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Abstract.: In this research paper, we apply OHAM and HAM to establish
and solve the problem concerning two-dimensional exponential stretch-
ing sheets. The governing nonlinear differential equations are modeled
with the aid of suitable transformation. A concrete graphical analysis
is carried to investigate the behavior of similarity between the analytical
and numerical solutions. The techniques OHAM and HAM are capable
of producing resemblance between the two graphs. These methods have
high accuracy, controlling convergence and generally trustworthy for the
higher-order problems solutions.
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1. INTRODUCTION

The stretching surface predicament was modified by Crane and McCormack in 1973 [1].
The enlarging sheet problems for time-independent flow have been used in several manu-
facturing methods and engineering, resembling non-Newtonian fluid, Magneto-hydrodynamics
fluid flow, permeable medium and temperature transference analysis. Magneto-hydrodynamics
is the learn of the interface of conducting fluid flow with electro-magnetic process. The
electrically conducting fluid flow in the presence of a magnetic area is significant in several
fields of engineering as Magneto-hydrodynamics power generation, Magneto-hydrodynamics
fluid flow meters, and MHD pump. It is of interest to investigate the behavior of flow of in-
compressible fluid flow over an exponential extending surface; recently all the researchers
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take different manufacturing processes over the boundary layer idea [32-34]. The processes
are aerodynamic extrusion of hot rolling, plastic surface, gluing of labels on warm bodies,
paper manufacture and relevance in polymer industries. A large number of numerical and
analytical techniques are used in the study of these systematic models. The mathemati-
cal structure of a large number of physical systems clues to non-linear partial or ordinary
differential equations in several areas such as physics, chemistry, and engineering tech-
nologies. A useful technique is vital to investigate the mathematical model, illustrating
techniques conforming physical truth. Common analytic measures, liberalizing the sys-
tems or assuming that non-linearity?s are comparatively irrelevant. Such postulates from
time to time powerfully, influence the solutions with respect to physics of the phenomena.
Thus in search of the exact solutions non-linear PDEs or ODEs are of vast significance.
Several controlling mathematical techniques such as (HPM) [2-6] ADM [7-11] Laplace
Decomposition Method (LDM) [12-16] Variational Iteration Method (VIM) [17-21]. We
used OHAM [22-28] and HAM [29-31].

2. FUNDAMENTALS OF OHAM:

To exhibit the basic technique of OHAM [22- 28] we take Differential Equation

T (v(r)) + l(r) = 0 (2. 1)

D(v) = 0 (2. 2)

With T is wide-ranging differential operatorD an operator on the boundary andl(r) is a
known function where

T = L + N (2. 3)

In equation (2.3)N andL are non-linear and linear parts. By this method equations of
deformation are given as:

(1− s)
[
L(Ψ(t, s)) + l(t)

]− h(s)
[
L(Ψ(t, s)) + l(t) + N(Ψ(t, s))

]
(2. 4)

D(Ψ(t, s)) = 0 (2. 5)

In equation (2.4),Ψ(t, s) is unknown function, s∈[0,1] is embedding parameter andh(s) is
a non- zero assisting function for s6=0 andh(0) = 0 ass increases from 0 to 1 the solution
Ψ(t, s) is changing betweenv0(t) the preliminary guess and the solutionv(t). Obviously,
whens = 0 ands = 1 it gives the following

Ψ(t, 0) = v0(t), Ψ(t, 1) = v(t) (2. 6)

We selecth(s) in the form

h(s) = sβ1 + s2β2 + s3β3 + ... (2. 7)

Whenβ1,β2,β3... are convergence control parameters that are to be dogged later. Express-
ing Ψ(t, s) in terms of perturbation series dependent on ,

Ψ(t, s, βi) = v0(t) +
∞∑

k=1

vk(t, βi)sk (2. 8)

i = 1, 2, 3... putting equation (2.8) in equation (2.4) and equating the coefficients of
s0, s1, s2, ...

