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Abstract.: This paper is an exposition on how Grothendieck’s Quot scheme
can be seen as a solution to the moduli problem of quotient sheaves. These
schemes as corresponding moduli spaces play a significant role, not only
in solving problems within geometry in general, but they are also applica-
ble to problems of classification in algebra. These Quot schemes are intro-
duced in context of the setting up of a solution to a moduli problem. This is
then followed by its application to particular problems of classifying con-
tinuously varying families of quotient sheaves with a fixed Hilbert poly-
nomial. The purpose of this investigation is to bridge the often abstract
settings of moduli theory as pioneered by Grothendieck, and its concrete
application through solving particular moduli problems in concrete pro-
jective geometric setting. In particular, this study will present how alge-
braic geometry through moduli theory helps reveal significant information
about the family of objects which it parameterizes.
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1. INTRODUCTION

Roughly speaking, a moduli problem amounts to parameterizing an interesting classA
of objects from a categoryC with the help of points of some geometric object, sayX, up
to an equivalence relation. ThisX under certain conditions is called the fine moduli space.
It has its significance in problems pertaining to classification of objects inA up to the cor-
responding equivalence with the expectation that the geometry ofX will produce valuable
information for our understanding ofA. For instance, it is a well known fact that the class
of all hypersurfaces of degreed in an n-dimensional projective spacePn corresponds to
PN such thatN =

(
d+n

n

)− 1 ([5] IX.2). For n = 2, it helps us better understand why two
points determine a line, five points a conic, nine points a cubic, so on and so forth ([1] 10,
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pp. 67-81). In other words, in this case, the number ofN points, which is a finite data, suf-
ficiently determines the possibility of existence of any degreed hypersurface inPn, which
is a classic example of application of moduli problems to the problems in combinatorics
and enumerative geometry.1 On the other hand, moduli problems can also help us state the
classification problems of algebraic objects. For instance, it has been identified that ifA
is aZ-graded finitely generated algebra isomorphic to the exterior algebraΛ(VK) of some
finite dimensional vector spaceV overK, then everyZ-gradedA-moduleM generated by
(n + 1) elements which is also a finiteK-dimensional vector space can be obtained from
an algebraic vector bundle onPn ([3] Appendix A).

An outline of the construction of Quot schemes is presented in section2. There are
two ways moduli problems can be stated, depending upon the representability or corepre-
sentability of the corresponding moduli functors. There are many such moduli functors. For
instance, there is one which determines families of closed subschemes of a given scheme
under certain conditions called Hilbert functor, and there is one which determines families
of subsheaves or quotient sheaves on a fixed scheme satisfying some conditions called Quot
functor. The functors are found to be representable, and the representing objects are called
Hilbert and Quot schemes, respectively ([8], [12]). We will restrict our attention to the case
when the moduli functor is the Quot functor. In such a case, the representing object which
solves the moduli problem is called fine moduli space. All schemes will be projective over
some algebraically closed fieldK. Section3 will present explicit calculations involving
moduli problems and their solutions, i.e. moduli spaces, such that these moduli spaces are
special cases of Quot scheme in concrete projective geometric setting.

2. GROTHENDIECK’ S QUOT SCHEME AS A MODULI SPACE

LetX be some projective scheme over an algebraically closed fieldK such that it comes
equipped with the usual ample line bundleOX(1).2 Then for any coherent sheafH onX,
Euler characteristic and Hilbert polynomial ofH, denoted byχ(H) andPH respectively,
are related by the formula

PH(t) = χ(H⊗OX(t)) =
dim(X)∑

j=0

(−1)j dimK(Hj(X,H⊗OX(t))).

Define a contravariant functor

QuotPX,E : SchK −→ Set

from the category of schemes overK to the category of sets with a fixed PolynomialP ∈
Q[t] and a coherent sheafE onX, such that∀S ∈ Ob(SchK),

QuotPX,E(S) = {< Q, q > | condition α is satisfied}
whereas we may state conditionα and the designation of< Q, q > in terms of the follow-
ing [12]:

1This was known to early Greek mathematicians, provided we fixC to be the category of algebraic curves over
R. These number of points is exactly the dimension of the moduli spacePN corresponding to the hypersurfaces
of degree1, 2, . . ., respectively.

