} may be a $n\alpha$ -open set. Whenever \mathcal{P} is considered to be a $nI\alpha g$ -closed set, we get $\mathcal{P}_n^* \subseteq v$ and $\mathcal{P} \subseteq v$. By assumption v is NOS. Hence \mathcal{P} is a nIg-closed set.
- v) Let \mathcal{P} a $n\alpha$ -OS v. By Theorem 2.15 v may be a $ng\alpha$ -OS. Assume that \mathcal{P} to be a $nI\alpha g$ -CS. Therefore we have $\mathcal{P}_n^* \subseteq v$. Also $\mathcal{P}_n^* = n \cdot cl(\mathcal{P})$. That is we lead that $n \cdot cl(\mathcal{P}) \subseteq v$. Also $n\alpha \cdot cl(\mathcal{P}) \subseteq n \cdot cl(\mathcal{P}) \subseteq v$. v is a nano α -OS. Hence \mathcal{P} is a $ng\alpha$ -CS.

The reverse implications of the results may not true in all occasions, examples below explains the fact.

Example 3.4. Consider the universal set $v = \{x, y, z, w\}$, approximation space $v/R = \{\{x\}, \{z\}, \{y, w\}\}, \chi = \{x, y\}$ and the ideal $I = \{\phi, \{z\}, \{y\}, \{y, z\}\}$.

- i) $A = \{y\}$ is a $nI\alpha g$ -CS and not a n-CS.
- ii) $A = \{z, w\}$ is a $nI\alpha g$ -CS and not a n^* -CS.
- iii) $A = \{y\}$ is a $nI\alpha g$ -CS and not a ng-CS.
- iv) Consider the universal set $v = \{x, y, z, w, s\}$, approximation space $v/R = \{\{w\}, \{x, y\}, \{z, s\}\}$, $\chi = \{x, w\}, I = \{\phi, \{x\}, \{s\}, \{x, s\}\}$. In this example $\mathcal{P} = \{x, z\}$ is a *nIg*-CS and not a *nI* α *g*-CS.

Theorem 3.5. Consider (v, \mathcal{N}, I) to be a NITS. Whenever the subset $\mathcal{P} \in I$, then \mathcal{P} is a $nI\alpha g$ -CS in U.

Proof. Consider $\mathcal{P} \subseteq K$. K is $n\alpha$ -OS. Since $\mathcal{P} \in I$, we get $\mathcal{P}_n^* = \phi$ always. Which implies $\mathcal{P}_n^* \subseteq \mathcal{P} \subseteq K$ and $\mathcal{P}_n^* \subseteq K$ and v is a $n\alpha$ -OS. Therefore $\mathcal{P} \in I$ is always a $nI\alpha g$ -CS.

Theorem 3.6. In a (v, \mathcal{N}, I) , if $\mathcal{P}, \mathcal{Q} \subseteq U$ are $nI\alpha g$ -closed sets, then $\mathcal{P} \cup \mathcal{Q}$ is also a $nI\alpha g$ -CS.

Proof. As \mathcal{P} and \mathcal{Q} are $nI\alpha g$ -CS, $\mathcal{P}_n^* \subseteq K$. $\mathcal{P} \subseteq K$ and K is a nano α -OS. Also \mathcal{Q}_n^* subset K and \mathcal{Q} subset K and K is a $n\alpha$ -OS. As $\mathcal{P}, \mathcal{Q} \in K$. $\mathcal{P} \cup \mathcal{Q} \subseteq K$. Also $(\mathcal{P} \cup \mathcal{Q})_n^* = \mathcal{P}_n^* \cup \mathcal{Q}_n^*$ subset of K. K is $n\alpha$ -OS. It means $\mathcal{P} \cup \mathcal{Q}$ is a $nI\alpha g$ -CS.

Remark 3.7. $\mathcal{P} \cap \mathcal{Q}$ may not be a $nI\alpha g$ -CS in all occasions.

Theorem 3.8. In a NITS, if a set is both $nI\alpha g$ -closed and $n\alpha$ -open set then it is a n^* -closed set.

Proof. Consider \mathcal{P} to be a $nI\alpha g$ -CS which is also a $n\alpha$ -OS. Since \mathcal{P} is $n\alpha$ -open, we get $\mathcal{P} \subseteq \mathcal{P}$ and hence \mathcal{P}_n^* subset \mathcal{P} . Hence \mathcal{P} is a n^* -CS.