L(v0(t)) + l(t) = 0, D(v0) = 0 (2. 9)
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L(v1(t)) = β1N0(v0(t)), D(v1) = 0 (2. 10)

And we have

L(vk(t)− vk−1(t)) = βkN0(v0(t)) +
k−1∑

i=1

βi

[
L(vk−i(t)) + Nk−i(v0(t), v1(t)...vk−i(t))

]

(2. 11)
Fork = 2, 3, 4...
D(vk) = 0 WhereverNi, i ≥ 0 signifies the coefficients ofsi in N

N(v(t)) = N0(v0(t)) + sN1(v0(t), v1(t)) + s2N2(v0(t), v1(t), v2(t)) + ... (2. 12)

We should emphasize thatvn for n ≥ 0 are dominated by the equations from (2.9) to
(2.11) with boundary condition that we get from an innovative problem is solved. The
merging of progression (2.8) relies on the convergence control parametersβ1, β2, β3... if it
is convergent ats = 1 we obtain

v(t, βi) = v0(t) +
∞∑

k=1

vk(t, βi) (2. 13)

In general equation (2.1) can be solved approximately in the form

vq = v0(t) +
q∑

k=1

vk(t, βi) (2. 14)

We admit that the ending coefficientsβq have a dependence on putting equation (2.14) in
(2.1) we get the residual

S(t, βi) = L(v)(t, βi) + l(t) + N(v(t, βi)), i = 1, 2, 3, ... (2. 15)

If S(t, βi) = 0 we havev(t, βi) is an analytical solution. In general, this type of assumption
cannot occur for the problems which are nonlinear, but the following functional can be
reduced

P (β1, β2, β3..., βn) =
∫ b

a

S2(t, β1, β2, β3..., βn)dt (2. 16)

For i = 1, 2, 3, ...
Now we apply Least square technique the values ofβ1, β2, β3... are determined using con-
ditions of calculus.

∂P

∂β1
= 0,

∂P

∂β2
= 0, ...,

∂P

∂βn
= 0. (2. 17)

Wherever a, b lie in the dominion of the given problem, we can also find the values of
β1, β2, β3... by using Galerkin’s method that is

∫ b

a

S
∂P

∂β1
= 0,

∫ b

a

S
∂P

∂β2
= 0, ...,

∫ b

a

S
∂P

∂βn
= 0. (2. 18)

As for obtaining solutions of the problems of higher-order we use optimization techniques
such as OHAM, HAM we can also use other employing optimization techniques such as
OHPM and OAFM [31,32].
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3. BASICS OFHAM

Initiating from
N [u(x)] = 0 (3. 19)

If N is a tool which is nonlinear,u(x) is function which is to be determined and x is not a
dependent variable. The0th-order functional is given as:

(1− s)L[φ(x, s)− u0(x)] = shH(x)N [φ(x, s)] (3. 20)

For 0 ≤ s ≤ 1 is an inserting parameter,H(x) is an auxiliary function L represents the
operator, which is a linear,h 6= 0 is a non-zero assisting parameter,u0(x) shows the starting
value ofu(x) , φ(x, s) is a function which is to be determined, from equation (3.20)s = 0
ands = 1 we get

φ(x, 0) = u0(x), φ(x, 1) = u(x) (3. 21)

As s increases in the unit interval, its answersφ(x, s) change from theu0(x) to u(x) .
Escalatingφ(x, s) in Taylor series which is given as:

φ(x, s) = u0(x) +
∞∑

j=1

uj(x)sj (3. 22)

Where

uj =
1
j!

∂jφ(x, s)
∂sj

(3. 23)

ats = 0
The initial guess, linear operator, the auxiliary parameter and assisting function are so cor-
rectly selected that Taylor series (3.22) converge ats = 1

u(x) = u0(x) +
∞∑

j=1

uj(x) (3. 24)

That is the first answer of the unique equation which is nonlinear as showed by Liao [28]
selectingh = −1 andH(x) = 1 Equation (3.20) takes the form

(1− s)L[φ(x, s)− u0(x)] + sN [φ(x, s)] = 0 (3. 25)

That is we use typically the HPM technique for getting a straight solution, ignoring Taylor
expansions and evaluation between HAM and HPM can be seen in [28].AsH(x) = 1 eq.
(3.20) takes the form

(1− s)L[φ(x, s)− u0(x)] + shV [φ(x, s)] = 0 (3. 26)

Which can be evaluated in the HAM technique. For such a situationH(x) is ignored as the
fundamental operators. Differentiating eq. (3.20) j times w.r.t s and thens = 0 and lastly
dividing them byj! we havejth-order deformation eq.