2A more general construction is also permissible. For instance, we may allowX to be Noetherian and of
‘finite type’ over some Noetherian schemeS ([4], 2.1).
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∀S ∈ SchK , if X ×K S is the fiber product ofX andS overK,3 with πX andπS being
the canonical projections onto first and second factors respectively, then< Q, q > denotes
the equivalence class of short exact sequences in CohK(X × S) (i.e. category of coherent
sheaves on(X × S)) of the form

0 −→ KQ,q −→ π∗X(E) = ES
q−→ Q −→ 0 (2. 1)

with Q flat overS having the Hilbert polynomialPQ = P , q being the surjectiveOX×S-
linear homomorphism with kernelKQ,q, and the equivalence class is determined by the
equivalence relation:< Q, q >=< Q′, q′ > ⇐⇒ the following diagram commutes

0 // KQ,q

'

// ES

id

q
// Q
'

²²

// 0

0 // KQ′,q′ // ES
q′

// Q′ // 0.

(2. 2)

These classes may further satisfy some further conditions, depending upon the problem.4

One may wonder whether the functorQuotPX,E is representable (cf. [14] III.2, pp. 22-23 for
the definition of representability of a functor). Grothendieck (cited in [12]) proved that this
functor is representable by a projective scheme overK which can be seen to be either the
Grassmannian scheme itself or a projective scheme embedded inside Grassmannian. Let

the projective scheme which represents this functor be denoted byQuot
P

X,E . As a result,
from Yoneda’a Lemma ([14], p. 61), we obtain the natural isomorphism,

QuotPX,E
β' HomSchK ( − , Quot

P

X,E),

such that this isomorphism comes equipped with the commutative diagram:

QuotPX,E(Quot
P

X,E)

QuotP
X,E(f)

²²

β
QuotP

X,E
// HomSchK

(Quot
P

X,E , Quot
P

X,E)

f∗

²²

S

f

²²

QuotPX,E(S)
βS // HomSchK (S, Quot

P

X,E) Quot
P

X,E

(2. 3)

with bothβ
Quot

P
X,E

, βS being the invertible components of the natural isomorphismβ. By

the standard construction from category theory, there exists a universal object (or equiva-

lently universal arrow), sayQ onX×Quot
P

X,E , which is the imageβ−1

Quot
P
X,E

(1
Quot

P
X,E

) ∈
QuotPX,E(Quot

P

X,E). This corresponds to the continuously varying family of quotient

sheaves overX parameterized by the points ofQuot
P

X,E obtained as the restriction ofQ
over the fibersπ−1

Quot
P
X,E

(x) ⊂ X × Quot
P

X,E with universal property that ifQuotPX,E(S)

3From this point onwards, we will dropK as subscript and simply writeX × S.
4We may keep this arbitrary right now. It can be equality, it can be a condition on chern classes of coherent

sheaves, etc. For instance, Okonek et al. [3] discussed the explicit construction of the moduli space of rank
2 stable vector bundles onP2 such that their first and second chern classesc1 andc2 respectively, satisfy the
condition: ‘eitherc1 is odd, or,c1 is even andc2 − c21/4 is odd.’
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is any other family of quotients parameterized by points ofS, which are restrictions of
QS ∈ CohK(X × S) (given by (2. 1) above) over the fiberπ−1

S (s) ⊂ X × S, which are

flat overS, then there exists a uniquef ∈ HomSchK
(S, Quot

P

X,E) such that the above di-

agram (2. 3) commutes. It is in this setting, we say thatQuot
P

X,E is the fine moduli space
to the fine moduli problem of classifying all quotient sheaves overX up to a given Hilbert
polynomial. Solving this fine moduli problem amounts to determining this represented

objectQuot
P

X,E up to isomorphism.