Theorem 3.9. In (v, \mathcal{N}, I) , the necessary and sufficient condition for any subset to be a $nI\alpha q$ -CS is that every $n\alpha$ -OS is a n^* -CS.

Proof. Necessary part. Let all subsets of v is a $nI\alpha g$ -closed sets and one of the subset K be a $n\alpha$ -open set. By referring Theorem 3.8, the proof follows.

Sufficient part. Let every $n\alpha$ -open subset of v be a n^* -CS. Let K be one such set such that $\mathcal{P} \subseteq K \subseteq v$. Then we infers that $\mathcal{P}_n^* \subseteq K \subseteq v$. By definition \mathcal{P} is a $nI\alpha g$ -CS.

Theorem 3.10. Consider a NITS (v, \mathcal{N}, I) and K be a non empty nano open(n-open set) subset of v. Then the statements discussed below are equivalent to each other.

- a) K is a $nI\alpha g$ -CS.
- b) $n cl^*(K) \subset V$, V a $n\alpha$ -open subset(n-open) of v.
- c) Each $x \in n \cdot cl^*(K)$, there exists at least one element in $n\alpha \cdot cl(\{x\}) \cap K(n \cdot cl(\{x\}) \cap K)$.
- d) $n cl^*(K) K$ always contains an empty $n\alpha$ -CS.
- e) $K_n^* K$ is always empty and a nano α -CS.

Proof. $a \implies b$). Consider a $nI\alpha g$ -CS K of (v, \mathcal{N}, I) . Definition of $nI\alpha g$ -CS infers that $K_n^* \subseteq V$ whenever $K \subseteq V$ and V is $n\alpha$ -open in (v, \mathcal{N}, I) . Also n- $cl^*(K) = K_n^* \cup K \subseteq V$. V is a $n\alpha$ -OS(n-OS). which proves hypothesis b).

b) \implies c). Consider an element x in $n \cdot cl^*(K)$. Let us assume the contrary that $n\alpha \cdot cl(\{x\}) \cap K = \phi$. $(n \cdot cl(\{x\}) \cap K = \phi)$. So that we have $K \subseteq (v - (n\alpha \cdot cl(\{x\})))$. By referring hypothesis b), it is possible that $n \cdot cl^*(K) \subseteq (U - (n\alpha \cdot cl(\{x\})))$. which contradicts to our assumption. Therefore $n\alpha \cdot cl(\{x\}) \cap K \neq \phi$.

 $c) \Longrightarrow d$). Consider a $n\alpha$ -CS M which is non empty and let $M \subseteq n \cdot cl^*(K) - K$. Let $x \in M$. As M is $n\alpha$ -closed, we may write $M \subseteq (v - K)$. $K \subseteq (v - M)$. Therefore $n\alpha \cdot cl(\{x\}) \cap K = \phi$, which contradicts to the hypothesis c). Hence $n \cdot cl^*(K) - K$ always contains an empty $n\alpha$ -CS.(n-CS)

 $d) \Longrightarrow e)$. Since $n \cdot cl^*(K) = K \cup K_n^*$, we get $n \cdot cl^*(K) - K = (K \cup K_n^*) - K = (K \cup K_n^*) \cap K^c = (K \cap K^c) \cup (K_n^* \cap K^c) = \phi \cup (K_n^* \cap K^c) = K_n^* - K$. Referring

hypothesis d) it is concluded that $K_n^* - K$ also contains no non empty nano α -CS.(n-CS). $e) \Longrightarrow a$). Consider a n-OS $\mathcal{P} \subseteq K$. K is a nano α -OS. Then $v - K \subseteq (v - \mathcal{P})$. Also $\mathcal{P}_n^* \cap (v - K) \subseteq \mathcal{P}_n^* \cap (v - \mathcal{P}) = \mathcal{P}_n^* \cap (v \cap \mathcal{P}^c) = \mathcal{P}_n^* - \mathcal{P}$. As \mathcal{P}_n^* is n-closed, it is nano α -closed also. Since K is $n\alpha$ -open, v - K is nano α -closed. Hence $\mathcal{P}_n^* \cap (v - K)$ is a $n\alpha$ -CS contained in $\mathcal{P}_n^* - \mathcal{P}$. Therefore $\mathcal{P}_n^* \cap (v - K) = \phi$. Hence $\mathcal{P}_n^* \subseteq K$ and $\mathcal{P} \subseteq K$, where K is a nano α -open set, which leads the proof.

