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Abstract. Thelnverse Kinematic Task of Robatsredundant open kine-
matic chain normally does not have closed form analytical solution. The
generally viable approach applies tbéferential Inverse Kinematics
which the derivative of the nominal trajectory of the robot as well as the
derivative of its internal generalized coordinates according to some scalar
variable (that may be e.g. the time) are related to each other by the Ja-
cobian of the arm due to the chain rule of differentiation. The traditional
solutions compute somgeneralized inversef this Jacobian that exists
only in the non-singular positions, and does not behave well in the vicin-
ity of the singularities where normally complementary tricks (practically
the modification of the inverse kinematic task by replacing it with a solv-
able “deformed” version) are applied to obtain some “solution”. These
modifications may degrade the precision of the solution in the nonsingular
points. The idea of replacing the matrix inversion whilked Point Itera-

tion (FPI) in solving the inverse kinematic task was suggested in 2016 on
the basis of the assumption that the kinematic parameters of the robot are
precisely known. It was shown that this approach automatically yielded
well behaving solutions in, and in the vicinity of the singularities without
the use of any “complementary deformation”. In 2017 it was realized that
in the possession of eapproximate parameter set of the kinematic model
an adaptive inverse kinematic task solution can be developed on this ba-
sis if the pose and location of the last segment of the robot as well as the
generalized coordinates can be measured. This approach used counter-
rotations to guarantee the convergence of the fixed point iteration. Later
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it cropped up that similar abstract rotations can be applied in the realiza-
tion of the fixed point iterations, too. The so elaborated solution can be

combined with the inclusion of free parameters that can be used a) for
making a trade-off between the precision requirements for the tracked po-
sition and/or pose, and b) parameters that affect the “distribution” of the

ambiguous solution between the rotations of the redundant generalized
coordinates. The operation of the approach is exemplified by the use of a
redundant 8 Degree of Freedom robot arm via simulations made in Julia
ver. 1.0.3.

Key Words: Redundant Robot Arm, Fixed Point Iteration, Jacobian, Banach Space, Ba-
nach’s Fixed Point Theorem, Differential Inverse Kinematic Task, Generalized Inverses,
Lie Groups.

1. INTRODUCTION

The solution of the inversed kinematic task of robots arise in the practical industrial
applications. Generally the user navigates by using the Cartesian coordinates fixed to the
workshop, and the required motion of the robot is formulated by the use of such coordi-
nates. For instance, in [33] the real-time control &f axles machining tool is considered
in which the firs4 joints are used for positioning the workpiece, and the fifth one is applied
for moving the machining tool (the cutter). With the assumption that the available kine-
matic model of the equipment is precise, the Authors developed a non-redundant problem
having a size5 x 5 Jacobian the determinant of which was computable in closed ana-
lytical form, and the kinematic singularities of the construction were determined by the
use of this determinant. On this basis, via generalizing the Moore-Penrose pseudoinverse
[31, 35] by using a positive definite symmetric weighting matrix instead the identity matrix
the Authors developed a real-time controller that feeds back the Cartesian tracking error
and investigated it by the use of a Matlab-Simulink application. In [32] a similar problem
was investigated for & degree of freedom welding robot that cooperated with a rotary
positioner the rotational angle of which served astfeaxis of this system. The shape
of the workpiece and the angle of the positioner’s axis determined a complex 3D curve
for the end-effector of the welding robot. The problem was solved by the use of a similar
pseudoinverse and a control program as the problem in [33].

In solving kinematic problems in robotics often an augmented Jacobian is introduced
for obstacle avoidance (e.g. [15, 4]), and the Moore-Penrose pseudoinverse [31, 35] is used
for the redundant robot arms for the disambiguation of the otherwise normally ambiguous
possible solutions. The ambiguity of the solution can be utilized for taking into considera-
tion other points of view than simply solving the inverse kinematic task. For instance some
elements of the null space of the Jacobian can be added later to the so obtained solution
(e.g. [30, 36, 41]) that can make the problem of the continuity of the solution arise.

The controllers of robots normally are programmed on the basis of usingetieral-
ized coordinate®f the robot armg € R™, n € N, that physically mean either rotations
around, or shifts in the direction of unit vectors that can be definddhasnatic constants
in the “home position” of the robot. This definition may contain arbitrary elements. For
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instance, the use of tHeenavit-Hartenberg Conventionstroduced in 1955 [9] is a rea-
sonable possibility, though its is not compulsory. The so cdff@uvard Kinematic Task
means the calculation of the position of the endpoint of the robot arm andtétenal

poseof the last segment as the functiongfAssumingrigid links, the possible operations

with the rigid bodies are determined by tS8pecial Euclidean Groupf three dimensions

that can be conveniently and lucidly represented by the use of the Lie Group ([28]) of the
Homogeneous Matrices and their generators in the case of even redundant robot arms in
whichn > 6. To obtain “smarter” robot arms, the use ©Degree of Freedom (DOF)
constructions became popular in our days (e.g. [45]).