3. MODULI SPACES OFQUOTIENT SHEAVES

We now present explicit solutions to some fine moduli problems involving coherent quo-
tient sheaves onP1 such that the corresponding moduli spaces are examples of Quot scheme
as projective varieties. We will also derive some significant results which are correlatively
motivated by these moduli problems. In this section, we are interested in parameterizing
some interesting classes of quotient sheaves with a given Hilbert polynomial with points of
Grassmannian. We first consider the class of sheaves given by the familyA of short exact
sequences (s.e.s.) of the form:

0 −→ F −→ (OP1(1)⊕2)S
qS−→ Q −→ 0 (3. 4)

on P1 × S obtained by pullingOP1(1)⊕2 via the functorπ∗P1( ) ⊗ π∗S(OS), whereF is
any subsheaf of(OP1(1)⊕2)S on P1 × S. This helps us seeF as family of subsheaves
onP1 × S, varying with pointss ∈ S such that it gives rise to a corresponding family of
subsheavesF(s),∀s ∈ S, whereF(s) is the pullback ofF over the fiberi−1(s) via the
canonical embeddingi : P1 → P1 × S, giving us,∀s ∈ S, the s.e.s. onP1,

0 −→ F(s) −→ (OP1(1)⊕2)
q−→ Q(s) −→ 0. (3. 5)

In what follows, for notational brevity, we will keep writingF overP1 for F(s) andQ
overP1 for Q(s) and presume that the context will make everything clear. We fix Hilbert
polynomial for the quotientQ to be PQ(t) = t + 3. Then from Section2 above, we
can restate our problem in terms of a fine moduli problem or functor as follows: letX =
P1, P = t + 3, ES = (OP1(1)⊕2)S , ∀S ∈ Ob(SchK), to obtain the moduli Quot functor
as

QuotPQP1 (S) = {< (QS , qS >}. (3. 6)

We have already seen that this Quot functor is representable by the Quot schemeQuot
PQ
P1

as a projective scheme. We solve this moduli problem by determining this projective
scheme up to isomorphism.

Proposition 3.1. Quot
PQ
P1 is isomorphic toP3.

Proof. From ([11]4.4) we can define a map

Φ : Quot
PQ
P1 −→ G(PQ(n), H0(OP1(1)⊕2(n)))

whereG(PQ(n),H0(OP1(1)⊕2(n))) is the Grassmannian variety, consisting ofPQ(n)-
codimensional subspaces of the vector spaceH0(OP1(1)⊕2(n)) for some particular choice
of n ≥ 0, such thatΣ = Im(Φ) satisfies the condition that∀x ∈ Σ, we have

dimK((H0(OP1(1)⊕2(m)))/(x⊗H0(P1,OP1(m− n)))) = PQ(m), ∀m ≥ n. (3. 7)



Grothendieck’s Quot Scheme and Moduli of Quotient Sheaves 83

The mapΦ becomes an embedding if for somen ≥ 0, we can show thatker(q) = F in
s.e.s. (3. 5) satisfies the following two conditions [11](4.4.10):

(a)H1(P1,F(n + k)) = 0, ∀k ≥ 0,
(b) H0(P1,OP1(k))⊗H0(P1,F(n)) = H0(P1,F(n + k)), ∀k ≥ 0.

We first note, from the additivity of Hilbert polynomial, thatPF + PQ = POP1 (1)⊕2 . Since
POP1 (1)⊕2(t) = 2t + 4 this givesPF = t + 1. This shows that rank ofF is 1 and is of the
formOP1 . This impliesH1(P1,F(k)) = 0, ∀k ≥ 0 ([13] III.5). This gives us full freedom
for our choice ofn. We fixn = 0, then both conditions (a) and (b) are satisfied byF . Thus,

Quot
PQ
P1 sits inside the GrassmannianG(3, 4) = P3.5 However, we have to show that map

Φ surjects, i.e.Σ = P3. In other words, we must show that∀x ∈ P3, x satisfies condition
(3. 7).
Considerm ≥ 0, and the long exact sheaf cohomology sequence corresponding to s.e.s.
(3. 5), we have

0 −→ H0(P1,F(m)) −→ H0(P1,H0(OP1(1)⊕2(m))

−→ H0(P1,Q(m)) −→ H1(P1,F(m)) −→ . . . .

