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Abstract.: This paper is an exposition on how Grothendieck’s Quot scheme
can be seen as a solution to the moduli problem of quotient sheaves. These
schemes as corresponding moduli spaces play a significant role, not only
in solving problems within geometry in general, but they are also applica-
ble to problems of classification in algebra. These Quot schemes are intro-
duced in context of the setting up of a solution to a moduli problem. This is
then followed by its application to particular problems of classifying con-
tinuously varying families of quotient sheaves with a fixed Hilbert poly-
nomial. The purpose of this investigation is to bridge the often abstract
settings of moduli theory as pioneered by Grothendieck, and its concrete
application through solving particular moduli problems in concrete pro-
jective geometric setting. In particular, this study will present how alge-
braic geometry through moduli theory helps reveal significant information
about the family of objects which it parameterizes.
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1. INTRODUCTION

Roughly speaking, a moduli problem amounts to parameterizing an interestingdclass
of objects from a categor§g with the help of points of some geometric object, seyup
to an equivalence relation. Thi§ under certain conditions is called the fine moduli space.
It has its significance in problems pertaining to classification of objectsup to the cor-
responding equivalence with the expectation that the geometkywill produce valuable
information for our understanding of. For instance, it is a well known fact that the class
of all hypersurfaces of degrekin an n-dimensional projective spad@* corresponds to
PN such thatV = (“1") — 1 ([5] IX.2). Forn = 2, it helps us better understand why two
points determine a line, five points a conic, nine points a cubic, so on and so fijritd([
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pp. 67-81). In other words, in this case, the numbeNgjoints, which is a finite data, suf-
ficiently determines the possibility of existence of any degtégpersurface i, which
is a classic example of application of moduli problems to the problems in combinatorics
and enumerative geometryOn the other hand, moduli problems can also help us state the
classification problems of algebraic objects. For instance, it has been identified that if
is aZ-graded finitely generated algebra isomorphic to the exterior algetifa ) of some
finite dimensional vector spadé over K, then everyZ-gradedA-moduleM generated by
(n + 1) elements which is also a finit&-dimensional vector space can be obtained from
an algebraic vector bundle &% ([3] Appendix A).

An outline of the construction of Quot schemes is presented in se2tiorhere are
two ways moduli problems can be stated, depending upon the representability or corepre-
sentability of the corresponding moduli functors. There are many such moduli functors. For
instance, there is one which determines families of closed subschemes of a given scheme
under certain conditions called Hilbert functor, and there is one which determines families
of subsheaves or quotient sheaves on a fixed scheme satisfying some conditions called Quot
functor. The functors are found to be representable, and the representing objects are called
Hilbert and Quot schemes, respectivels]([12]). We will restrict our attention to the case
when the moduli functor is the Quot functor. In such a case, the representing object which
solves the moduli problem is called fine moduli space. All schemes will be projective over
some algebraically closed field. Section3 will present explicit calculations involving
moduli problems and their solutions, i.e. moduli spaces, such that these moduli spaces are
special cases of Quot scheme in concrete projective geometric setting.

2. GROTHENDIECK S QUOT SCHEME AS AMODULI SPACE

Let X be some projective scheme over an algebraically closedAieddch that it comes
equipped with the usual ample line bunddg (1).? Then for any coherent sheaf on X,
Euler characteristic and Hilbert polynomial #f, denoted byy () and Py, respectively,
are related by the formula

dim(X)
Py(t) =x(H®Ox(t)) = > (1)) dimg(H (X, H ® Ox(t))).
j=0
Define a contravariant functor
Quot?s : Schy — Set

from the category of schemes ov&rto the category of sets with a fixed Polynomiale
Q[t] and a coherent sheé&fon X, such that’S € Ob(Schy),

Quot’ ¢(S) = {< Q,q > | condition « is satisfied

whereas we may state conditiorand the designation 6f Q, ¢ > in terms of the follow-
ing [12]:

1This was known to early Greek mathematicians, provided weé fixbe the category of algebraic curves over
R. These number of points is exactly the dimension of the moduli spAceorresponding to the hypersurfaces
of degreel, 2, .. ., respectively.