The Inverse Kinematic Taskeans the calculation of thgjoint coordinates when the
position of the endpoint of the robot arm —the “Tool Center Point (TCP)- andtagonal
poseof the last segment as the function of a scalar variable (that physically may be the time)
are given. (This task can be further completed by adding requirements that are valid for
the motion of other links, too.) The solution of this task mathematically is difficult due
to its nonlinearities, and ambiguities. Closed form analytical solutions are available only
for special constructions (e.g. the PUMA robot [26], the Delta robot [6, 42]). However,
the formulation of theDifferential Inverse Kinematic Task very simple even for strongly
redundant open kinematic chains (e.g. [44]) and leads to the “inversion” of a normally
non-quadratic Jacobian. The appropriate “generalized inverses” generally suffer from the
presence of kinematic singularities. To evade this problem in 2016 an alternative, FPI-based
approach was suggested in [8] that behaved nicely in, and in the vicinity of the singularities.

However, this approach assumed that we have precise kinematic model of the robot
arm. In the practice this assumption has limitations even if the links really behave as rigid
bodies. If the robot links are long enough, even little manufacturing error in the orientation
of the rotary and prismatic axles in the home position can cause considerable error in the
position of the endpoint and pose of the last link. In 201 Adaptive Inverse Kinematic
Approachwas suggested in [19] that, instead trying to solve the precise identification of the
exact kinematic parameters, iteratively corrected their effects in computing the solution of
the inverse kinematics for a given prescribed trajectory. In the present paper this method is
further developed by the introduction of novel parameters that can weight the significance
of the orientation precision versus the precision of the location of the endpoint, and by the
use of the ambiguity of the possible solutions influence the “distribution” of the motion
task between the redundant joint coordinates.

2. DETAILS OF THE FIXED POINT ITERATION-BASED PROBLEM FORMULATION

Letz € R™, m € Nthe pose and location data of the last link of the robot arm. (In more
general cases this array can be augmented by similar data of other links if necessary.) Let
q € R™, n € N denote thgyeneralized coordinatesf the robot that directly can be rotated
by the robot’s controller. If only the location and pose of the last link is consideredvia
have only6 independent datethough it may be more convenient to useedundant rep-
resentatiorusing ane that contains th@ elements of the rotational matrix and the further
3 components of the Cartesian coordinates of the location with respect to the workshop’s
frame of reference, i.em = 12. In this case theobot itself is redundanif » > 6. (In
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our numerical investigations = 8.) A nominal trajectorythat has to be tracked can be
prescribed by a scalar variablec R as

N (s) = f(q(s)) s 2N (sini) = f(@ini) (2. 1)
in which ¢;,,; is ambiguous in the case of a redundant robot arm. Due to the strong nonlin-
earities inf(q) (2. 1) is differentiated as

dzM(s)  9f(q) dg(s)
ds  0q ds 2.2)

with the JacobianJ(q) e %, and someeneralized inversef J(q) is considered if this

inverse exists at the giveq(s). A “generalized inverse” means a kind of “disambigua-
tion” applied for the ambiguous solution of the problem. For instancelViihere-Penrose
2
Pseudoinversg31, 35] minimizes the sum _, (%) under the constrainthat ( 2. 2)
must be valid. It leads to the solution
dq T m-1dz
—=J"(JJ —
ds ( ) ds

that exists only it/J7 is invertible, and can be reliably used only if itigll conditioned
In the kinematic singularities and in their vicinity these conditions are not met.

2. 3)

A plausible approach to deal with the problem of singularities is the modification of
the problem with a small parameter> 0 and considering the deformed solutidn! =
JT(JJT + MI)_1 because this inverse always exists, and‘ﬂie‘ components are lim-

ited in this manner (e.g. [27, 5]). SinceJT is symmetric and positive semidefinite, it has
nonnegative real eigenvalues. The method’s drawback consists in distorting the solutions in
the cases in which they exactly exist. The distortions can be roughly estimated as quantities
depending on the ratio ¢f and the smallest positive eigenvalue/of” .