From the additivity ofdimK( ) as a function on long exact sequence above, we obtain,

dimK(H0(P1,OP1(1)⊕2(m))− dimK(x⊗H0(P1,OP1)) = m + 3 = PQ(m), ∀m ≥ 0

therefore,Σ = P3. ¤
As already remarked above in Section1, there are deeper connections between moduli

theory of sheaves and classification problems in algebra. In order to work out a concrete
example to motivate how such a connection makes sense, we start with some observations.
Let A be an associativeZ-graded algebra overK, which is finitely generated by degree1
component. LetM be the correspondingZ-graded finitely generated left-module overA
which is also aZ-graded finite-dimensionalK-vector space. We define the Grassmannian
varietyG(n, M) to be the space which parameterizes all n-codimensional subspaces ofM
([6], 1.5). But sinceM is also a finitely generatedA-module, we may define a variant
of G(n, M) to be theGA(n,M) ⊂ G(n,M) such thatGA(n, M) is the parameter space
which parameterizes allZ-graded left-A submodules ofM . This is a projective subvariety
of G(n,M) [9]. In caseM = ⊕i∈ZMi such that allMi are finite dimensional K-vector
spaces without (possibly)M itself being so, we may still have a variant ofGA(n,M) con-
struction by considering the truncations ofM as follows. DefineM≥p to be the submodule
of M consisting of all degreeq-components such thatq ≥ p. Let M[p,q] be the submodule
consisting ofMj such thatMj 6= 0, p ≤ j ≤ q, or equivalently,M[p,q] = Mp/Mq. In

particular, ifQuotPQX (S) is the Quot functor, withX projective overK, parameterizing
all quotient sheaves with fixed Hilbert polynomialPQ which are flat overS, then this is

representable byQuot
PQ
X which is isomorphic to the projective limit of the inverse system

(Gq)q≥pÀ0, with

Gq := GA(PQ,M[p,q]) = Πr=q
r=pGA(PQ(r),Mr), p ≤ r ≤ q,

5G(3, 4) corresponds to3-codimensional subspaces inside the4-dimensional vector spaceH0(OP1 (1)⊕2).
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wherep is some sufficiently large integer satisfying some cohomology conditions [9] (cf.
1.2-1.3). Ciocan-Fontanine and Mikhail Kapranov [9] have shown that for every suchA
andM , there existsp andq with 0 ¿ p ≤ q such that,

Quot
PQ
X ' lim←−(Gq)q≥pÀ0 ' Πr=q

r=pGA(PQ(r), Mr),

providedX is projective with ample line bundleOX(1),Q ' M/K, for someM and
M = ⊕i∈ZH0(X,M(i)). Let’s call the inverse system(Gq)q≥pÀ0, A-Grassmannian. In
this context, solving a moduli problem amounts to determining the algebraic data(A,M, p, q)
which will then completely determine the projective limit up to isomorphism. As a partic-
ular application to this, we have the following statement.

Corollary 3.2. LetP3 be the moduli space for the moduli problem determined by(3. 6).
Then there existsA-Grassmannian inverse system(Gq)q≥pÀ0 such thatP3 = lim←−(Gq)q≥pÀ0.

Proof. Let A =
⊕

j∈Z(H
0(P1,OP1(j))) be the associativeZ-graded algebra generated by

the degree1 componentA1. LetM =
⊕

j∈Z(H
0(P1,OP1(1)⊕2(j))). ThenM is a finitely

generatedZ-graded leftA-module. However,M is not finiteK-dimensional vector space.
Consider the truncation ofM to M[p,q], then this truncation becomes finiteK-dimensional.
From [6](1.5), [7] and [9], we obtainn0 = 0 such that∀p ≥ n0, p satisfies the required
cohomology conditions, withq = 2p+4. So we can now consider(Gq)q≥pÀ0. Then from
[9] (1.4) we havelim←−(Gq)q≥pÀ0 ' P3. ¤

Let us pull back the s.e.s. (3. 5) to P1 ×Quot
PQ(t)

P1 ' P1 × P3 which gives us

QuotPQP1 (P3) = {< (Q)P3 , qP3 >}
Let Q be the universal quotient onP1 × P3. From this point onwards, unless stated oth-
erwise,P3 will always be considered as the fine moduli space which solved the moduli
problem stated in terms of moduli functorQuotPQP1 . Let πP3 be the projection onto the
second factor, with fibersπ−1

P3 (x), ∀x ∈ P3, such thatQ|π−1
P3 (x) denotes the restriction ofQ

onto the corresponding fiber. Also, from this point onwards, setK = C. Then we want to
determine when the quotient sheavesQ|π−1

P3 (x) over the fiberπ−1
P3 (x) ' P1×{x} are alge-

braic vector bundles onP1 for x ∈ P3. By algebraic, we mean that the transition functions
are algebraic. This is determined by the following cohomology condition.