Theorem 3.11. In a (v, \mathcal{N}, I) , when \mathcal{P} is n^* -dense in itself, the if and only if condition for a subset \mathcal{P} to be a $nI\alpha g$ -CS is that \mathcal{P} is ng-CS.

Proof. Necessity. Consider \mathcal{P} to be $nI\alpha g$ -CS. By the definition, $\mathcal{P}_n^* \subseteq V$ whenever $\mathcal{P} \subseteq V$ and V is $n\alpha$ -open. When $I = \phi$, referring Theorem 2.12 $\mathcal{P}_n^* = n \cdot cl(\mathcal{P})$. Therefore $n \cdot cl(\mathcal{P}) \subseteq V$. Hence \mathcal{P} is a ng-CS.

Sufficiency. Consider a ng-CS \mathcal{P} . Then n- $cl(\mathcal{P}) \subseteq V$. $\mathcal{P}_n^* \subseteq V$. Also $\mathcal{P} \subseteq n$ - $cl(\mathcal{P}) \subseteq V$. V is n-open. By Theorem 2.14, \mathcal{P} is $nI\alpha g$ -CS.

Theorem 3.12. Consider a NITS (v, \mathcal{N}, I) and $\mathcal{P} \subseteq v$. Then if and only if condition for \mathcal{P} to be a $nI\alpha g$ -CS is $\mathcal{P} = \mathcal{Q} - N$, where \mathcal{Q} is a n^* -CS and N does not have no non empty $n\alpha$ -CS.

Proof. Necessary. Assume \mathcal{P} to be a $nI\alpha g$ -CS. Referring Theorem 3.9 (e) $\mathcal{P}_n^* - \mathcal{P}$ does not have non empty $n\alpha$ -CS. Let $N = \mathcal{P}_n^* - \mathcal{P}$. Whenever $\mathcal{Q} = n \cdot cl^*(\mathcal{P})$ and \mathcal{Q} is n^* -closed then $\mathcal{Q} - N = (\mathcal{P} \cup \mathcal{P}_n^*) - (\mathcal{P}_n^* - \mathcal{P}) = \mathcal{P}$. Hence the proof.

Sufficiency. Assume $\mathcal{P} = \mathcal{Q} - N$ with the given conditions that \mathcal{Q} is a n^* -CS and N contains no non empty $n\alpha$ -CS. Let $\mathcal{P} \subseteq K$ for some $n\alpha$ -OS K, which leads that $\mathcal{Q} \cap (\chi - K) \subseteq N$. Also $\mathcal{P} \subseteq \mathcal{Q}$ implies $\mathcal{P}_n^* \subseteq \mathcal{Q}_n^* \subseteq \mathcal{Q}$ since \mathcal{Q} is n^* -closed. Let $\mathcal{P}_n^* \cap (\chi - K) \subseteq \mathcal{Q}_n^* \cap (\chi - K) \subseteq \mathcal{Q} \cap (\chi - K) \subset N$. Referring the hypothesis $\mathcal{P}_n^* \cap (\chi - K) = \phi$. Which implies $\mathcal{P}_n^* \subseteq K$. Already $\mathcal{P} \subseteq K$ and K is nano α -open. Hence the proof.

Theorem 3.13. In (v, \mathcal{N}, I) , the condition for a subset \mathcal{P} to be a $nI\alpha g$ -OS is that $j \subseteq n$ - $int^*(\mathcal{P})$, whenever $j \subseteq \mathcal{P}$ and j is a $n\alpha$ -closed set and the reverse implication is also true. **Proof. Necessary.** Assume a $nI\alpha g$ -OS \mathcal{P} and a $n\alpha$ -CS j and $j \subseteq \mathcal{P}$. So $(\chi - \mathcal{P}) \subseteq (\chi - j)$. By referring Theorem 3.9 b), n- $cl^*(\chi - \mathcal{P}) \subseteq (\chi - j)$ and $j \subseteq (\chi - (n - cl^*(\chi - \mathcal{P})))$, which implies $j \subseteq n$ - $int^*(\mathcal{P})$.

