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Abstract. In this work, four well known time Fractional Partial Dif-
ferential Equations (FPDEs) namely, time Fractional Fornberg-Whitham
Equation (FFWE), time Fractional KdV Equation (FKdVE), time Frac-
tional Convection-Diffusion Equation (FCDE) and time Fractional BBM-
Burger Equation (FBBMBE) are solved numerically through Fractional
Wave Variable Transformation (FWVT) and Successive Differentiation

Method (SDM). By using the FWVT,ζ = λx − vtα

Γ(α + 1)
, these FPDEs

are converted into an Ordinary Differential Equation (ODE). Then SDM is
applied on thus formed ODE to produce their Taylor series. A comparison
of obtained numerical series atα = 1 with the exact solution is presented
to prove the accuracy of this technique as well as graphical illustrations
for different values ofα. SDM along with fractional wave variable trans-
formation proves to be an adequate and accurate method for obtaining
numerical solutions of FPDEs.

AMS Subject Classification Codes: 35-XX; 35R11; 41A58; 35C07; 35C10
Key Words: Successive Differentiation Method, Fractional Partial Differential Equation,

Taylor Series, Series Solution, Fractional Wave Variable.

1. INTRODUCTION

Physical phenomena are best described by Partial Differential Equations (PDEs), which
were first developed in the18th century for describing heat and wave phenomenon by
Fourier theory [10]. Since then, PDEs have found applications almost in every field of
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knowledge: music, chemistry, fluid dynamics [13], quantum mechanics, classical mechan-
ics, biology [8], pharmacology, electrostatics, electrodynamics, economics [33] and many
more. PDEs are described in one, two or three dimensions depending on independent vari-
ables. (For further detailed study on partial differential equations please see [30]).
Since PDEs describe the complex situations mathematically, it is quite tricky to find the ex-
act solution of every PDE; therefore, researchers have invented various numerical methods
to analyze their solutions numerically. Some notable numerical methods that are used in the
current era are: Higher Order Compact Finite Difference Method, Restrictive Taylor Series
Method [32], New Iterative Method, Residual Power Series Method, Homotopy Perturba-
tion Method (HPM) [1], Optimal q-Homotopy Analysis Transform Method (Oq-HATM),
Homotopy Analysis Method (HAM), Differential Transform Method (DTM) [37], Ado-
mian Decomposition Method (ADM), Perturbation Iteration Algorithm (PIA), Successive
Differentiation Method (SDM), Variational Iteration Method (VIM), Least Squares Finite
Element Method, Haar Wavelet Method, Semi Implicit Finite Difference Scheme, Matrix
Free Modified Extended Backward Differential Formula (MF-MEBDF) [18], combination
of Method Of Lines (MOL), Chebyshev & Spectral Fourier Methods and the Cubic B-
Spline Collocation Method.
Nonlinear Fornberg-Whitham equation is solved numerically to analyze its behaviour by
Residual Power Series Method and results have been compared with the exact solution [25].
Murat et al. [29] solved combined KdV-mKdV numerically by Cubic B-Spline Collocation
Method. A one dimensional Telegraph equation is solved numerically by using Homotopy
Analysis Method and results obtained are approximately near to the exact solution [3].
Al-Badrani et al. [2] used modified Adomian Decomposition Method for solving Tele-
graph equation numerically. Navier Stokes equation is solved by using higher order Com-
pact Finite difference Method [35]. Similarly, Fishers equation has been solved numeri-
cally by two methods such as Least Squares Finite Element Method [7] & Haar Wavelet
method [12]. A new technique known as SDM with wave variable transformation was
developed recently for finding numerical solutions of highly nonlinear PDEs. In this tech-
nique PDEs were converted into ODEs by using a wave variable transformation and then
by successively differentiating a numerical solution was obtained by the Taylor series ex-
pansion [22]. SDM was initially developed for finding numerical solutions of ordinary
differential equation such as Bratu type equations by Wazwaz [36]. Khalid et.al applied
SDM to obtain easy and accurate numerical solution of Lane-Emden equation [23].
Researchers and mathematicians developed fractional PDEs for the generalization of inter-
esting phenomena or to see beyond and between the first and second order partial deriv-
atives. Most of the numerical methods mentioned above are capable or are modified for
solving time fractional PDEs such as nonlinear FFWE is solved numerically by Oq-HATM
[11]. FFWE is also solved by New Iterative Method and modified Homotopy Perturba-
tion Method [19]. FCDE is solved numerically by Variational Iteration Method [26]. An-
other numerical method proved to be accurate and easier in calculations was Perturbation-
Iteration Algorithm for solving time fractional partial differential equation [21].
In this research paper, SDM is utilized to find the numerical solutions of four famous time
fractional partial differential equations by incorporating fractional wave variable transfor-
mation. Equations that have been solved numerically by SDM are FFWE, FKdVE, FCDE
and FBBMBE. All these time fractional partial differential equations will first be converted
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into ordinary differential equations by using the fractional wave variable transformation.
Then SDM will be applied to obtain their numerical solutions.
This paper consists of the following sections: Section 2 is based on the basic concepts of
fractional calculus that will be used in this work. Section 3 is the mathematical formulation
of this numerical technique along with fractional wave variable transformation. Section 4
describes the application of this mathematical formulation on four different time fractional
PDEs which have application in different fields. Section 5 discusses the conclusion of this
work.