2A more general construction is also permissible. For instance, we may &lldovbe Noetherian and of
‘finite type’ over some Noetherian scherfig[4], 2.1).
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VS € Schy, if X xx S is the fiber product ofX andS over K ,° with 7x andrg being
the canonical projections onto first and second factors respectively<tiirn; > denotes
the equivalence class of short exact sequences inkChx S) (i.e. category of coherent
sheaves oX x S)) of the form

0—Kggq—7x() =& ——=Q—0 2. 1)

with Q flat overS having the Hilbert polynomiaPy, = P, ¢ being the surjectiv® x . s-
linear homomorphism with kernélo ,, and the equivalence class is determined by the
equivalence relatior Q, ¢ >=< @', ¢’ > <= the following diagram commutes

q

0 Ko.q Es Q 0 (2. 2)
~ id Jz
0 ICQ’ ,q’ 55 1 Q/ 0.

These classes may further satisfy some further conditions, depending upon the groblem.
One may wonder whether the func@uozfl;}’5 is representable (cf1y] 111.2, pp. 22-23 for

the definition of representability of a functor). Grothendieck (cited.})[proved that this

functor is representable by a projective scheme évavhich can be seen to be either the
Grassmannian scheme itself or a projective scheme embedded inside Grassmannian. Let
the projective scheme which represents this functor be denotQiTyl;g. As a result,

from Yoneda'a Lemmall4], p. 61), we obtain the natural isomorphism,

8 —P
Quoti)s ~ Homgen, (— , Quoty ¢),

such that this isomorphism comes equipped with the commutative diagram:

p P— -} Quot;}yg P P
Quotxf(QuotX,g) — Homgep, (Quot x ¢, Quot y ¢) S 2.3)
lgwti,g(f) lf* Jf
P Bs ——P —p
Quoty ¢(S) —————— Homg, (S, Quoty ¢) Quot y ¢

with bothﬁmp , Bs being the invertible components of the natural isomorphisBy

uoty ¢
the standard construction from category theory, there exists a universal object (or equiva-
lently universal arrow), sa@ on X x Quot;g, which is the imagé(;1 P (1 ) €

X,E

Quot;s

Quotf}’g(Quot;g). This corresponds to the continuously varying family of quotient

sheaves oveX parameterized by the points @‘uotl;,‘g obtained as the restriction @@

over the fiberazzr(;1 . () C X x Quot;g with universal property that iQuot¥ (S)

uoty ¢

SFrom this point onwards, we will drofi” as subscript and simply writ& x S.

e may keep this arbitrary right now. It can be equality, it can be a condition on chern classes of coherent
sheaves, etc. For instance, Okonek et @] discussed the explicit construction of the moduli space of rank
2 stable vector bundles dP? such that their first and second chern classeandcs respectively, satisfy the
condition: ‘eitherc; is odd, or,c; is even andz — c? /4 is odd.’
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is any other family of quotients parameterized by pointsSofwvhich are restrictions of
Qs € Cohg (X x S) (given by 2. 1) above) over the fibe;r;l(s) C X x S, which are

flat overS, then there exists a uniqyee Homg,p,, (S, Quot;g) such that the above di-
agram 2. 3) commutes. It is in this setting, we say tlﬂ@not;g is the fine moduli space

to the fine moduli problem of classifying all quotient sheaves d¥eip to a given Hilbert
polynomial. Solving this fine moduli problem amounts to determining this represented

objectQuot?s up to isomorphism.

3. MODULI SPACES OFQUOTIENT SHEAVES

We now present explicit solutions to some fine moduli problems involving coherent quo-
tient sheaves of! such that the corresponding moduli spaces are examples of Quot scheme
as projective varieties. We will also derive some significant results which are correlatively
motivated by these moduli problems. In this section, we are interested in parameterizing
some interesting classes of quotient sheaves with a given Hilbert polynomial with points of
Grassmannian. We first consider the class of sheaves given by the fdraflghort exact
sequences (s.e.s.) of the form:

0— F — (Op(1)®)s = Q — 0 (3. 4)
on P! x S obtained by pullingDp: (1)®? via the functorry, () ® 75(Os), whereF is
any subsheaf ofOp: (1)¥%)s on P! x S. This helps us se& as family of subsheaves
onP! x S, varying with pointss € .S such that it gives rise to a corresponding family of

subsheaveg (s),Vs € S, whereF(s) is the pullback ofF over the fiberi—1(s) via the
canonical embedding: P' — P! x S, giving us,vVs € S, the s.e.s. of?!,

0 — F(s) — (0m(1)%%) L Q(s) — 0. (3.5)
In what follows, for notational brevity, we will keep writing over P! for F(s) and Q
overP! for Q(s) and presume that the context will make everything clear. We fix Hilbert
polynomial for the quotien© to be Po(t) = ¢ + 3. Then from Sectioi? above, we
can restate our problem in terms of a fine moduli problem or functor as follows let
PLP =t+3,E = (Op(1)9?)s, VS € Ob(Schy), to obtain the moduli Quot functor
as
Quott2(S) = {< (Qs,qs >} (3. 6)
We have already seen that this Quot functor is representable by the Quot SQhetﬁé

as a projective scheme. We solve this moduli problem by determining this projective
scheme up to isomorphism.