Proposition 3.3. Let x ∈ P3 such thatH1(π−1
P3 (x),Q|π−1

P3 (x)(−3)) 6' C. ThenQ|π−1
P3 (x)

is an algebraic vector bundle onP1.

Proof. We prove it contrapositively. Letx ∈ P3 such thatQ|π−1
P3 (x) is not an algebraic

vector bundle. Since all coherent sheaves on projective algebraic curves are locally modules
over principal ideal domains, therefore, there exists an affine open neighborhoodU of
π−1
P3 (x) such that,

Q|π−1
P3 (x)|U = (K[X])⊕a ⊕ T, a ≥ 0.

This implies, there always exists a maximal torsion subsheaf, sayG, such thatG|U = T
which is the torsion part, giving us locally,

(Q|π−1
P3 (x)|U )/(G|U ) ' (K[X]⊕a),
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whereX is the affine coordinate corresponding toU . Gluing up affine neighborhoods, we
obtain a maximal torsion subsheafGx, for everyQ|π−1

P3 (x) not locally free such that the

quotient(Q|π−1
P3 (x))/Gx = Q is torsion free, and thus locally free onP1. This gives us the

following s.e.s.
0 −→ Gx −→ Q|π−1

P3 (x) −→ Q −→ 0. (3. 8)

Then from the additivity of Hilbert polynomials, we get,PGx(t) ≥ 1 andPQ(t) ≤ t + 2,
which follows from the fact that Hilbert polynomial is locally constant on flat families ([4]
2.1). The Hilbert polynomial ofQ shows that it is a line bundle onP1, hence, it must be of
the typeOP1(k), k ≤ 1 ([13] II.6). From s.e.s. (3. 8) we obtain the long exact cohomology
sequence,

0 −→ H0(Gx(−3)) −→ H0(Q|π−1
P3 (x)(−3)) −→ H0(OP1(k − 3)) −→ H1(Gx(−3))

−→ H1(Q|π−1
P3 (x)(−3)) −→ H1(OP1(k − 3)) −→ 0 −→ . . .

SinceH1(Gx(−3)) = 0, which follows from the fact that,

χ(Gx(t− 3)) = χ(Gx(t)) = PGx(t),

whereχ denotes the Euler characteristic (cf. section2 above),6 we get

H1(Q|π−1
P3 (x)(−3)) ' H1(OP1(k − 3)).

Then applying Serre’s Duality ([13] III.7) on right hand side, we obtain

H1(Q|π−1
P3 (x)(−3)) ' H0(OP1(1− k))∗ (3. 9)

So,H1(Q|π−1
P3 (x)(−3)) 6' 0, only for1−k ≥ 0. This leaves us with two choices fork: i.e.

k = 0, 1. We must show thatk is only equal to1. From s.e.s. (3. 5) and (3. 8), we obtain
the following commutative diagram with exact rows and columns([2] 16.3):

0 0
y

y
0 −−−−→ F −−−−→ P −−−−→ Gx −−−−→ 0

∥∥∥
y

y
0 −−−−→ F −−−−→ OP1(1)⊕2 −−−−→ Q|π−1

P3 (x) −−−−→ 0
y

y
Q Q
y

y
0 0

(3. 10)