2. PRELIMINARY CONCEPTS OFFRACTIONAL CALCULUS

Some basic definitions of fractional calculus used in this paper for solving FPDEs are
given below with brief description:

Definition 2.1. The most commonly used definition for fractional derivative is Caputo
sense derivative of fractional orderα given as

Dα
t u(t) =

1
Γ(n− α)

∫ t

0

(t− τ)n−α−1u(n)(τ) dτ (2.1)

wheren− 1 < α ≤ n, n ∈ N, t > 0.
For α = 1 Caputo sense derivative becomes

Dαu(t) =
du(t)

dt
(2.2)

2.2. Properties of Caputo Fractional Derivative. Some properties of Caputo derivative
used in this work are

(a) Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α ; γ > 0

(b) Dα
t

(
cu(t)

)
= cDα

t u(t), where c is constant.

(c) Dα
t

(
au(t) + bv(t)

)
= aDα

t u(t) + bDα
t v(t), where a and b are constant.

(d) Dα
t c = 0.

Modified Fractional Chain Rule: Sinceu is a function of(x, t) and the only fractional
derivative required in this work is with respect tot. So the general form of fractional chain

rule in [16] is written as
∂αu

∂tα
= σ′t

∂u

∂s

∂αs

∂tα
. Also the authors in [16] claimed that this is

only possible ifσ′t =
Γ(mα + 1)

mΓ(1− α + mα)
. According to this work it can be calculated as

∂αu

∂tα
= σ′t

∂u

∂ζ

∂αζ

∂tα
whereσ′t =

Γ(mα + 1)
mΓ(1− α + mα)

= C, where it could be any constant

number except1 [4,6]. For details please see [16]

3. MATHEMATICAL FORMULATION

Consider a nonlinear time fractional PDE of general form as

F (u,Dα
t u, ux, uxx, uxxx, · · · , uxt, · · · ) = 0 (3.3)
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Let the fractional wave variable transformation be

ζ = λx− vtα

Γ(α + 1)
(3.4)

Whereλ andv are the constants to be evaluated later that satisfy the Eq.(3.4). This equation
transforms the time-fractional PDE into a simple ODE and becomes,u(x, t) = U(ζ). By
using Eq.(3.4), following derivatives can be obtained,ux(x, t) = λU ′(ζ), uxx(x, t) =
λ2U ′′(ζ), Dα

t u(x, t) = −vCU ′(ζ) sinceDα
t ζ = −v etc (For details see [16]). Then

Eq.(3.3) becomes

F
(
U(ζ),−vCU ′(ζ), λU

′
(ζ), λ2U

′′
(ζ), λ3U

′′′
(ζ), · · · ,

−λvtα−1αU
′′
(ζ)

Γ(α + 1)
, · · ·

)
= 0

(3.5)

whereC =
Γ(mα + 1)

mΓ(1− α + mα)
. After successfully differentiating Eq.(3.5) many times

with respect toζ, U
′′′

(ζ), U iv(ζ), Uv(ζ), · · · are derived. By takingζ = 0 in these
derivatives, Taylor series can be obtained forU(ζ) as

u(x, t) = U(ζ) =
∞∑

n=0

U (n)(0)
n!

ζn (3.6)

Eq.(3.4) is then substituted in Eq.(3.6) and becomes

u(x, t) = U(ζ) =
∞∑

n=0

U (n)(0)
n!

(λx− vtα

Γ(α + 1)
)n (3.7)

Find the values of constantsλ andv and hence the final numerical solution is obtained by
putting the value of these constants in Eq.(3.7).

4. NUMERICAL EXAMPLES

Four widely known time fractional partial differential equations have been solved by
Successive Differentiation Method. Each of them has its own importance in the respective
fields. Since it’s not easy to calculate their solutions analytically, in several cases these
particular equations are solved numerically.

4.1. Example 1. Let’s consider the first example to be FFWE [11], with initial condition

u(x, 0) = e

−x

2 written mathematically as

Dα
t u(x, t)− uxxt(x, t) + ux(x, t) = u(x, t)

(
uxxx(x, t)− ux(x, t)

)
+ 3ux(x, t)uxx(x, t).