An alternative possibility is the application of téngular Value Decomposition (SVD)
of JasJ = UTSV, in which ¥ has a diagonal forrt = (o4, ..,0%,0,...,0) with the
singular valuesr; > 0o > ... > o > 0, U andV are orthogonal matrices of appropriate
sizes. IfY would be quadratic and invertible, the inverse would/be = VI ~1U. The
practical compromise consists in replacing the too small singular valugsaiith zeros,
and using the “deformed inverse” st = V7 (o7"',...,0,",0,.. .,O)T U in which
¢ < k. Dropping the reciprocals of the too small singular values prevents the occurrence of
too big values in the solutiom%‘ (e.g. [29]). Though from 1965 efficient algorithms are

available for the execution of SVD [16], this algorithm is relatively complicated. Further-
more, for its reliable use precise information 6(y) is needed in the given point.

Further alternative method was suggested in [44] that evaded the minimization of any
cost function as in the Moore-Penrose pseudoinverse by the use Gfdlne Schmidt Al-
gorithmthat originally was invented by Laplace in 1820, and later was reinvented by Gram
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in 1883, and independently by Schmidt in 1907 [25, 17, 39].

Instead of the first order linearization in ( 2. 2) a complicated second order solution was
suggested in 1991 [37]. Another complicated approach suggested in 1993 was the complex
extension of the real coordinates in solving ( 2. 2 ) that had to cope with the problem of
the physical interpretation of the approximate solution.

Further alternative possibility is the use itdrative approximation of the solutioim-
stead using finite number of steps algorithms. Such methods have early examples in the
17th century (e.g. [46, 34, 18, 10]). For instance H@wvton — Raphson Algorithean
quickly converge to the minimum of a positive definite quadratic expression based on the
assumption that this minimum is exactly However, for reliable convergence precise
knowledge on the gradient of the scalar expression is needed. The essence of any “adaptive
approach” is the assumption that only an imprecise, approximate mathematical model is
available that can be used for “zero order calculations” that have to be amended and made
more precise on the basis of actual measurements/observations.

The 1st step in this direction was made in 2016 when a fixed point iteration-based solu-
tion was suggested in [8] according to the scheme given in Fig. 1. lfDblay” boxes a
single step of the iteration can be understood, the beginning of the itetatipf®) is the
solution of the inverse kinematic task of the solution£9t = f(g;1(0)) that is inherited
from the previous cycle. The iterative sequence was generated fynititon of adaptive
deformationas

git1(n+1)=G (qi+1(n), J(giy1(n)) 7%{11) . 2.4
The functionG is so constructed that the solution of the task, igy(x) for which
f(@i1(%)) = Y, isitsfixed pointi.e. G (¢it1(%), f (¢i+1(%)), 21) = git1(x). From
Banach'’s fixed point theorem [2] it is well known thatfifis acomplete, linear, normed
metric spacgBanach Space), anll : B — B is acontractive mapi.e. 30 < K < 1 so
thatVa, b € B: ||¥(b) — ¥(a)|| < K|b — al|, the sequence generated from an arbitrary
initial pointxg € B as{xo, 1 = ¥(x0),...,Tnt1 = ¥(z,),...} cOnverges to the unique
fixed point of this functiorz,, for which ¥(z,) = z,. Therefore, for the convergence
the functionG in (2. 4 ) must be made contractive. This approach also had antecedents,
for instance the Picard — Lindigfltheorem on the existence and uniqueness of the solution
of certain ordinary differential equations was proved on the basis of similar considerations
(e.g. [1]) that were later summarized and synthesized by Banach in 1922.

Under the assumption that during one digital control step only one step of the numerical
iteration can be done for a slowly moving fixed point, the scheme in Fig. 1 was suggested
for the use of adaptive dynamic control of single Degree of Freedom (DoF) dynamical
systems in [43]. For the dynamic control of multiple DoF systems Dineva suggested a
function in ( 2. 5). Its convergence properties were investigated in [13, 14, 12].

n)) —
g(n+1) = [F (A f(a(n) — 2V + z.) — ] ||§(q( )

W+Q(n) . (2.5)
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FIGURE 1. The scheme of the fixed point iteration-based solution

flgiza(n))

whereA € R is areal adaptive parametetthe differentiable functiod” : R — R has a
fixed pointz, = F(z,), and| - || is the Frobenius norm. Evidently, f. is the solution

of the problem, i.e.f(q,) = z, for g(n) = ¢. (2. 5) providesy(n + 1) = ¢, so the
solution is a fixed point. Regarding the condition of convergence in the vicinity of the fixed
point Dineva applied 1st order Taylor series approximatiod'af) aroundz,, and f(q)
aroundg, and arrived at the conclusion that the iterative sequence has the property that

of

I+ F'(z)A
FF@)A G

Q(n"’l)_Q*%

] (Q(n) - q*) . (2 6)

9

By the use of theJordan canonical forn{e.g. [11]) —this term was coined by Shilov in
1977 in [40]- of the matriX:] in ( 2. 6 ), she arrived at the conclusion that ( 2. 5) can be
convergent nearby the fixed point if the real part of each eigenval%g ©f simultaneously

either positive or negative. (In these cases a small negative or positive adaptive parameter
A can be chosen.)

