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Abstract.: The incompressible, steady and laminar micropolar fluid flow
through a resistive porous medium between channel walls with mass and
heat deportation, by considering the effect of heat generation, is studied
numerically. The relevant PDEs governing the flow, heat and concentra-
tion are transmuted into nonlinear ordinary ones by employing the pow-
erful tool of similarity transformation and consequently, eight parameters
appeared in the final model. Afterward, Quasi-linearization (QL) tech-
nique is exploited to solve the relevant nonlinear coupled ODEs. The
repercussion of preeminent parameters on flow, heat and mass transfer are
deliberated and shown through graphs and tables. The effect of the heat
generation is to enhance the rate of heat transfer at both walls of the chan-
nel.
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1. INTRODUCTION

The rotating micro components of micropolar fluids perturb the hydrodynamics of the
fluid flow and this mechanism provides a basis for successful employment of micropo-
lar fluids in modern engineering and bio-technology. Micropolar fluids consist of micro-
structured polymeric additives and are exemplified as non- Newtonian fluids. The mi-
cropolar fluids can express the flow behaviour of ferro-liquids, paints, exotic lubricants,
colloidal fluids, polymeric materials, animal blood, etc. Eringen [1, 2] was the innovator
in introducing the micropolar fluids for which the conventional theory of Navier's Stokes
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was inconsequential. Afterwards, the research community [3, 4, 5, 6] extended this worked
towards an inclusive review. In micropolar fluid flow model, an additional transport equa-
tion is essentially solved with the usual equations of continuity and momentum. Articles
by Ariman et al. [7, 8] epitomize the more theory and applications about micropolar fluids.

Various research scholars have deliberated the different types of fluid flows through
channels and parallel plates over different geometries. The impact of radially applied mag-
netic field on velocity and temperature of a Carreau-Yasuda fluid flowing through a wavy
wall was explored by Abbasi et al. [9]. They noticed that the C-Y fluid enhances tempera-
ture and reduces velocity with the change in magnetic field. Fusi and Farina [10] scrutinized
the impact of magnetic field on temperature and velocity in Bingham Peristaltic fluid and
this same fluid was examined in micro channel and permeable tube [11, 12]. The effect
of thermal radiation as well as chemical reaction on heat/mass transfer over a vertically
moving plate was evaluated by Mohamed and Abo-Dahab [13]. Hayat et al. [14] scruti-
nized the influence of magnetic force on peristaltic movement of fluid flowing through a
curved channel by considering the ratio of wavelength and channel-width so small that can
be assumed uniform for pressure of fluid. Khan et al. [15] investigated the viscous flow in
porous channel by using Optimal Homotopy Asymptotic Method (OHAM).

During the last few decades researchers have definitely played a pivotal role in microp-
olar fluid flow, mass and heat transfer through channels. Fakour et al. [16] solved the
micropolar fluid, mass and heat transfer problem analytically and numerically. They ex-
plained the Least Square Method (LSM) and employed this method to solve the nonlinear
ODEs. The results obtained from LSM method were corelated with those achieved from
RK fourth order technique. Mirgolbabaee et al. [17] and Sheikholeslami et al. [18] also
discussed the same problem by using AGM and HPM (Homotopy Perturbation Method)
respectively. The results acquired from both the methods were equated with the results
obtained from Runge-kutta fourth order scheme. Ali and Ashraf [19] numerically explored
the heat transfer in micropolar fluid flow through a channel by taking one wall of the chan-
nel dwindling and other static. Ziabakhsh and Domairry [20] interpreted micropolar fluid
flow and mass transport in a porous channel by using DTM (Differential Transformation
Method). The micropolar fluid flow through a channel having permeable walls was ex-
pounded by Mirzaaghaian and Ganiji [21]. They compared the results with the numerical
method and came to know that the temperature and concentration are very little bit affected
by the Reynolds number. Nwabuzor et al. [22] explained the magneto-hydrodynamic mi-
cropolar fluid flow in a porous medium under the effects of heat generation, viscous dissi-
pation, chemical reaction and thermal radiation. Ashraf et al. [23] numerically probed the
flow of micropolar fluid through porous medium in a channel. After converting nonlinear
PDEs into respective ODEs, Successive over Relaxation (SOR) parameter method along
with finite difference discretization was applied. The results were compared with those
flourished by Shrestha and Terrill [24]. They reported that the micropolar fluid enhance
the couple stress and declines the skin friction coefficientat at both walls of the channel.
Singh and Kumar [25] numerically examined the mass and heat transfer in micropolar fluid
flow by assuming the viscous effects and thermal radiation through a permeable channel.
Ahmad et al. [26] numerically explored the heat and mass transfer flow of an incom-
pressible micropolar fluid with allowance for viscous dissipation through a resistive porous
medium between channel walls. They solved fully coupled nonlinear differential equations
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by means of quasi-linearization. It was found that the effect of viscous dissipation is to
increase the heat and mass transfer rates on both walls of the porous channel.