6One can also getH1(Gx(−3)) = 0 by observing thatGx is a torsion sheaf onP1, therefore, its support is
zero-dimensional. Authors are thankful to one of the anonymous reviewer of this paper for bringing this into their
notice as an alternative to their reasoning.
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This givesPP(t) = PF (t)+PGx(t) ⇒ PP(t) ≥ (t+1)+n. Also, sinceP is a submodule
of OP1(1)⊕2, we haven ≥ 1. This givesP ' OP1(n). Also, from POP1 (1)⊕2(t) =
PP(t) + PQ(t) ⇒ 2t + 4 = [(t + 1) + n] + (t + k + 1) ⇒ k + n = 2. On the other hand,
diagram (3. 10) gives the chain of injections,

F ↪→ P ↪→ OP1(1)⊕2,

which helps give,
deg(F) ≤ deg(P) ≤ deg(OP1(1)⊕2)

where ‘deg( )’ denotes the degree of coherent sheaf on any projective curveX, given by
the formula,

deg(H) = χ(H)− rχ(OX),
wherer denotes the rank ofH ([13] IV.1). TakingX = P1, we obtain,

deg(P) = χ(P)− rχ(OP1) = 0, 1.

Now suppose deg(P) = 0 ⇒ χ(P) = 1 ⇒ n = 0, which is impossible since in that case
Gx = 0 which in turn would giveQ|π−1

P3 (x) locally free, but this is a contradiction, for we

have already chosenx ∈ P3 such thatQ|π−1
P3 (x) is not locally free. Therefore, deg(P) = 1.

Hence,χ(P) − r = 1 ⇒ n = 1 ⇒ k = 1. Putting thisk = 1 in the isomorphism (3. 9),
we obtain the result. ¤

The next question that naturally comes to one’s mind after proving Propositions3.1 &
3.3, is this: What exactly is the geometry of the pointsx ∈ P3 for which the restriction
of universal quotient onto the fiberπ−1

P3 (x) ⊂ P1 × P3 is not an algebraic vector bundle?
Or, more significantly, how is being or not being an algebraic vector bundle reflected in the
geometry of the moduli spaceP3?

Proposition 3.4. LetY ⊂ P3 such that∀x ∈ Y,Q|π−1
P3 (x) is not an algebraic vector bundle.

ThenY is a quadric surface inP3.

Proof. From diagram (3. 10) above, which characterizesY as subset ofP3, we get the
following commutative square,

OP1
id

h // OP1(1)

(α,β)

²²

OP1
(f,g)

// OP1(1)⊕2

(3. 11)

such that all sheaf morphisms are injections. It is obvious thatf, g andh are all global
sections ofOP1(1), i.e. f, g, h ∈ H0(P1,OP1(1)). On the other hand, we have

(α, β) ∈ Hom(OP1(1),OP1(1)⊕2) ' Hom(OP1 ,O⊕2
P1 )

' H0(P1,O⊕2
P1 )

' H0(P1,OP1(1)).

Thus, from the commutativity of diagram (3. 11), we get(f, g) = (αh, βh). giving us the
morphism,

H0(P1,OP1(1))⊗H0(P1,OP1(1)) −→ H0(P1,O⊕2
P1 (1)) (3. 12)
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(α, β)⊗ h −→ (αh, βh).
Projectivizing (3. 12), we obtain the Segre embedding

σ : P1 × P1 −→ P3

defined by
[α, β]× [u0, u1]

σ−→ [αu0, αu1, βu0, βu1]
giving us a homogeneous quadratic polynomialP (z0, z1, z2, z3) = z0z3 − z1z1 which
determines a quadric surface inP3 ([10] 2.11). ¤

4. CONCLUSION

In this paper, we have presented explicit calculations for solving a particular moduli
problem involving quotient sheaves onP1 such that the solutionP3 obtained was a par-
ticular case of Grothendieck Quot scheme. This was our Proposition3.1. We have also
discussed how this problem solving relates with algebra. This was our Corollary3.2. In
particular, we presented how this parametrization of quotient sheaves by the points of the
moduli spaceP3 reflected significant information about these quotient sheaves. This infor-
mation had two aspects. One algebraic and the other geometric. With focus on universal
quotient, the algebraic aspect helped us understand how we can further classify or dis-
tinguish which of these quotient sheaves form an algebraic vector bundle. This was our
Proposition3.3. The geometric aspect showed how this information is reflected in the
geometry of the moduli space. This was our Proposition3.4.
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