In [8] it was shown that this convergence property is not satisfied even in the case of the
Jacobian of the simplest 2 DoF arm. To tackle this problem, in the scheme of Fig. 1 instead
of (2. 1) its modification in (2. 7 ) was considered

T @)z (s) = T (@) f(a(s)) » 2™ (sini) = f(qini) 2.7)
in which in the 1st order Taylor series approximatiorf¢§) in the vicinity of ¢, the matrix

JT(q)J(q,) occurs that is very close to a positive symmetric semidefinite matrikgf is
precisely known. In contrast to the matrix inversion-based solutions that are apt to provide

huge % values near the singularity, our iterative method showed the pleasant “stagna-
tion” of the critical coordinates.

However, if only an approximate model and an approximate Jacoli&y) is available,
it cannot be taken for granted that (¢).J (¢, ) will guarantee the convergence criterion set
by Dineva in the modified problemi” (q)z™ (s) = J* (¢)f(q(s)). Observing the fact that
Dineva’s above condition is rather satisfactory than necessary, since it works for arbitrary
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direction of the arrayg(n + 1) — ¢,, though the iteration yields subsequent arrays the
directions of which are “inherited”, we tried to apply the modification of (2. 7) as

oz (s) = af(a(s)) . ™ (sini) = f(gini) (2.8)
in which wase = +1, depending on the direction of the previous step of the iteration.
Though for simple 2 DoF systems this idea was able to work [20], for higher DoF systems
and redundant robot arms no successful simulations were obtained. (This approach was
very attractive since it promised the possibility of evading the burden of computing the
Jacobian especially in the novel adaptive receding horizon controllers in which the use of
Lagrange’s General Reduced Gradient Method he invented for use in Classical Mechanics
about 1811 [24]) was replaced by fixed point iteration (see [21, 22], and [23]). Therefore,
we recapitulate the a more general case where the further modified problem in (2. 9)
was considered in which in each step- 1 € N of the iteration the multiple dimensional
rotation matrix\" “rotates back” the vector into the direction of the previous stefi9]:

N +1)J"(@)z" (s) = N(n+1)J" (@) f(a()) s @™ (sini) = f(gini) - (2. 9)

It is easy to construct such an orthogonal transformation by the generalization of the Ro-
drigues formula published in 1840 [38]. Let us recapitulate the argumentation of [19]:

“Consider the vectora, b € R™. At first remove the component paral-
lel to b from a with parameter\ in the form: a°¢ = o 4+ \b so that
aM°d must be orthogonal td, that means for the scalar product that

bTaMod — pTq 4+ AT = 0. This leads to\ = =b-2. Then consider the
1od

pairwisely orthogonalnit vectorse, = Hzftfid\l ande;, = ﬁ Theskew

symmetric matrix; def eae'{—ebef generates rotations that mix the com-
ponents of the vectors only in the two dimensional hyperplane spanned by

these unit vectors. With a parametee R these rotations have the form

O = exp (¢G) € 2 £€° This matrix can be expressed in closed

analytical form in similar manner ... Consider the various powers bj
taking into account that! e, = 0, el'e, = 1, andel'e, = 1:

G? = (eaeg — ebeg) (eaeg — ebeg) = —eaeg — ebeg ,
G3 = — (eqel + epel) (eael —epel) = 2. 10)
=— (eaebT — ebeg) =-G ,G*=-G? '
G° =-G3 =@ ,etc.
By selecting theevenand theodd powersf G it is obtained that
O=1+sinéG+ (1 —cosé)G? (2. 11)

The angle of rotation can be calculated by the scalar product of the appropriate vectors. In
[19] good convergence was found with combination of this method with Dineva’s iteration:
the direction of the contraction was maintained though the appropriate transformation did
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not guarantee convergence for arbitrary directions.