Specifically, the problems related to heat generation within fluid in a porous medium
are of extraordinary commonsense. The practical significance of such problems can be
observed in geophysical flows, cooling of underground liquid, recovery of petroleum re-
sources, fiber and granular insulations, electric cables, environmental impact of buried
heat generating waste and chemical catalytic reactors, solidification of costing, storage
of nuclear waste materials and ground water pollution. The flow of micropolar fluid un-
der the influence of heat generation or absorption has been considered by various authors
[27, 28, 29]. The present investigation has utilization in industry and biotechnology e.g. air
circulation in respiratory system and binary gas diffusion, drying of porous solid surfaces,
combustion process in rocket motors, etc [30]. The intent of study this investigation is to an-
alyze the numerical resolution of the flow, heat and mass transfer through a porous medium
in channel walls. By employing the suitable non-dimensional coordinates, nonlinear PDEs
are transformed into ordinary ones which are then solved by means of quasi-linearization
method along with central FD discretization. The impacts of the concerned parameters
on concentration, microrotation, flow velocity and temperature are argued and visualized
through tables and graphs.

2. DESCRIPTION OFPHYSICAL MODEL

The fluid flow is considered in a resistive porous medium between channel walls through
which fluid is uniformly injected or removed with a constant spegdl;andC,are tem-
perature and solute concentration at lower channel wall and upper channel wall has temper-
atureT,and solute concentratiafi;respectively as appeared schematically in BigThe
channel walls and-axis are taken parallel whereas walls are placaegd-att+h, where the
total width of the channel igh.

FIGURE 1. Geometry of the problem

The constitutive equations governing the motion of the micropolar fluid as given by
Eringen [1] and Ashraf et al. [31] are:
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dp B

A+2u+K)V(VV) = (u+E)VXV XV +EVXxv—-Vp+pf = pV
(a+B8+9)V(V) = (VX VXx0)+kV <XV —=2kv—pl = pjuv

wherew is the microrotation} is the fluid velocity vectorp is the density] and f are
body couple per unit mass and body force respectiyelg, the pressurej is the micro-
inertia, o, 3, 7, A, u, k are viscosity coefficients (or the material constants), where dot
specifies the material derivative. Here the microrotation vactord the velocity vectoy
are unknown. Following [16, 25], these equations of flow, heat and concentration in case
of porous medium in component form are:

%+%:0 (2. 1)
p(ungrng)—(u+k)<gz+g;>—g§—“;ku+k2 (2.2
p(ug;—i—vg;})=(u+k)(giz+g;j>—g];—u;kv—k%]§ 2. 3)
()b e o) 2 (B o

pCp (ugz + v%ﬁ) =k ((2233121 + ZZZ) + Qz)(T — T2) (2.5)
B2 450 (%+$> (2.6)