Proposition 3.1. Quoty’ is isomorphic taP®.
Proof. From ([11]4.4) we can define a map
—P
@ : Quotp” — G(Po(n), H%(Opi(1)%%(n)))

where G(Pg(n), H(Op1 (1)%2(n))) is the Grassmannian variety, consistinges (n)-
codimensional subspaces of the vector spateOp: (1)2(n)) for some particular choice
of n > 0, such that> = Im(®) satisfies the condition that: € %, we have

dim g ((H°(Op1 (1)®2(m))) /(x @ H°(P*, Op1 (m — n)))) = Pg(m),Ym >n. (3.7)
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The map® becomes an embedding if for some> 0, we can show thater(q) = F in
s.e.s. 8. 9) satisfies the following two condition& 1](4.4.10):

(@H' (P, F(n+k)) =0, Vk >0,
(b) HO(P*, Op: (k) @ HO(PY, F(n)) = HO(PY, F(n + k)), Vk > 0.

We first note, from the additivity of Hilbert polynomial, th&- + Pg = Po_, (1)e:. Since

Po_, (122 (t) = 2t + 4 this givesPr = t + 1. This shows that rank of is 1 and is of the

form Op:. This impliesH! (P!, F(k)) = 0,Vk > 0 ([13] 111.5). This gives us full freedom

for our choice ofr. We fixn = 0, then both conditions (a) and (b) are satisfiedfmyThus,
Wﬁ:ﬁ sits inside the Grassmanniéi(3, 4) = P*° However, we have to show that map

® surjects, i.eX = P3. In other words, we must show thét € P2, x satisfies condition
3.7).

Considerm > 0, and the long exact sheaf cohomology sequence corresponding to s.e.s.
(3.5), we have

0 — HO(P', F(m)) — HO(B', H*(Op (1)%2(m))
— H°(P', Q(m)) — H*(P', F(m)) — ....
From the additivity ofdimx ( ) as a function on long exact sequence above, we obtain,
dimg (H° (P, Op1 (1)%%(m)) — dimg (z @ HY(P*, Op1)) = m + 3 = Pg(m),¥m >0
therefore X = P3. O

As already remarked above in Sectitjrthere are deeper connections between moduli
theory of sheaves and classification problems in algebra. In order to work out a concrete
example to motivate how such a connection makes sense, we start with some observations.
Let A be an associativé-graded algebra ovek, which is finitely generated by degrée
component. Lef\/ be the corresponding-graded finitely generated left-module ovér
which is also &.-graded finite-dimensiondt’-vector space. We define the Grassmannian
variety G(n, M) to be the space which parameterizes all n-codimensional subspaktés of
([6], 1.5). But sinceM is also a finitely generated-module, we may define a variant
of G(n, M) to be theG 4(n, M) C G(n, M) such thatG 4(n, M) is the parameter space
which parameterizes ali-graded leftA submodules of\f. This is a projective subvariety
of G(n, M) [9]. In caseM = @,z M; such that allM; are finite dimensional K-vector
spaces without (possibly}/ itself being so, we may still have a variant@f (n, M) con-
struction by considering the truncations/af as follows. Definel/>,, to be the submodule
of M consisting of all degreg-components such that> p. Let M|, ,; be the submodule
consisting ofM; such thatM/; # 0,p < j < ¢, or equivalently,M, ,, = M,/M,. In
particular, if Quotig (S) is the Quot functor, withX projective overK, parameterizing
all quotient sheaves with fixed Hilbert polynomiBh which are flat overS, then this is

representable b@uotig which is isomorphic to the projective limit of the inverse system
(Gg)g=p>0, With

Gq:=Ga(Pg, My, ) = 721G A(Po(r), M), p <7 < g,

5G(3, 4) corresponds t8-codimensional subspaces inside thdimensional vector spadd® (Op1 (1)2).
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wherep is some sufficiently large integer satisfying some cohomology conditi@jnsf].
1.2-1.3). Ciocan-Fontanine and Mikhail Kapran®} fiave shown that for every such
and M, there existg andq with 0 < p < ¢ such that,

P . e
QUOtXQ = @(Gq)q2p>>0 ~ 121G a(Po(r), M),

provided X is projective with ample line bundl®x(1),Q ~ M/K, for someM and

M = @&,z H(X, M(i)). Let's call the inverse systeliGz,),>ps0, A-Grassmannian. In
this context, solving a moduli problem amounts to determining the algebrai¢Alatd, p, ¢)
which will then completely determine the projective limit up to isomorphism. As a partic-
ular application to this, we have the following statement.