In [7], for the purposes of adaptive dynamic control, a novel task transformation was
suggested that used abstract rotations constructed as in (4. 17 ). Assume, that we wish to
transform the array € R”™ into the arraya € R™, (|la|| # ||b]). A possible solution is
augmenting the dimension of the vectors to: + 1 by adding to them a new orthogonal
dimensiona — A € R"*!, b — B € R*""! so that||A| = ||B| = R, is a common
absolute value. Then, according to Fig. 2, the rotation that rotates thearirag A can
be constructed. As a consequence, the projection of the rotated vector in the original space
will behave accordingly, i.eb will be moved intoa with simultaneous rotation and shrink
or dilatation.

z buffer dimension

FIGURE 2. Schematic visualization of 2D rotations with a complemen-
tary buffer dimension (cited from [7])

The use of this scheme for adaptive control is quite simple: in the iteration in the pre-
vious step we observed that we need a rotation that transforms V@dtdo A, and this
rotation has to be applied for a new vectre R™+! whereC is the augmented version
of vectorc € R™. The angle of this new rotation cax, € R times of the original rota-
tion. It is very easy to understand the operation of this method. Similarly to the concept of
theincreasingR — R functions, for theéR™ — R™ maps the concept Approximately
Direction Conserving Functionstan be introduced for whicttz # 0 27 f(z) > 0. Geo-
metrically this means that the angle determined by the veat@sd f(x) is acute In
similar manner, it can be said that a functioriAgpproximately Locally Direction Keep-
ing” atx if VsmallAz # 0 AzTAf = AzT[f(x + Az) — f(x)] > 0. Its geometric
meaning is that the angle determined by the displacem&ntand A f is acute i.e. a
small modification in the argument of the function causes a displacement in the function
value approximately in the same directionhe 1st order Taylor series approximation of
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f(z) for that yieldsAzT A f ~ Az [f(a:) + 9] Az - f(x)} = AzT %‘ Az > 0.
Because in this expression only tegmmetric pafbf the matrix gives contrgibution, this

T
condition means tha} [gi + (%) ] must have positive eigenvaluér the control of

such systems in the practice it is easy to develop iterative methods using observation-based
learning. For instance, driving a new car by the simultaneous use of the accelerator/brake
pedals and the steering wheel means a similar task. Though the numerical values may be
quite different, the various cargialitatively behave in similar manneand on this basis

their precise steering can be learned iteratively.

3. NOVELTIES IN THE PRESENTINVESTIGATIONS

In contrast to the solution used earlier, in the present paper we apply the abstract rotations-
based adaptive transformation in combination with the rotatignis (2. 7). The kine-
matic construction of the 8 DoF redundant robot arm was modified, too, as follows: The
open kinematic chain under consideration was described by the prodtibbaiogeneous
matrices as

( : ) H(l)(ql)H@)(qz).‘.H(S)(qs)< 7; > H(ql,...,qs)( 7{ ) . (3.12)

in which 7 € R? is vector of the last segment in theome position” with respect to the
last local system of coordinates, i.&is constantH () (g;) € R*** is the homogeneous
matrix of thei*” segment, the upper left block &f (") of sizeR3*3, O(e(?, ¢;) is a rota-
tional matrix that rotates around the unit vecté? with angleg; (it is expressed by the
use of the Rodrigues formula [38]), and #¥' column is a shift parameter in the form
(r®OT 1)T ¢ R*. Since the homogeneous matrices form a Lie grdilify, ..., qs) is

a homogeneous matrix, too. Its upper left block of SR is a rotational matrix that
describes the “pose” of the last segment, and R? is the location of the endpoint with
respect to the workshop reference frame.

The unit vectors of the home position thie approximate (“canonical”) modeds well
as the shift parameters can be placed in the columns oBsiz8 matrices in which each
column belongs to an arm segment (link) as follows:

00 0 L L1 1 1

= def Ve Ve \{3 @
= 01 1 0 0 1 7 % , (3. 13)

100 =% L o L L1

V2 V2 V3 V3

while the shift parameters were

. 0 Ly Ly Ly Ly Ly Ly Ls
RE [ 0 0o 0 0 0 Ly —Ly L (3. 14)
Ll 0 0 L2 L3 0 LS _Ll

with Ly = 1.0 [m], Ly = 1.5 [m], andLs = 2.0 [m]. The exact unit vectors are the rotated
versions of the availablapproximate onem the columns of ( 3. 13) in a matrik. The
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rotational angles of the units vectors around the workshop axlearbundX;, 5 around
Xs, andpsz aroundX3) are given in Table 1.