L[uj(x)− χjuj−1(x)] = hH(x)Rj(uj−1, x) (3. 27)

Rj(uj−1, x) =
1

(j − 1)!
∂j−1N [φ(x, s)]

∂sj−1
(3. 28)

ats = 0
uj =

{
u1(x), u2(x), ..., uj(x)

}
(3. 29)



Application of Some Analytical Techniques to Solve Boundary layer Flow over Exponentially Stretching Sheet Problems 69

χi =
{

1, e > 1
0, e 6 1

(3. 30)

putting equation (3.22) into (3.28) we have

Rj(uj−1, x) =
1

(j − 1)!
∂j−1

∂sj−1
N

[ ∞∑
n=0

un(x)sn

]
(3. 31)

ats = 0
It should be reserved thatuj(x) for j ≥ 1 is dominated by the linear eq. (3.27) with the
linear boundary condition that is found from the innovative problem which is solved by
Matlab.

4. FORMULATION :

We deliberate flow of in-compressible several fluids in excess of exponential extending
at y = 0 . The suppositions boundary layer hypothesis, the momentum and continuity
equations as:

∂u

∂x
+

∂v

∂y
= 0, (4. 32)

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂x2
(4. 33)

Here the velocity components along horizontal and vertical directions areu andv , v sig-

nifies Kinematic viscosity which isv =
µ

ρ
.

The boundary conditions matching to the exponential stretching surface are

u = U0e
x
Υ , v = 0 at y = 0, u −→ 0 as y −→∞ (4. 34)

U0 is orientation rapidity andΥ shows constant. Depending on the given resemblance
alterations in equations (4.32) to (4.34) we get

ξ =

√
U0

2vΥ
e

x
Υ y, u = U0e

x
Υ f(ξ), v = −

√
vU0

2Υ
e

x

2Υ [f(ξ)− ξf(ξ)] (4. 35)

After the transformations are given above the reduced nonlinear differential equations with
the related boundary conditions as:

f ′′′ − 2f ′2 + ff ′′ = 0, f(0) = 0, f ′(0) = 1, f(∞) = 0 (4. 36)

We are interested in solving (4.36) by using OHAM and HAM techniques given in sections
(2) and (3)
Applying the OHAM technique, on the problem in equation (4.36) we have the OHAM
pattern as:

G′′′(y)− 2G′2(y) + G(y)G′′(y) = 0, G(0) = 0, G′(0) = 0, G′(∞) = 0 (4. 37)

For simplicity and justification of the problem, the boundary conditions of equation (4.37)
get the custom which will be verified at the end of the graphs.

G(0) = 0, G′(0) = 1, G′(2) = 0 (4. 38)
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The exact solution is

G(y) = y − 0.25y2 (4. 39)

Applying the technique of section 2,0th-order problem is

G
(3)
0 (y) = 0, G0(0) = 0, G′0(0) = 1, G′0(2) = 0 (4. 40)

Its solution is

G0(y) =
1
4
(4y − y2) (4. 41)

The problem of1st order is

G
(3)
1 (y, C1) = −2C1(G′0(y))2 + C1(G0(y))G(2)

0 (y) + (1 + C1)G
(3)
0 (y),

G1(0) = 0, G′1(0) = 0, G′1(2) = 0 (4. 42)

Its solution is

G1(y, C1) =
C1

480
[300y2 − 160y3 + 30y4 − 3yy5] (4. 43)

The problem of2nd order is

G
(3)
2 (y, C1, C2) = −2C2(G′0(y))2 − 4C1G

′
0(y)G′1(y) + C2G0(y)G′′0(y)

+ C1G
′
1(y)G′′0(y) + C1G0(y)G′1(y) + C2G

′′
0(y) + (1 + C1)G′′1(y),

G2(0) = 0, G′2(0) = 0, G′2(2) = 0. (4. 44)