(4.8)

u(x, t) = e

∣∣∣−x

2
+

2t

3

∣∣∣
is the exact solution of FFWE. Using fractional wave variable trans-

formation in Eq.(3.4), Eq.(4.8) becomes

(λ− vC)U
′
+

λ2vαtα−1U
′′′

(ζ)
Γ(α + 1)

=λ3D
(
− U

′
(ζ)2

2
+ U(ζ)U

′′
(ζ)

)
−
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FIGURE 1. Comparison between exact solution and numerical series so-
lution by SDM atα = 1, C = −8290525091498482 and t = 0.1 of
Time Fractional Fornberg-Whitham equation.

FIGURE 2. Graphical representation of Time Fractional Fornberg-
Whitham equation for α = 0.2, 0.4, 0.6, 0.8, 1.0 and C =
−8290525091498482 at t = 0.1 andx ∈ [−4, 4].

λD
(U(ζ)2

2

)
+ 3λ3D

(U
′
(ζ)2

2

)
(4.9)

by integrating Eq.(4.9)

(λ− vC)U(ζ) +
λ2vαtα−1U

′′
(ζ)

Γ(α + 1)
= λ3U

′
(ζ)2 + λ3U(ζ)U

′′
(ζ)− λ

2
U(ζ)2 (4.10)

Rearrange Eq.(4.10) to get

U
′′
(ζ) = − tΓ(α + 1)

(
2Cvu(ζ) + 2λ3u′(ζ)2 − λu(ζ)2 − 2λu(ζ)

)

T
(4.11)

whereT = 2λ2 (λtΓ(α + 1)u(ζ)− αvtα). By successively differentiating Eq.(4.11) we
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get

U
′′′

(ζ) =
t2Γ(α + 1)2u′(ζ)

(
2Cvu(ζ) + 2λ3u′(ζ)2 − λu(ζ)2 − 2λu(ζ)

)

λT 2
−

tΓ(α + 1)
(
2Cvu′(ζ)− 2λu(ζ)u′(ζ)− 2λu′(ζ) + 4λ3u′(ζ)u′′(ζ)

)

T
·
·
· (4.12)

Substitutingζ = 0 in Eq.(4.11), Eq.(4.12). The only initial conditionu(x, 0) = e

−x

2
transformed byζ = 0 iff x = 0 andt = 0, henceU (0) = u(0, 0) = 1. Since Eq.(4.11)
is the second order derivative, soU

′
(0) = a is assumed,a will be evaluated later. The

following is obtained

U (0) = 1

U
′
(0) = a

U
′′
(0) = − tΓ(α + 1)

(
2a2λ3 + 2Cv − 3λ

)

T0

U
′′′

(0) =
atΓ(α + 1)

(
λtΓ(α + 1)

(
6a2λ3 + 4Cv − 5λ

)
+ 2αvtα(Cv − 2λ)

)

−T0

·
·
·

(4.13)

whereT0 = 2λ2
(
αvtα − λtΓ(α + 1)

)2

. More successive derivatives can be obtained on

similar pattern. Substituting all these values in Eq.(3.7), yields

U (ζ) = 1 + a(λx− v
tα

Γ(α + 1)
)−

t(2a2λ3 + 2Cv − 3λ)
(
vtα − λxΓ(α + 1)

)2

4λ2Γ(α + 1)
(
λtΓ(α + 1)− αvtα

) + · · ·

(4.14)

To find the value of unknown’sλ, v anda, assumingα = 1 andt = 0 in Eq.(4.14):

U (ζ) =1 + axλ− x2(2a2λ3 + 2Cv − 3λ)
4(λ− v)

+ · · · (4.15)

In order to compare with initial condition, consider the following series

e
−x
2 = 1− x

2
+

x2

8
− x3

48
+

x4

384
+ ... (4.16)
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By comparing Eq.(4.15) and Eq.(4.16), we getλ = − 1
2a

andv = − 2
a(4C − 1)

, therefore

Eq.(3.4) becomes

ζ = − x

2a
+

2tα

a(4c− 1)Γ(α + 1)
(4.17)

Hence by substituting Eq.(4.17) in Eq.(4.14) the series solution for FFWE by SDM is given
as

U (ζ) =1− x

2
+

2tα

(4C − 1)Γ(α + 1)
+

(4C − 5)xtα+1

(4C − 1)
(
4αtα + (t− 4Ct)Γ(α + 1)