whereu is the respective velocity component taken aleraxis andv is the respective
velocity component taken alongaxis respectively. Moreovey, k*, p, p, N, Cy, k, j,
w=(u+k/2), k1, D*, T, C andQ(z) are the dynamic viscosity, darcy permeability, pres-
sure, fluid density, angular velocity, specific heat constant, vortex viscosity, microinertia,
microrotation viscosity, thermal conductivity, molecular diffusivity, temperature, concen-
tration of the fluid and heat generation coefficient respectively. The expreé&gian)” for
heat generation coefficient {3(x) = hA, hereAis surface area where heat transfer takes
place andh is heat transfer coefficient. Moreovér,= <= wheregq is heat flux andvT
is the difference in temperatures between the solid surface and surrounding fluid area. The
boundary conditions at = +h may be written as:

y=—h:u=0v=v,N=0,T=T,,C=C 2.7
y=+h:u=0,v=—-vy,N —0,T —T1,C — C} (2. 8)

Following similarity variables are defined to alter the governing PDEs in nonlinear
ODEs:
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n= 1% =—vexf(n),N = Sg(n), 6(n) = T -Tp

T-T, . C-0C
7¢(77)_01702

(2. 9)

Here, T, = T} — Ax andCy = C, — Bz, whereA and Bare fixed. Entreating these

similarity variables into equations ( 2. 2 )-( 2. 6 ), we obtain the set of ODEs:

—Reff +Ref f —c(1+C)f +(1+C)f"—Cig =0 (2. 10)
Cag’ + Ci(f" —29) — ReCs(fg — fg) =0 (2. 11)
0" + Pen(f0—f0 +HO) =0 (2. 12)
¢+ Pem(f' o — f6) =0 (2. 13)

with respect to the boundary conditions:
n = —1:f=0,f =0,9=0,0=1,¢=1 (2. 14)

n = 1:f=-1,f =0,g=0,§=0,¢6=0

whereas the parameters involved in the nonlinear system of coupled equations ( 2. 10
)-(2. 13) are defined as:

h? k Vo s vpC
= — (i =— Re= —h.Cy=-"% Pr= p
€ k*7 1 M7 € v s ©2 ,uh2’ T kl
J v voh vohpC) Q(z)h
C; = =,88C=—,Pe,, =—,Pey = JH =
3 h2’ D*’ e D* €h kl ’UopCp

whereg, C4, Re, Cs, Pr, C3, SC, Pe,,, Pe;,, andH are the porosity parameter, vortex
viscosity, Reynolds number, spin-gradient viscosity parameter, Prandtl number, microiner-
tia density, the Schmidt number, Peclet numbers for the diffusion of mass and heat and heat
generation parameter respectivelu,. andSh, (Nusselt and Sherwood numbers) are the
parameters of primary interest and these may defined as:

q (x) , m_(z)

N = gy = gy et = 70 (0 She = e = =0 (1) @.19)

wherem” andq” express the mass flux and the local heat flux respectively.

3. NUMERICAL ANALYSIS

Unlike other numerical technigues, quasi-linearization is a well renowned scheme to
find the approximate solutions of nonlinear differential equations with very quick con-
vergence. The quasi-linearization method plays a fundamental role to solve the complex
nonlinear problems numerically. In addition, one can comment that this technique is a
modified form of Newton’s method and it can be applied for both boundary and initial
value problems. Mostly, the problems comprising nonlinearities (convex or concave) are
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treated by quasi-linearization method. Due to its numerous usage and implementations, the
quasi-linearization technique is quite marvelous providing an ancestry approach to acquire
the unique solutions of highly nonlinear boundary value problems. The quasi-linearization
method was initially spearheaded by Bellman [32] and Bellman & Kalaba [33]. Laksh-
mikantham et al. [34, 35, 36] have developed the generalized form of this method and
exploited this technique to a wide range of nonlinear problems.