Corollary 3.2. LetP3 be the moduli space for the moduli problem determineGb¥ ).
Then there existd-Grassmannian inverse systéai, ) ;>0 such thaf? = lim(Gy)g>pso-

Proof. Let A = @, (H°(P', Op:(j))) be the associativé-graded algebra generated by
the degreé componentd;. Let M = @, (H°(P*, Op: (1)¥2(5))). ThenM is a finitely
generated-graded leftA-module. However) is not finite K -dimensional vector space.
Consider the truncation dff to Mj, ,;, then this truncation becomes finike-dimensional.
From [6](1.5), [7] and [9], we obtainny = 0 such thatVp > nyq, p satisfies the required
cohomology conditions, with = 2p +4. So we can now considé¢6 ;) ;>p0. Then from
[9] (14) we han(iLn(Gq)qZp>>0 ~ P3, ]

Let us pull back the s.e.63(5) to P! x Quotal ' ~

Quot]ﬁg (P?) = {< (Q)ps, qps >}
Let Q be the universal quotient d' x P3. From this point onwards, unless stated oth-
erwise,P? will always be considered as the fine moduli space which solved the moduli
problem stated in terms of moduli funct@uotﬂfﬁ. Let mps be the projection onto the
second factor, with fibers,;' (z), vz € P3, such tha@\ﬂl(m) denotes the restriction @@
P

onto the corresponding fiber. Also, from this point onwards/Set C. Then we want to
determine when the quotient shea@gglm over the fiberry,' (z) ~ P! x {z} are alge-
P

P! x P3 which gives us

braic vector bundles oB! for x € P3. By algebraic, we mean that the transition functions
are algebraic. This is determined by the following cohomology condition.
Proposition 3.3. Letx € P? such thatHl(wlggl(a:),@\ﬂ;sl(x)(—3)) # C. Then@|ﬂ;1m

3
is an algebraic vector bundle dn'.
Proof. We prove it contrapositively. Let € P2 such tha@|ﬂ_31 (@) is not an algebraic
P

vector bundle. Since all coherent sheaves on projective algebraic curves are locally modules
over principal ideal domains, therefore, there exists an affine open neighbothadd
Tzs (2) such that,

Q\ﬂ;;(z)b = (K[X])** @ T,a>0.

This implies, there always exists a maximal torsion subsheafgsawuch thaiG|;, = T
which is the torsion part, giving us locally,

(Qlr wy|0)/ (Glu) = (K[X]®),
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where X is the affine coordinate correspondinglfo Gluing up affine neighborhoods, we
obtain a maximal torsion subshe@f, for every Q| ., not locally free such that the
’

quotient(@“?(gj))/gx = Q is torsion free, and thus locally free &. This gives us the
following ses.
0 —»gx—>@|wgl(x) — Q — 0. (3.8)

Then from the additivity of Hilbert polynomials, we gdtg,.(t) > 1 andPg(t) < t + 2,
which follows from the fact that Hilbert polynomial is locally constant on flat familigs ([
2.1). The Hilbert polynomial of) shows that it is a line bundle dk', hence, it must be of
the typeOp: (), k < 1 ([13 11.6). From s.e.s. . 8) we obtain the long exact cohomology
sequence,

0 — H(Gx(=3)) — H*(Ql, 14 (=3)) — H"(Op1(k = 3)) — H'(J(-3))
— Hl(é\ﬂ;(z)(f:a)) — HY(Op1(k —3)) — 0 — ...
SinceH! (Gz(—3)) = 0, which follows from the fact that,
X(Gx(t = 3)) = x(9z(t)) = Foa(t),

wherey denotes the Euler characteristic (cf. secabove)® we get
Hl(@h&l(x)(_?’)) ~ H'(Op: (k - 3)).