)+

(
16(4C − 5)t2α − 5x2Γ(α + 1)2

)
t

8(1− 4C)2Γ(α + 1)
(
(4C − 1)tΓ(α + 1)− 4αtα

)+

C(11− 28C + 16C2)x2tΓ(α + 1)

2(1− 4C)2
(
− 4αtα + (4C − 1)tΓ(α + 1)

)−

(7 + 4C)xtΓ(2α + 2)

(4C − 1)
(
4αtα − (4C − 1)tΓ(α + 1)

)2−

4t3α+1
(
32(2C − 1)αtα + (7− 24C − 16C2)tΓ(α + 1)

)

3(4C − 1)3Γ(α + 1)2
(
4αtα + (1− 4C)tΓ(α + 1)

)2 +

32(2C − 1)αxtΓ(3α + 1)

(1− 4C)2Γ(α + 1)
(
4αtα + (1− 4C)tΓ(α + 1)

)2 +

(4C + 7)x2tα+2Γ(α + 1)

4
(
4αtα + (1− 4C)tΓ(α + 1)

)2−

x3tΓ(α + 1)
(
− 32(2C − 1)αtα + (−7 + 24C + 16C2)tΓ(α + 1)

)

48
(
4αtα + (1− 4C)tΓ(α + 1)

)2 + · · ·

(4.18)

By further comparison and solvinga = 0 is obtained. Now to find the most suitable
value of C i.e. −8290525091498482 in this case is obtained by parameter optimiza-
tion technique. Reader can utilize the techniques they are familiar with for parameter
C ′s evaluation such as Bayesian Minimization etc. Similarly thisC can be evaluated
for different values ofα. Fig.1 shows the comparison between exact solution and se-
ries solution of time Fractional Fornberg Whitham equation by SDM atα = 1 by taking
t = 0.1, C = −8290525091498482 andx ∈ [−4, 4], which clearly shows the accuracy of
SDM. Fig.2 shows the behavior of Eq.(4.18) for different values ofα by takingt = 0.1,
C = −8290525091498482 andx ∈ [−4, 4].
In Table.1, the series solution acquired through SDM is compared numerically by exact
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TABLE 1. Comparison of series solution of time Fractional Forn-
berg Whitham equation obtained through SDM with exact solution
and solution obtained by other numerical methods atα = 1, C =
−8290525091498482 andt = 1.

x Exact SDM HPM [31] FVIM [5] HPTM [14]
0.0 1.94773404 1.94650205 0.50000000 0.50000000 0.46875000
0.5 1.51689680 1.51595253 0.64201270 0.64201270 0.60188691
1.0 1.18136041 1.18108068 0.82436063 0.82436063 0.77283809
1.5 0.92004441 0.92287768 1.05850001 1.05850001 0.99234375
2.0 0.71653131 0.72993827 1.35914091 1.35914091 1.27419461
2.5 0.55803514 0.59846067 1.74517148 1.74517148 1.63609826
3.0 0.43459820 0.53224665 2.24084454 2.24084454 2.10079175
3.5 0.33846542 0.54270150 2.87730134 2.87730134 2.69747000
4.0 0.26359713 0.64883401 3.69452805 3.69452805 3.46362005

FIGURE 3. Comparison between exact solution and numerical series so-
lution by SDM atα = 1 andC = 0.08610469561565809 at t = 0.1 of
Time Fractional Convection-Diffusion equation inx ∈ [−4, 4].

solution and other contemporary methods atα = 1 andt = 1. Table.1 clearly shows the
results obtained through SDM are more accurate than FVIM, HPM and HPTM.

4.2. Example 2. Considered Fractional Convection-Diffusion equation [13] is

Dα
t u(x, t) = uxx(x, t)− ux(x, t) + u(x, t)uxx(x, t)− u(x, t)2 + u(x, t) (4.19)

with initial condition and boundary condition asu(0, t) = et, u(1, t) = et+1 andu(x, 0) =
ex. The exact solution of Eq.(4.19) is u(x, t) = ex+t. Substituting fractional wave variable
transformation of Eq.(3.4) in Eq.(4.19) becomes

(λ− vC)U
′
(ζ) = (1 + U(ζ))λ2U

′′
(ζ) + U(ζ)(1− U(ζ)) (4.20)
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FIGURE 4. Graphical representation of Time Fractional Convection-
Diffusion equation forα = 0.2, 0.4, 0.6, 0.8, 1.0 at t = 0.1 andx ∈
[−4, 4].