To initiate the numerical computation, quasi-linearization technique is utilized after as-
sembling the sequencég®) 1, {¢®)}, {9(*) }and {4(*) }which provide the numerical so-
lution of Egs. (2. 10)-(2. 13) respectively. In order to detain the terms of first order only,
we linearize Eq. (2. 10) that generatg&®}. Initially, we put:

—Reff " +Ref f —(1+C)f +(1+C) f—Crg = N(£. £ £ f L F) (3. 16)
which leads to:

’ " " . 8N ’ ’ aN
NS )+ (04— @) 77 * (£ —500) FTOM
" " N
(sl — ) g G17)

" " ON iv iv ON
(k+1) _ p(k) ) 227 (k+1)" _ p(R)™) 227
(f f ) af(k_)/// + (f f ) af(k.)w - O

After solving (3. 16 ) and (3. 17), we get:

"

(14 Co) fED" = Re I fOD (o1 4 Cy) + Ref ] p+0" 618

Ref(k)”f(k'+1)’ _ Ref(k-)/f(k)” _ Ref(k)f(k-)m + Crg®”
Now, we might replace the derivatives in Eq. ( 3. 18 ) with central differences, gener-

ating { f(*)}sequence. Moreover, to produgg®}, {§*) Yand{¢*)}, the linear Egs. ( 2.
11)-(2. 13) can be written as:

Cag™ 0" 4+ Oy (fW — 290HD) — ReCy(fM gk — fWglk+D)y - = (3. 19)
U+ Peh(f(k:)’e(kJrl) _ f(k)g(k+1)’ + Hg(kﬂ)) = 0 (3.20)
QU 4 Pey (f gD — B = 0 (3. 21)

The following iterative procedure is operated to initiate the numerical process.

e TheBCsinEq. (2. 14) are satisfied by the provided initial guegSesg(®), (9 and
O,

e Using knownf(), the system of equations ( 3. 19 )-( 3. 21) is discretized by
finite difference technique and then solved to obtgin, (Vandg(!) .

e  The new suggested guesses #f®, ¢V, 6(Wand ¢(Vand then, procedure is
repetitive until{ f(*)}, {g®)}, {6 }and {¢*) }converge tof, g, fand prespectively.

° The four sequences are repeatedly generated as far as
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max ([LfE4D = O] lg+D — g, 00+ — g0 [p+D - ¢8| < 1078

4. RESULTS AND DISCUSSIONS

We obtain the numerical solution of the nonlinear coupled ODEs (2. 10)-( 2. 13)
subject to the respective BCs ( 2. 14 ) by means of quasi-linearization method along with
finite-difference discretization for a collection of estimations of the micropolar material
parameters’;, Co andCs, the porosity parameter, the Reynolds numbeRe, the Peclet
numbers Pg and Pg the heat generation paramefér An effort is made to inspect the
influences of the parameters on the flow velodityn), microrotationG (n), concentration
¢(n) and temperaturé(r) as well as onF” (1), 6’ (+1)and ¢ (+1). The step-size
alongwith edge of the boundary layer are accommodated in a best way that the flow, tem-
perature, microrotation and concentration profiles show asymptotic behaviour. A graphical
comparison is correlated with the previously accomplished study and examined to be in an
exceptional agreement. Our graph may exactly be the same as in [25] if we assume other
effects in the flow as were taken in [25].

e T : . e
i &

(a)

(b)

CmE mE mid
-. - ]
Ke=1.Poy=02.H=R=y=21 Ao =1 Pe, %03 H=2

FIGURE 2. Concentration profiles(n) for various values of RBg (a)
Ref. [25] and(b) Present.

Table 1 specifies that our numerical results converge in a best way with decreasing values
of step-sizen and it confirms the accuracy of our numerical procedure. The values of
micropolar material parametefs , C; andC; for the five cases are given in Table 2 and
these values have been utilized in Table 3 as well as in Figures 3 and 4. The first case
(C1 = Cy = C3 = 0) relates with the Newtonian fluid whereas the other ones are taken
randomly to find their effects as predicted in the reference articles [37, 38, 31, 39]. From
Table 3, it may be decided that the microplar structure of the fluid causes the decrease in the
skin friction as predicted in [40] that the micro constituents of the micropolar fluid cause
significant reduction in shear stress near a rigid surface.
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TABLE 1. The values of temperaturé$n) on three grid sizes faf;, =
3,C2:2,C3:1,R€:8, P%:4,P%=6,H=0.5and5225

6(n)
n | 1° grid (h=0.01)[ 2" grid (h=0.005)| 3”7 grid (h=0.0025)
-0.8| 0.939177 0.939170 0.939168
-0.4 0.627332 0.627339 0.627341
0 0.273001 0.273025 0.273030
0.4 0.072824 0.072847 0.072852
0.8 0.009782 0.009789 0.009790

TABLE 2. Set of values of material parameters.