Sufficiency. Let ρ be a $n\alpha$ -OS and $(\chi - \mathcal{P}) \subseteq \rho$. Then $(\chi - \rho) \subseteq \mathcal{P}$. By hypothesis $(\chi - \rho) \subseteq n$ -int^{*} (\mathcal{P}) , therefore n- $cl^*(\chi - \mathcal{P}) \subseteq v$. By referring Theorem 3.9, \mathcal{P} is a $nI\alpha g$ -OS.

4. Normality via $nI\alpha g$ -closed sets

Definition 4.1. $nI\alpha g$ -normal space we mean, if for all pairs of $nI\alpha g$ -CS \mathcal{P} , \mathcal{Q} and $\mathcal{P} \cap \mathcal{Q} = \phi$, there corresponds atleast two NOS ρ and ω of (v, \mathcal{N}, I) and $\rho \cap \omega = \phi$ satisfying $\mathcal{P} \subseteq \rho$ and $\mathcal{Q} \subseteq \omega$.

Theorem 4.2. In (v, \mathcal{N}, I) , the equivalent implications on $nI\alpha g$ -normal-spaces are stated.

a) (v, \mathcal{N}, I) is a $nI\alpha g$ -normal-space.

b) For all nIαg-closed set ω and a nIαg-open set j such that ω ⊆ j, there corresponds a n-OS V ⊂ v and ω ⊆ V ⊆ n-cl(V) ⊆ j.

Proof. a) \Longrightarrow b). Assume ω be a $nI\alpha g$ -CS and j be a $nI\alpha g$ -OS and $\omega \subset j$. Then v - j is a $nI\alpha g$ -CS. Therefore $\omega \cap (\chi - j) = \phi$. By hypothesis (a) of this theorem it is understood that for any two disjoint NOS \mathcal{P} and \mathcal{Q} such that $\omega \subseteq \mathcal{P}$ and $\chi - j \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \phi$. But $\mathcal{P} \subseteq (\chi - \mathcal{Q})$ implies n- $cl(\mathcal{P}) \subseteq (\chi - \mathcal{Q})$. Hence $\omega \subseteq \mathcal{P} \subseteq n$ - $cl(\mathcal{P}) \subseteq (\chi - \mathcal{Q}) \subseteq j$ which proves (b).

Proof. b) \Longrightarrow a). Let ω and j are disjoint $nI\alpha g$ -CS and $\omega \subseteq (\chi - j)$. Reference on hypothesis b) of this theorem infers the existence of a *n*-open set \mathcal{P} of (v, \mathcal{N}, I) such that $\omega \subseteq \mathcal{P} \subseteq n\text{-}cl(\mathcal{P}) \subseteq (\chi - j)$. Let $\mathcal{Q} = v - n\text{-}cl(\mathcal{P})$. Since n-cl(M) is a NCS, \mathcal{Q} is a *n*-open set. These \mathcal{P} and \mathcal{Q} are the NOS (*n*-open sets) that contains ω and j. Which proves a).

Theorem 4.3. In (v, \mathcal{N}, I) , the equivalent implications on $nI\alpha g$ -normal-spaces are as follows.

- a) (v, \mathcal{N}, I) is a $nI\alpha g$ -normal-space.
- b) For any two nIαg-closed subsets P and Q of (v, N, I), there corresponds a NOS ρ of (v, N, I) satisfies P ⊆ ρ, then n-cl(ρ) ∩ Q = φ.
- c) For any two $nI\alpha g$ -CS \mathcal{P} and \mathcal{Q} and $\mathcal{P} \cap \mathcal{Q} = \phi$, there corresponds a NOS ρ satisfying $\mathcal{P} \subseteq \rho$ and a NOS ω satisfying $\mathcal{Q} \subseteq \omega$ then n- $cl(\rho) \cap n$ - $cl(\omega)$ is an empty set.