Rearrange Eq.(4.20), to get

U
′′
(ζ) =

(λ− Cv)U ′(ζ) + U(ζ)(U(ζ)− 1)
λ2T

(4.21)

whereT = U(ζ) + 1. Successively differentiating Eq.(4.21), it becomes

U
′′′

(ζ) =
T1U

′′(ζ) + (Cv − λ)U ′(ζ)2 + T2U
′(ζ)

λ2T 2
(4.22)

whereT1 = −U(ζ + 1)(Cv − λ) andT2 = U(ζ)2 + 2U(ζ)− 1

U iv(ζ) =
T2U

′′(ζ)− (U(ζ) + 1)U
′′′

(ζ)(Cv − λ)
λ2T 2

+

(2λ− 2Cv)U ′(ζ)3 + 3(−T1U
′(ζ)U ′′(ζ) + 4U ′(ζ)2

λ2T 3
(4.23)

·
·
·

More derivatives can be calculated in the same way. The only initial condition for this
problem becomesU (0) = u(0, 0) = 1, hence we assumeU

′
(0) = a, a will be evaluated

later. Now putζ = 0 in Eq.(4.21), (4.22) & (4.23), they become

U (0) = 1

U
′
(0) = a

U
′′
(0) =

a(λ− Cv)
2λ2

U
′′′

(0) =
a

(
C2v2 − 2Cλv + 3λ2

)

4λ4
− a2(λ− Cv)

4λ2
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U iv(0) = v2

(
3aC2

8λ5
− a2C2

2λ4

)
+ v

(
−a3C

4λ2
+

a2C

λ3
− 7aC

8λ4

)
+

a3

4λ
− aC3v3

8λ6
+

5a

8λ3

·
·
· (4.24)

Substitute values of Eq.(4.24) in Eq.(3.7)

U (ζ) =1 + a

(
λx− vtα

Γ(α + 1)

)
−

a(Cv − λ)
(
λx− vtα

Γ(α+1)

)2

4λ2
· · · (4.25)

To find the value of unknown’sλ, v anda, takingα = 1 andt = 0 in Eq.(4.25) it becomes

U (ζ) =1 + axλ + x2
(aλ

4
− aCv

4

)
+ x3

(a2Cλv

24
− a2λ2

24
+

aC2v2

24λ
− aCv

12
+

aλ

8

)
+

x4
(
− a3Cλ2v

96
+

a3λ3

96
− a2C2v2

48
+

a2Cλv

24
− aC3v3

192λ2
+

aC2v2

64λ
−

7aCv

192
+

5aλ

192

)
+ · · · (4.26)

In order to compare with initial condition, we consider:

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+ ... (4.27)

By comparing Eq.(4.26) and Eq.(4.27) we getv = − 1
aC

andλ =
1
a

and by substituting

these values Eq.(3.4) becomes

ζ =
x

a
+

tα

aCΓ(α + 1)
(4.28)

Putting Eq.(4.28) in Eq.(4.25) and by simplifying the seriesa will get vanished during
calculations, therefore the series solution for FCDE by SDM is obtained as

u(x, t) =1 + x +
x2

2
+

x3

6
+

x4

24
+

t4α

24C4Γ(α + 1)4
+

t3α

6C3Γ(α + 1)3
+

xt3α

6C3Γ(α + 1)3
+

t2α

2C2Γ(α + 1)2
+

xt2α

2C2Γ(α + 1)2
+

x2t2α

4C2Γ(α + 1)2
+

tα

CΓ(α + 1)
+

xtα

CΓ(α + 1)
+

x2tα

2CΓ(α + 1)
+

x3tα

6CΓ(α + 1)
+ · · · (4.29)

Now to find the most suitable value ofC i.e. 0.08610469561565809 in this case is obtained
by parameter optimization technique. Reader can utilize the techniques they are familiar
with for parameterC ′s evaluation such as Bayesian Minimization etc. Similarly this C can
be evaluated for different values ofα.
Fig.3 shows the comparison between exact solution and series solution of FCDE by SDM
at α = 1 andC = 0.08610469561565809 by taking t = 0.1 andx ∈ [−4, 4], which
clearly shows the accuracy of SDM. Fig.4 shows the behavior of Eq.(4.29) for different
values ofα by takingC = 0.08610469561565809, t = 0.1 andx ∈ [−4, 4]. In Table.2,
the series solution acquired through SDM is compared numerically by exact solution and
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TABLE 2. Comparison of series solution of fractional Convection-
Diffusion equation obtained through SDM with exact solution and
solution obtained by other numerical methods atα = 1, C =
0.08610469561565809 andt = 1.