Case No Cy | Cy | C3
1(Newtonian)) 0 |0 |0

2 05|/08|0.3
3 1.0/1.2|0.6
4 15/16|0.9
5 2012012

TABLE 3. Shear stress, heat and mass transfer rat&déor —8, Pg, =
4,Pe, =6, H=0.5,¢ = 2.5 and set of values af';, C>, andCs.

7 7 7 7 7

CaseNO | F (-1) |0(-1) |6 (—) [F Q) [6Q) |4

1(Newtonian)| -12.2429| -0.3832| -0.7030| 12.2429| -0.0433| -0.0064

2 -8.3378 | -0.2997| -0.6049| 8.3378 | -0.0398| -0.0058
3 -6.4923 | -0.2457| -0.5445| 6.4923 | -0.0377| -0.0054
4 -5.5265 | -0.2124| -0.5083| 5.5265 | -0.0365| -0.0052
5 -4.9637 | -0.1910| -0.4853| 4.9637 | -0.0357| -0.0050

TABLE 4. Shear stress, heat and mass transfer rat€'foe 3, Co = 2,
C3=1,Re=8,Pg, =4,Pe, =6, H=0.5and various.

e |[F'(=D 0D [¢ (=) [F (D) [6(1) [¢(1)
10 | -3.5280 | -0.1340]| -0.4243| 3.5280| -0.0338| -0.00473
20| -4.3761 | -0.1801| -0.4708| 4.3761| -0.0354| -0.00503
30 | -5.0924 | -0.2134| -0.5056| 5.0924| -0.0367| -0.00525
40 | -5.7175 | -0.2390| -0.5329| 5.7175| -0.0376| -0.00543
50 | -6.2752 | -0.2595| -0.5553| 6.2752| -0.0384| -0.00557
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TABLE 5. Shear stress, heat and mass transfer rat€foe 3, Cy = 2,
C3=1,¢6=25,Pg =4,Pg, =6, H=0.5and variousRe.

77

Re[F' () [0 (-1 [6 (D [F M 61 [

7 -2.8017 | -0.0878| -0.3789| 2.8017| -0.0322| -0.00444
14 | -2.5960 | -0.0731| -0.3649| 2.5960| -0.0318| -0.00436
21 | -2.4916 | -0.0644| -0.3568| 2.4916| -0.0315]| -0.00430
28 | -2.4321 | -0.0589| -0.3518| 2.4321| -0.0313]| -0.00427
35 | -2.3947 | -0.0551| -0.3485| 2.3947| -0.0312| -0.00425

TABLE 6. Heat transfer rate fo€; = 3, Cy = 2, C3 = 1, = 2.5,
Pe, = 2, Pg,, = 6, Re = 8 and variousH.

7 7

H [6(-1) [6()
0.0| -0.6056| -0.0782
0.8 -0.1214| -0.1490
1.2]0.1772 | -0.2150
1.6|0.5411 | -0.3239
2.0|1.0198 | -0.5202

TABLE 7. Heat transfer rate fo€; = 3, Cy = 2, C3 = 1, = 2.5,
H = 0.5, Pg,, = 6, Re = 8 and various Pg

Pe, [ 0'(-1) |6(1)

0.0 | -0.5000] -0.4999
0.3 | -0.4872| -0.3960
0.6 | -0.4576| -0.3180
0.9 | -0.4189| -0.2579
1.2 | -0.3754| -0.2107

TABLE 8. Mass transfer rate fof';, = 3, Cy = 2, C3 = 1, = 2.5,
H = 0.5, Pe, = 4, Re = 8 and various Pg.