TABLE 1. The rotations of the unit vectors of the rotational axles for the
exact model correspond to the rotated version of the approximate ones as
[0 = 01(1)O2(2)O3(1p3)], € = OWe®

Rotational angle | ¢; [rad] | @2 [rad] | 3 [rad]
Fore(V): 2x0.10 | 2x0.09 | 2 x 0.08
Fore®: 2x0.02 |2x0.02|2x0.0

Fore®): 2x0.02 | 2x0.03|2x0.07
Fore®: 2% 0.08 | 2x0.06 | 2x0.04
Fore(®): 2x0.05 [ 2x0.01|2x0.07
Fore(©): 2x0.03|2x0.01]|2x0.06
Fore(™: 2% 0.06 | 2 x0.06 | 2 x0.08
Fore(®): 2x0.04 | 2x0.01 | 2x0.10

The counterpart of the approximate matfbin ( 3. 15 ) is theexact oneas

) 0O L L, L Ly Ly Li L
RY | 0o 0o 0 0 0 Ly —L, Lo (3. 15)
L1 0 0 Lg L3 0 L3 _Ll

with Ly = 1.2[m], Ly = 1.8[m|, andLs = 2.2[m]. Theapproximate value of the last
segmentvas the “canonical? = [2.5, 2.5, 2.5] [m] vector of equal components, while the
exact onewas’ = [2.6, 2.4, 2.3] [m] thatinevitably causes tracking error in the initial
positionthat later relaxes. For better relaxation in the fidtdiscrete time-poin60 steps
of the numerical iteration was applied, and later oHlysteps.

Regarding the problem solution, ( 2. 9) was further modified in ( 3. 16 ) as

WN (n+ 1)J7 (q)FaN (s) = WN (n + 1)J" () F f(a(s)) . (3. 16)
in which 7 and W arediagonal matrices of positivé) < F;;, W;; < 1 elements The
role of F is weighting the relative significance of the rotational pose and the location of
the end-point in the solution. (We remind thyahas9 redundant components for the pose,
and only3 ones for the location.) The role oF is weighting the relative activities of the

redundant joint coordinates in the disambiguation of the generally ambiguous solution.

4. SIMULATION RESULTS

For describing the simulations both programming and mathematical details deserve at-
tention. Before presenting the computational results these issues will be briefly considered.
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4.1. On The Programming and Mathematical Details. In the engineering practice the
Matlab Simulink toolboxes are usually utilized when doing integration and differentiation
tasks that often arise in solving control and differential inverse kinematic tasks, as e.g. in
[33, 32]. While the Simulink package offers the advantage of graphical programming, var-
ious numerical integration packages are available to aid the engineers daily work. For the
purposes of education certain Matlab packages are available at limited prices for the edu-
cational institutions and students. @buda University the University covers the expenses
of these license fees for its students, but after graduation the students have to pay these fees
themselves. In the same time it worths noting that the solution of certain simpler problems
does not need special packages and even graphical programming tools and can be well
solved by simple Euler integration. For this purpose free software products are available
that works quite efficiently, too.

The “Julia language” for instance is a high level programming language (developed at
the MIT, Cambridge, USA) the syntax of which is very similar to that of the Matlab, but
it runs almost as fast as a C code or an assembly code (benchmark data are available at
[3]). Very advanced graphical options can be “imported” into the Julia by using graphical
packages from Python. For our purposes a simple sequential code made in Julia was quite
satisfactory. For instance, the abstract rotations quoted in Section 2 are realized by function
code as follows:

function AdaptiveDeform(realized_prev,deformed_prev,desired_now)
# Transforms the deformed_prev into the present deformed
# as output
# The applied rotation is taken from the rotation
# rotating the realized_prev into the desired_now (from B to A)
# The extended vectos
A=zeros(9)
A[1:8]=desired_now
A[9]=sqrt(abs((R"2-(desired_now’ * desired_now)[1])))
B=zeros(9)
B[1:8]=realized_prev
B[9]=sqrt(abs((R"2-(realized_prev’ *realized_prev)[1])))
C=zeros(9)
C[1:8]=deformed_prev
C[9]=sqrt(abs((R"2-(deformed_preVv’ * deformed_prev)[1])))
# The orthogonal vector parts: the part A orthogonal to B
AortB=A-(B' *B)[1] *B/R"2
# The orthogonal unit vectors
norm_AortB=sqrt(abs((AortB’ * AortB)[1]))
ea=AortB/(epsa+norm_AortB)
eb=B/R
# The angle of rotation
sin_fi=min(1.0,norm_AortB/R)
fi=asin(sin_fi)
# The generator of the rotation
Gen=ea*eb’-eb *ea’
Gen2=Genx Gen
# The generalized Rodrigues formula with the “interpolation"
O=m_eye(9,9)+sin(lambda +fi) *Gen+Gen2x (1-cos(lambda  *fi))
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Transformed=0 *C # The transformed vector
# Here only the corrections are limited
ki=g_pp_max =*tanh.(Transformed[1:8]/q_pp_max)
return ki,Jambda * fi

end

The Rodrigues formula for a constant given unit vector of rotary axie[e;, e, e3]”
and a variable rotational angfehas the simple analytical form (4. 17 ):