x Exact SDM HATM [15] HPSTM [15] FVIM [24]
0.0 2.71828183 2.70833333 2.66666667 2.70833333 2.70833333
0.1 3.00416602 2.99317101 2.94712245 2.99317124 2.99317124
0.2 3.32011692 3.30795833 3.25707402 3.30796580 3.30796580
0.3 3.66929667 3.65580990 3.59962349 3.65586760 3.65586760
0.4 4.05519997 4.04011111 3.97819919 4.04035856 4.04035856
0.5 4.48168907 4.46451823 4.39659006 4.46528677 4.46528677
0.6 4.95303242 4.93295833 4.85898347 4.93490508 4.93490508
0.7 5.47394739 5.44962934 5.37000722 5.45391358 5.45391358
0.8 6.04964746 6.01900000 5.93477581 6.02750668 6.02750668
0.9 6.68589444 6.64580990 6.55894163 6.66142509 6.66142509
1.0 7.38905610 7.33506944 7.24875154 7.36201329 7.36201329

other contemporary methods atα = 1, C = 0.08610469561565809 andt = 1. Table.2
clearly shows the results obtained through SDM are more accurate than FVIM, HPSTM
and HATM.

4.3. Example 3. Consider the time Fractional KdV equation [28]

Dα
t u(x, t) + 6u(x, t)ux(x, t) + uxxx(x, t) = 0 (4.30)

with initial conditionu(x, 0) =
1
2
sech2

(x

2

)
. The exact solution of Eq.(4.30) is u(x, t) =

1
2
sech2

(x− t

2

)
. Using fractional wave variable transformation in Eq.(3.4), Eq.(4.30) be-

comes

−vCU
′
(ζ) + 6λD

(U(ζ)2

2

)
+ λ3U

′′′
(ζ) = 0 (4.31)

by integrating Eq.(4.31), it becomes

U
′′
(ζ) =

1
λ3

(
vCU(ζ)− 3λ(U(ζ))2

)
(4.32)

By successively differentiating Eq.(4.32):

U
′′′

(ζ) =
U ′(ζ)(vC − 6λU(ζ))

λ3
(4.33)

U iv(ζ) =
U(ζ)

(
v2C2 − 9vCλU(ζ) + 18(λU(ζ))2

)
− 6λ4(U

′
(ζ))2

λ6

·
·
· (4.34)
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FIGURE 5. Comparison between exact solution and numerical series so-
lution by SDM atα = 1, t = 0.1 andC = 0.9859374163793541 of
Time Fractional KdV equation.

On a similar pattern, more successful derivatives can be obtained. Substituteζ = 0 in
Eq.(4.34), it becomes

U (0) =
1
2

U
′
(0) = a

U
′′
(0) =

vC

2λ3
− 3

4λ2

U
′′′

(0) =
avC

λ3
− 3a

λ2

U iv(0) = −6a2

λ2
+

9
4λ4

+
v2C2

2λ6
− 9vC

4λ5

·
·
· (4.35)

Substituting Eq.(4.35) in Eq.(3.7) yields

U(ζ) =
1
2

+ a
(
λx− vtα

Γ(α + 1)

)
+

(2Cv − 3λ)
(
λx− vtα

Γ(α+1)

)2

8λ3
+

a(Cv − 3λ)
(
λx− vtα

Γ(α+1)

)3

6λ3
· · · (4.36)

To find value of unknownλ, v anda, consider thatα = 1 andt = 0 in Eq.(4.36):

U(ζ) =
1
2

+ aλx + x2
(Cv

4λ
− 3

8

)
+ x3

(aCv

6
− aλ

2

)
+ x4

(
− a2λ2

4
+

C2v2

48λ2
−
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FIGURE 6. Graphical representation of Time Fractional KdV equation
for α = 0.2, 0.4, 0.6, 0.8, 1.0 at t = 0.1 andx ∈ [−4, 4].

Cv

32λ
− Cv

16λ
+

3
32

)
· · · (4.37)

In order to compare with initial condition, we consider the series

1
2
sech2

(x

2

)
=

1
2
− x2

8
+

x4

48
+ ... (4.38)

By comparing Eq.(4.37) and Eq.(4.38), we getv = λ
C anda = 0 therefore by substituting

these values Eq.(3.4) becomes

ζ = xλ− λtα

CΓ(α + 1)
(4.39)

Using Eq.(4.39) in Eq.(4.36), and upon simplifyingλ will get vanished and the final series
solution of FKdVE by SDM is given as

u(x, t) =
1
2
− x2

2
+

x4

48
+

t4α

48C4Γ(α + 1)4
− xt3α

12C3Γ(α + 1)3
− t2α

8C2Γ(α + 1)2
+

x2t2α

8C2Γ(α + 1)2
+

xtα

4CΓ(α + 1)
− x3tα

12CΓ(α + 1)
+ · · · (4.40)