Then applying Serre’s Duality ZR] 111.7) on right hand side, we obtain
Hl(@hﬂ;;(w)(_?’)) ~ H(Op (1 - k))* (3.9)

So,Hl(@ﬂ“g(m)(—i&)) % 0, only for1 — k > 0. This leaves us with two choices fér i.e.

k = 0,1. We must show that is only equal tol. From s.e.s/3. 5) and 3. 8), we obtain
the following commutative diagram with exact rows and colunitjs(p.3):

0 0

0 F P —— Gz —— 0

0 ]H-" Op (1% —— Q) —— 0 (3. 10)
RQ = Q
0 0

60ne can also gelf1 (Gz(—3)) = 0 by observing thaGz is a torsion sheaf o', therefore, its support is
zero-dimensional. Authors are thankful to one of the anonymous reviewer of this paper for bringing this into their
notice as an alternative to their reasoning.



86 Hafiz Syed Husain and Mariam Sultana

This givesPp(t) = Pr(t)+ Pg.(t) = Pp(t) > (t+1)+n. Also, sinceP is a submodule
of Op:1(1)®2, we haven > 1. This givesP ~ Opi(n). Also, from Po,, (1ye2(t) =
Pp(t)+ Po(t) =2t+4=[t+1)+n]+ (t+k+1) = k+n=2. Onthe other hand,
diagram 8. 10) gives the chain of injections,

F P Op(1)%

which helps give,

degF) < degP) < deg Op: (1)%?)
where ‘deg( )’ denotes the degree of coherent sheaf on any projective Eyrg@en by
the formula,

dedH) = x(H) — rx(Ox),

wherer denotes the rank dft ([13] IV.1). Taking X = P!, we obtain,

degP) = x(P) —rx(Op1) = 0, 1.

Now suppose dé@) = 0 = x(P) = 1 = n = 0, which is impossible since in that case
Gx = 0 which in turn would give@\ﬂ_;(r) locally free, but this is a contradiction, for we
P

have already chosenc P3 such tha@ﬂ_sl(z) is not locally free. Therefore, dég) = 1.
.

Hence,x(P) —r =1 = n =1 = k = 1. Putting thisk = 1 in the isomorphism3. 9),
we obtain the result. O

The next question that naturally comes to one’s mind after proving Proposkidids
3.3 is this: What exactly is the geometry of the pointsc P? for which the restriction
of universal quotient onto the fibeg;;(x) C P! x P? is not an algebraic vector bundle?
Or, more significantly, how is being or not being an algebraic vector bundle reflected in the
geometry of the moduli spad®?

Proposition 3.4. LetY C P? suchthat/z € Y, @|ﬂ§1($) is not an algebraic vector bundle.
7
ThenY is a quadric surface ifP3.
Proof. From diagram§. 10) above, which characteriz&s$ as subset oP3, we get the
following commutative square,
Op1 —— Op1 (1) (3. 11)
id (o,8)

Op L2 04, (1)22

such that all sheaf morphisms are injections. It is obvious fhatand % are all global
sections of0p: (1), i.e. f,g,h € H°(P!, Op:1(1)). On the other hand, we have

(a, B) € Hom(Op1 (1), Op1 (1)®?) ~ Hom(Op1, OF?)
~ (P, 0%?)
~ HO(P!, Op:i (1)).

Thus, from the commutativity of diagrar8.(11), we get(f, g) = (ah, 8h). giving us the
morphism,

HO(B', 051 (1)) © H(B', O (1)) — HO(B', 082(1)) (3.12)
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(o, B) ® h — (ah, Bh).
Projectivizing 8. 12), we obtain the Segre embedding
o:P'x P! — P?
defined by
[, B] X [ug, u1] 2 [aug, auy, Bug, Bui

giving us a homogeneous quadratic polynonftdky, z1, 22, 23) = zozs — 2121 Which
determines a quadric surfacel ([10] 2.11). O

4. CONCLUSION

In this paper, we have presented explicit calculations for solving a particular moduli
problem involving quotient sheaves &1 such that the solutiof®® obtained was a par-
ticular case of Grothendieck Quot scheme. This was our PropositibnWe have also
discussed how this problem solving relates with algebra. This was our Coralaryn
particular, we presented how this parametrization of quotient sheaves by the points of the
moduli spacé? reflected significant information about these quotient sheaves. This infor-
mation had two aspects. One algebraic and the other geometric. With focus on universal
guotient, the algebraic aspect helped us understand how we can further classify or dis-
tinguish which of these quotient sheaves form an algebraic vector bundle. This was our
Proposition3.3. The geometric aspect showed how this information is reflected in the
geometry of the moduli space. This was our Proposisigh
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