0 —es3 €2 3 5
O(&,e) =exp(€G(e)) =T+ | es 0 —-e <§ ~ 3 +>=F.. ) +

| |
ey e 0 ! 5!
e?—1 ee eie
1 21 2 1€3 52 54 56 B
+ eze;  e5—1  ezes — -4 F...| =
eser esey €21 20 4! 6!
3 (4. 17)
0 —€3 €9
= I —+ €3 O —€1 SiIl §—|—
—e€9 €1 0
ei—1 eea  eres
+ | eer €3—1 egez | (1—cosé) .
eseq e3eés e% -1

The homogeneous matrices, their derivatives according to their rotational angles and
inverses in (3. 12) can be constructed in block form built up of the rotational matrices
constructed according to (4. 17 ) and the constant shift components of the home position
denoted byl asin (4. 18):

H_{O(g,e)L} dH[doége) 0] |

0T 1 ’dig - 0 0
[ 07H&e) | -0TE oL
H ! = [ oT 1 } ,
dH MO—l(g ¢) —MO*@ oL (4.18)
——H = d ’ d 5 o
_ [ Q& e) | —2(E,e)L }
- OT 0 )

in which 2 = do£2’6)0*1(57 e) is a skew-symmetric matrix, i.e. a generator of the ro-

tational matrices (an element of the tangent space of the rotational group at the identity
element). Finally the Jacobian of the inverse kinematic task can formulated by finding the
coefficients in the linear combination of the actual tangent vectors of the SE(3) Lie group at

its identity element that must be identical with the tangent vector determined by the desired
motion:
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. 1 2
{ 7 (t) } _ <§'1dH( O +52H<1>£”H<2>*1H<1>*1 4o

0 dé déo
e HOEO .. - I ™ oy e .H(z)lH(l)l) T(lt)
n dfn b
| (4. 19)
in which thedii‘) H®™" expressions are the tangents at the identity elenfgit, <%H(2)71> gL

is the 29 tangent vector transformed by the group elemi@h?), therefore it is also a tan-

gent at the identity element of the group SE(3), etc. In the Julia program the above ma-
trices can be calculated in closed form, and the elements of the 8pper block, and

the (4,1), (4,2), (4,3) elements can be arranged in tt2rows of the Jacobian having

8 columns. From this point on the traditional matrix operations (e.g. SVD or calculation
of the the Moore-Penrose pseudoinverse) can be applied for solving the redundant set of
linear equations. In our case, the adaptive function detailed above can bevdadtiedan
internal cycle for each discrete point of the trajectay

r_prev,szog=AdaptiveDeform(W *O_next *transpose(J_Prev_a) * Fxf(r_prev),r_prev,

W O_next *transpose(J_Prev_a) * F+ Target)

in which the program variablg/stands for)V, andF corresponds to&-. In the sequel
computational results will be revealed.

When it is assumed that the forward kinematic model of the robot is precisely known,
therefore on its basis a real-time controller can be developed that directly can use the track-
ing error in the Cartesian Workshop coordinates as input data.

In the case that is investigated in this paper, the available forward kinematic model is
not assumed to be reliably and precisely known, therefore on this basis the feedback errors
in a single step cannot be used for control feedback. Instead of that, a grid is created for
the nominal motion according to a scalar parametdsat can be the timeitself, or some
nonlinear function of the time ag(t). (In the paper the assumption that= ¢ is used
only for the seek of simplicity.) When the robot’s joint coordinates are in the grid pgint
and we wish to move to the next grid point+ 1, on the basis of the available kinematic
model we could produce an inappropriate step that could have a great error in the grid point
n + 1. The internal iteration is used for step-by step decreasing this error by observing the
actual motion of the robot that can be quite slow. Following that, the investigation can be
continued in the next grid point. As a result, the Cartesian nominal trajectory to be tracked,
i.e. 2V (s) is mapped to theominal joint coordinateg’ (s) over the grid. In the next step,

a real-time control can be developed by using¢fés(t)) nominal trajectory, and the(t)
joint coordinates that can be measured by encoders.

4.2. Initial Tests. In the first step initial tests were made to check the operation of the
algorithm. In these tests one had trivial expectations for the nominal trajectory and its
tracking.