In this caseC = 0.9859374163793541 is obtained. Fig.5 shows the comparison between
exact solution and series solution of FKdVE by SDM atα = 1 andC = 0.9859374163793541
by takingt = 0.1 andx ∈ [−4, 4], which clearly shows the accuracy of SDM. Fig.6 shows
the behavior of Eq.(4.40) for different values ofα by takingt = 0.1, C = 0.9859374163793541
andx ∈ [−4, 4].
In Table.3, the series solution acquired through SDM is compared numerically by exact

solution and other contemporary methods atC = 0.9859374163793541, α = 1 andt = 1.
Table.3 clearly shows the results obtained through SDM are more accurate than FVIM,
RDTM and ADM.
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TABLE 3. Comparison of series solution of fractional KdV equation ob-
tained through SDM with exact solution and solution obtained by other
numerical methods atC = 0.9859374163793541, α = 1 andt = 1.

x Exact SDM FVIM [28] ADM [27] RDTM [20]
0.0 0.393223866 0.395833333 0.375000000 1.062500000 0.375000000
0.1 0.411000615 0.412033333 0.399914507 1.007299540 0.399914507
0.2 0.427819393 0.427206944 0.424301956 0.919492368 0.424301956
0.3 0.443425747 0.441220833 0.447608106 0.805462604 0.447608106
0.4 0.457568481 0.453950000 0.469273965 0.673827372 0.469273965
0.5 0.470007424 0.465277778 0.488764258 0.534355269 0.488764258
0.6 0.480521491 0.475095833 0.505594819 0.396792393 0.505594819
0.7 0.488916623 0.483304167 0.519356608 0.269791354 0.519356608
0.8 0.495033145 0.489811111 0.529734474 0.160100056 0.529734474
0.9 0.498752080 0.494533333 0.536519415 0.072100640 0.536519415
1.0 0.500000000 0.497395833 0.539613781 0.007714244 0.539613781

4.4. Example 4. Considered time fractional BBM-Burger equation [38]

Dα
t u(x, t)− uxxt(x, t) + ux(x, t) +

(u(x, t)2

2

)
x

= 0 (4.41)

with initial conditionu(x, 0) = sech2
(x

4

)
. The exact solution of Eq.(4.41) is u(x, t) =

sech2
(x

4
− t

3

)
. Using fractional wave variable transformation given in Eq.(3.4), Eq.(4.41)

becomes

−vU
′
(ζ)C +

αvλ2U
′′′

(ζ)tα−1

Γ(α + 1)
+ λU

′
(ζ) + λD

(U(ζ)2

2

)
= 0 (4.42)

On integrating Eq.(4.42), it becomes

U
′′
(ζ) = −Γ(α + 1)t1−αU(ζ)(−2Cv + 2λ + λU(ζ))

2αλ2v
(4.43)

By successively differentiating, Eq.(4.43) yields

U
′′′

(ζ) =
Γ(α + 1)t1−αU ′(ζ)(Cv − λ− λU(ζ))

αλ2v
(4.44)

U iv(ζ) = −Γ(α + 1)t1−α
(
U ′′(ζ)(−Cv + λ + λU(ζ)) + λU ′(ζ)2

)

αλ2v
·
·
· (4.45)

More such derivatives can be calculated in a similar manner. Initial condition by using
Eq.(3.4) becomesU (0) = u(0, 0) = 1, we assume another condition asU

′
(0) = a. Put
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FIGURE 7. Comparison between exact solution and numerical series so-
lution by SDM atα = 1, C = 0.99999999999 and t = 0.1 of Time
Fractional BBM-Burger equation.

FIGURE 8. Graphical representation of Time Fractional BBM-Burger
equation forα = 0.2, 0.4, 0.6, 0.8, 1.0 at t = 0.1, C = 0.99999999999
andx ∈ [−3.5, 3.5].

ζ = 0 in Eq.(4.43) - Eq.(4.45), they become

U(0) =1

U
′
(0) =a

U
′′
(0) =

Γ(α + 1)t1−αC

αλ2
− Γ(α + 1)t1−α

2αλv

U
′′′

(0) =
aΓ(α + 1)t1−αC

αλ2

U iv(0) =
a2Γ(α + 1)t1−α

αλv
+

Γ(α + 1)2t2−2αC2

α2λ4C2
− Γ(α + 1)2t2−2αC

2α2λ3v
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TABLE 4. Comparison of series solution of fractional BBM-Burger
equation obtained through SDM with exact solution and solution ob-
tained by other numerical methods atC = 0.99999999999, α = 1 and
t = 1.