Pe. [ ¢'(-1) | (1)

0.0 | -0.5000] -0.4999
0.2 | -0.5631| -0.3969
0.4 | -0.6018| -0.3204
0.6 | -0.6244| -0.2620
1.0 | -0.6403| -0.1803

It is glaring from Tables 3 and 5 that the repercussions of material parameters and the
Reynolds number declines the skin friction as well as heat and mass transport rates on both
the walls of channel while porosity parameter acts oppositely as compared with material
parameters and Reynolds number that is apparent from Table 4.9‘39&11) and 9'(1)
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enhance for heat generation parameter as envisioned in Table9§ batandé’ (1) both
diminish for the growing values of the parametey, Rs predicted in Table 7. The rate of
mass transport increases on lower wall and decrease on upper wall with ascending values of
the parameter Reas represented in Table 8. Hence, the results reveal that the micropolar
material parameters, the Reynolds number and the porosity parameter very slightly affect
the mass transfer rate and porous medium strengthens the skin friction coefficient, mass
and heat transfer rates on lower and upper walls. It is also inferring here that the effect of
the porous medium on the shear stress is more prominent as related to its effect on mass
transfer and heat transfer rates on both walls of the channel. This is due to the fact that
the porosity parameter does not appear in the heat and concentration equation. The fixed
values of parameters (used in numerical calculation) are given in Tables.

—— Ca=e1

— Ca=el —_—

— - a3 /-"“~
---- Cased e —\‘\3

— a3 {f;,/‘:;_ﬁ \\k
FTN

oo — A

[

(S ETH]

o

FIGURE 3. F'(n) for FIGURE 4. G(n) for
various values of ma- various values of ma-
terial parameters. terial parameters.

[

ST

FIGURES5. F'(n) FIGURE 6. G(n) for
for various values of. various values of.

The streamwise velocity” (n)and the angular velocitgz(n) are represented in Figs.
3 — 6 for a variety of micropolar material parameters values and porosity parameter values
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FIGURE 7. G(n) for FIGURE 8. 6(n) for
various values ofe. various values ofd.
. —IDe.I- 9 e r, I ' I I I I I 32.,:- 9
R *\\ I
~ ] . \\\: N ]
\ — me =i : \:‘3‘\3\ — Peg=10
R ~ES
‘\:\\\\ 03 \\:\5\3\
2 \S\: a2 .
5
FIGURE 9. 6(n) for FIGURE 10. ¢(n) for
various values of Be various values of Bg.

respectively taking the estimations of the stumbling parameters fixed. The results desig-
nate that the microrotation and the velocity increase by escalating the micropolar material
parameters and an opposite trend as compared with material parameters is noticed in case
of porosity parameter. The microrotation profile decreases at lower channel wall and in-
creases at upper channel wall. Fig. 7 indicates that microrot&tiershow reduction

with ascending Reynolds numbers at both the walls of channel. Fig. 8 exhibits that the
temperature profile rise up with increase in the values of the heat generation parameter .
An enhancement in the heat generation tends to rise the temperature of the fluid and sub-
sequently temperature on both walls of the channel increases. The effects of the Peclet
number for the diffusion of heat and the Peclet number for the diffusion of mass are in-
dicated in Figs. 9 and 10 respectively. Both the temperature and concentration profiles
fall with escalating values of the Peclet number for the diffusion of hegaiithe Peclet
number for the diffusion of mass Re
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5. CONCLUSIONS

In the recent work, the numerical analysis of micropolar fluid flow through a resistive
porous medium between channel walls taking into account the effect of the heat generation
is presented. The system of nonlinear PDEs is transmuted into coupled ODEs by using
suitable non-dimensional variables and then is solved numerically by using QL method
along with finite difference discretization. The main points are mentioned below:

e The Reynolds number and the micropolar material parameters reduce the skin fric-
tion coefficient and the rates of mass and heat transport on both walls of the chan-
nel.

e |t is noticed that the porosity parameter tends to diminish the microrotation and
velocity. On the other hand, the micropolar material parameters act in an opposite
way to the porosity parameter.

e The heat generation parameter boosts up the heat transfer rate while the Peclet
number diminish it.
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