Its solution is

G
(3)
2 (y, C1, C2) =

1
322560




C1{201600y2 − 107520y3 + 20160y4 − 2016y5}
+C2

1{350976y2 − 107520y3 − 30240y4 + 18876y5

−4256y6 + 432y7 − 27y8}+ C2{201600y2

−107520y3 + 20160y4 − 2016y5}




(4. 45)

Now consuming equations (4.41), (4.43), (4.45) we have

G(y, C1, C2) = G0(y) + G1(y, C1) + G2(y, C1, C2) (4. 46)

Using the method of the second section and using in the interval [0,2] we acquire the
residual

S = G
′′′

(y)− 2(G
′
(y))2 + G(y)G

′
(y) (4. 47)

Now using the least square or Galerkin, s methods and minimizing using calculus we get
the valuesC1 = 0.0000000, C2 = −0.18299306687060843
We acquire the OHAM solution as:

G(y) = y−0.364371y2 +0.0609977y3−0.0114371y4 +0.00114371y5 +O(y6) (4. 48)

The HAM solution is

G(y) = y−0.568159y2+0.206473y3−0.611674y4+0.013211y5−0.00191192y6+O(y7)
(4. 49)
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5. TABLE .1

Y Exact OHAM HAM OHAM HAM
Solution Solution Solution Error Error

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0975 0.0964162 0.0945171 1.08384 E-3 2.9821 E-3
0.2 0.19 0.185895 0.178824 4.10478 E-3 1.11763 E-2
0.3 0.2775 0.268764 0.253949 8.73628 E-3 2.35512 E-2
0.4 0.36 0.345323 0.320806 1.46765 E-2 3.91935 E-2
0.5 0.4375 0.415853 0.380205 2.1647 E-2 5.72955 E-2
0.6 0.51 0.480609 0.432856 2.93912 E-2 7.7144 E-2
0.7 0.5775 0.539827 0.479389 3.76732 E-2 9.81112 E-2
0.8 0.64 0.593724 0.520355 4.62763 E-2 1.19645 E-1
0.9 0.6975 0.642499 0.556235 5.50014 E-2 1.41265 E-1
1.0 0.75 0.686334 0.587446 6.36663 E-2 1.62554 E-1
1.1 0.7975 0.725396 0.614347 7.21036 E-2 1.83153 E-1
1.2 0.84 0.75984 0.637237 8.01597 E-2 2.02763 E-1
1.3 0.8775 0.789807 0.65636 8.76934 E-2 2.2114 E-1
1.4 0.91 0.815426 0.671903 9.45744 E-2 2.38097 E-1
1.5 0.9375 0.836818 0.683999 1.00682 E-1 2.53501 E-1
1.6 0.96 0.854096 0.692717 1.05904 E-1 2.67283 E-1
1.7 0.9775 0.867366 0.698064 1.10134 E-1 2.79436 E-1
1.8 0.99 0.876727 0.699978 1.13273 E-1 2.90022 E-1
1.9 0.9975 0.882275 0.698319 1.15225 E-1 2.99181 E-1
2.0 1.00 0.884104 0.692863 1.15896 E-1 3.07137 E-1

The graphs are given in Fig.1 and Fig.2 exhibit coincidence between the OHAM, HAM
and their exact solutions.

FIGURE 1
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FIGURE 2

6. GENERAL CONCLUSION:

The main aims and objectives of this task are offering the chain elucidation of the bound-
ary layers? equation of two-dimensional fluid flow on an exponential permeable by consid-
ering OHAM and HAM techniques. These techniques are controlling tools to pursue the
solutions of different non-linear boundary value problems. These methods eliminate the
complexity as compared to other techniques because these are resourceful. We get conse-
quently fast convergent results by using OHAM and HAM. We can compare the outcomes
achieved using these techniques with the analytical solution results. We found coincidence
between them. The graphs of OHAM and HAM were found overlapping with their exact
solution graphs. These methods overcome the difficulty in other methods because it is ef-
ficient, we derived fast convergent results by using these techniques. We, the authors tried
the formulated problem by modified optimal homotopy asymptotic method (MOHAM) by
splitting l(t) into l1(t) andl2(t) .
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