x Exact SDM FHATM [34] MRPSM [17] HAM [9]
0.0 0.896629560 0.897119342 0.750000000 0.500000000 0.750000000
0.1 0.910646768 0.910916494 0.775438735 0.528395369 0.825381485
0.2 0.923830987 0.923875889 0.801624332 0.563307094 0.901167329
0.3 0.936124523 0.935943849 0.828338754 0.604097705 0.976801951
0.4 0.947472404 0.947069454 0.855337838 0.649862148 1.051713440
0.5 0.957822885 0.957204945 0.882356241 0.699485045 1.125323120
0.6 0.967127929 0.966306133 0.909113103 0.751710633 1.197055430
0.7 0.975343665 0.974332808 0.935318229 0.805218015 1.266347990
0.8 0.982430819 0.981249141 0.960678564 0.858694434 1.332661290
0.9 0.988355106 0.987024097 0.98490473 0.910900345 1.395488040
1.0 0.993087580 0.991631837 1.00771741 0.960721759 1.454361550

Uv(0) =
aΓ(α + 1)2t2−2αC2

α2λ4C2
+

3aΓ(α + 1)2t2−2αC

α2λ3v
− 3aΓ(α + 1)2t2−2α

2α2λ2v2

·
·
· (4.46)

Put Eq.(4.46) in Eq.(3.7) it becomes

U (ζ) =1 + a
(
λx− vtα

Γ(α + 1)

)
−

Γ(α + 1)t1−α(3λ− 2Cv)
(
λx− vtα

Γ(α+1)

)2

4αλ2v
+

aΓ(α + 1)t1−α(Cv − 2λ)
(
λx− vtα

Γ(α+1)

)3

6αλ2v
+ · · · (4.47)

To find value of unknownλ, v anda, takeα = 1 andt = 0 in Eq.(4.47), it becomes

U (ζ) =1 + aλx +
aλx3(Cv − 2λ)

6v
− x2(3λ− 2Cv)

4v
+

x4
(
− 2λ2

(
a2λv − 3

)
+ 2C2v2 − 7Cλv

)

48v2
+ · · · (4.48)

In order to compare with initial solution, the following series is obtained

sech2
(x

4

)
= 1− x2

16
+

x4

384
+ ... (4.49)
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By comparing Eq.(4.48) and Eq.(4.49) we geta = 0, λ =
v

12
+

2vC

3
, andv, therefore

Eq.(3.4) becomes

ζ = x

(
2cv

3
+

v

12

)
− vtα

Γ(α + 1)
(4.50)

Putting Eq.(4.50) in Eq.(4.47), the final series solution for FBBMBE by SDM is obtained
as

U (ζ) =1− 9t2

(8C + 1)2
+

18(2C + 1)t4

(8C + 1)4
+

3tx

2(8C + 1)
− 6(2C + 1)t2x

(8C + 1)3
−

1
16
− 3(2C + 1)t2x2

4(8C + 1)2
+

(2C + 1)tx3

24(8C + 1)
+

(2C + 1)x4

1152
+ · · · (4.51)

In this example the most suitableC = 0.99999999999 is obtained. Fig.7 shows the
comparison between exact solution and series solution of FBBMBE by SDM atC =
0.99999999999, α = 1 by taking t = 0.1 and x ∈ [−4, 4], which clearly shows the
accuracy of SDM. Fig.8 shows the behavior of Eq.(4.51) for different values ofα by taking
t = 0.1, C = 0.99999999999 andx ∈ [−4, 4].
In Table.4, the series solution acquired through SDM is compared numerically by exact so-
lution and other contemporary methods atα = 1, C = 0.99999999999 andt = 1. Table.4
clearly shows the results obtained through SDM are more accurate than FHATM , MRPSM
and HAM.

5. CONCLUDING REMARKS

This research paper employed the Successive Differentiation Method with a great de-
gree of success on some well known and highly Nonlinear Fractional Partial Differential
Equations (NFPDEs). The yielding results evinced the efficiency of the techniques used in
this paper.
All eight graphical illustrations of the solved examples shows the effectiveness of this
method. The accurate convergence with exact solution can easily be observed among them.
The core objective is to show the potency and strong features of SDM over FPDE, in fact
through curtailing the order and minimizing the efforts made in time consuming calcula-
tions. The substitution of fractional wave variable transformation into SDM is the simpler
approach to obtain the numerical solution of almost any type of FPDE. The range of meth-
ods like HPM, PIA, DTM, ADM, VIM, HAM, etc involve lengthy and arduous calculations
like Adomian Polynomials, Lagrange Multipliers, Perturbation parameters, decomposition
of linear or non-linear terms etc, whereas the method presented in this paper is straight-
forward.
Calculations here are carried out in Mathematica 10.0. The only drawback found is of the
choice of the most accurate value ofλ, v andC among the various resulted values even
complex values can give optimum results in fractional partial differential equations. In this
regard no considerable rule has been formulated yet, except for the verification of each
value through trial and error technique.
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