Proof. a) \Longrightarrow b). Consider a pair of $nI\alpha g$ -CS \mathcal{P} and \mathcal{Q} and $\mathcal{P} \cap \mathcal{Q} = \phi$, then $\mathcal{P} \subseteq (\chi - \mathcal{Q})$, where $\chi - \mathcal{Q}$ is a $nI\alpha g$ -OS. Referring Theorem 4.2, there corresponds a NOS ρ such that $\mathcal{P} \subseteq \rho \subseteq n \cdot cl(\rho) \subseteq \chi - \mathcal{Q}$. Therefore $n \cdot cl(\rho)$ and \mathcal{Q} are disjoint sets. Hence ρ is the NOS satisfies b).

b) \Longrightarrow c). b) of this theorem implies $n - cl(\rho)$ and Q are disjoint $nI\alpha g$ -CS of the NITS v. Therefore there exists a NOS ω containing Q such that $n - cl(\rho) \cap n - cl(\omega) = \phi$ which proves c).

c) \Longrightarrow a). Hypothesis c) proves a).

5. CONCLUSION

A new class of generalised closed namely $nI\alpha g$ -closed set is introduced in nano ideal topological spaces. A comparative study of the $nI\alpha g$ -closed set with existing closed sets is endeavoured and the reverse implications are explained with counter examples. Characterisations theorems and heredity properties of $nI\alpha g$ -closed sets are stated and proved. In addition to that a new type of normal space called $nI\alpha g$ -normal space is introduced and its characterisation is studied.

6. ACKNOWLEDGMENTS

The authors are grateful to the referees and editorial board for their expert suggestions and comments.

References

 K. Bhuvaneswari and K.Mythili Gnanapriya, Nano Generalized Closed Sets in Nano Topological spaces, International j. sci. res. publi., 4 (5) (2014) 1-3.

- [2] E. Ekici and O. Elmah, On Decompositions Via Generalized Closedness In Ideal Spaces, Filomat, 29 (4) (2015), 879-886.
- [3] E. Ekici and A. N. Tun, On *PC**- closed sets, j. of the Chung. Math. Soc., **29** (4) (2016) 565-572.
- [4] E. Ekici, On An Openness Which Is Placed Between Topology and Levine's Openness, Jordan j. Math. and Stat., 9(4)(2016) 303-313.
- [5] E. Ekici and A. N. Tun, On A Superclass of *-operfectness, Filomat, 31, (14) (2017) 4499-4505.
- [6] E. Ekici and S. Ozen, A Generalized Class Of τ^* In ideal Spaces, Filomat, 27 (4) (2013) 529-535.
- [7] D. Jankovic and T. R. Hamlett, New Topologies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990) 295 310.
- [8] D. Jankovi and T. R. Hamlett, Compatible Extensions Of Ideals, Boll. Un. Mat. Ital., 7(6-B) (1992) 453-465.
- [9] R. Jeevitha, M. Parimala and R. Udhayakumar, Nano ??-Connectedness and Compactness in Nano Topological Spaces, International Journal of Recent Technology and Engineering, 8(2), (2019). 788-791.
- [10] K.Kuratowski, Topology, I, Academic Press, New york, 1996.
- [11] M.Lellis Thivagar and Carmel Richard, On Nano Continuity, Int. j. Math. Stat. inv., 1 (1) (2013) 31-37.
- [12] M.Lellis Thivagar and Carmel Richard, On Nano Forms Of Weakly Open Sets, Math. Theo. Model., 3(7) (2013) 32-37.
- [13] M. Parimala, Florentin Smarandache, S.Jafari and R. Udhayakumar, On neutrosophic $\alpha\psi$ -closed sets, Infor-mation, **9**(5) 103 (2018).
- [14] M. Parimala, M. Karthika, S. Jafari, F. Smarandache, R. Udhayakumar, Neutrosophic Nano ideal topolgical structure, Neutrosophic Sets and Systems, 24, (2) (2019) 70-76.
- [15] M. Parimala, S. Jafari, On Some New Notions in Nano Ideal Topological Spaces, Int. Bal. j. Math., 1 (3) (2018) 85-92.
- [16] M. Parimala, S. Jafari and S. Murali, Nano Ideal Generalised Closed Sets in Nano Ideal Topological Spaces, Annales Univ. Sci.Budapest, 60, (2017) 3-11.
- [17] R.Thanga Nachiyar, K.Bhuvaneswari, On Nano Generalised α-closed Sets and Nano α-generalised Closed Sets In Nano Topological Spaces, Int. j. Engg.Tre. Tech., 13 (6) (2014) 257-260.