To check the operation of the algorithm in the first step @pproximate, canonical
modelwas used for the generation of the nominal trajectory to be tracked. According to
the canonical modek?' in the Cartesian coordinates must be constant since the rotation
happens around an axis parallel to the vertical one of the workshop frame. Furthermore,
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the last link's pose suffers rotation around an axis parallef §oof the workshop’s frame

of reference. In this casg& and )V were the identity matrices, i.e. no any weighting
was applied. The results are given in Figs. 3, 4 that correspond to the expectations. The
inevitable initial tracking error rapidly decreases and the orientation error is small, too.
The solution in the joint coordinates of the robot are given in Fig. 5. The significance of
the stabilizing “counter-rotation” and that of the abstract rotations applied in the FPI-based
iteration are given in Fig. 6 faR, = 100 “abstract radius” and, = 5x10~* extrapolation
parameter. The resolution of the scalar parameteas10—3.

Trajectory Tracking in the Cartesian Frame Trajectory Tracking in the Cartesian Frame

[m]

[ 2 4 6 8 10 -002 000 002 004 006 008 010 012 014
Time|s] Timels]

FIGURE 3. Tracking of a nominal trajectory generated by using anly
in the canonical approximate model

Tracking Error in the Cartesian Frame 1000 Times the Orientation Error

0.35 — VTrace([0" - 0I"l0" - O1)

[mm]
&
8
8

a
Time|[s] Timels]

FIGURE 4. The tracking error of the end-point and the orientation for
the nominal trajectory generated by using oglyin the canonical ap-
proximate model

In the next run fori = 1 : 9 the F;; elements were reduced frointo 0.5. The fine
details of the trajectory tracking in Fig. 7 can be compared with that in Fig. 4. The orienta-
tion precision really was degraded, and this effect shows some coupling with the tracking
error of the position of the endpoint. Also, in Fig. 8 subtle differences appear in the joint
coordinated of solution in comparison with Fig. 5.

In the next runF = I was restored and the last to diagonal elementg/invere de-
creased t®.01 to reduce the motion of the last two redundant joint coordingtesdgs.
According to Fig. 9 the tracking precision remained good, and in Fig. 10 it can be seen that
g7 andgg were really “blocked”.
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The Solution for Axles 5 to 8

The Solution for Axles 1 to 4

[rad]
[rad]

Time s] Timels]

FIGURES. The solution in the space of the joint coordinates for the nom-
inal trajectory generated by using only in the canonical approximate
model

The Angle of Adaptive Counter-Rotation The Angle of Adaptive Abstract Rotation

— & — Eum

Time s] Timels]

FIGURE 6. The angle of the “stabilizing rotation¥ and the “abstract
rotations” of the FPI-based algorithm for the nominal trajectory gener-
ated by using onlyy; in the canonical approximate model

1000 Times the Orientation Error

— VTrace(i0" - 010" - O1)

Tracking Error in the Cartesian Frame

-200

-a00

-600

[dimless]

[mm]

-800

-1000

-1200

-1400

Time|s] Timels]

FIGURE 7. The tracking error of the end-point and the orientation for
the nominal trajectory generated by using ogjyin the canonical ap-
proximate model with reduced precision of the orientation

4.3. Results for Nontrivial Trajectories. In this test theapproximate, canonicahodel
was used for the generation of a nontrivial trajectory by moving only the generalized coor-
dinatesg; andgg simultaneously (Fig. 11). In this case variationf', X, XV were
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The Solution for Axles 5 to 8

The Solution for Axles 1 to 4

[rad]

Time s] Timels]

FIGURE 8. The solution in the space of the joint coordinates for the nom-
inal trajectory generated by using only in the canonical approximate
model with reduced precision of the orientation

1000 Times the Orientation Error
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FIGURE 9. The tracking error of the end-point and the orientation for
the nominal trajectory generated by using ogjyin the canonical ap-
proximate model with reduced motion @f andgs

The Solution for Axles 5 to 8

The Solution for Axles 1 to 4

[rad]
[rad]

Timels]

Timels]

FIGURE 10. The solution in the space of the joint coordinates for the
nominal trajectory generated by using oglyin the canonical approxi-
mate model with reduced motion ¢f andgs

expected, and a complicated modification in the orientation of the last link was caused due
to the “general” orientation of the two last links in the home position.
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The Trajectory Generating Angles for Axles 1 to 4 The Trajectory Generating Angles for Axles 5 to 8
—_—a 151 — g5
— —
a 10 q
— a —
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3 000 B 00
-002 -0
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0 2 4 6 8 10 0 2 a 6 8 10
Timels] Timels]

FIGURE 11. The joint coordinates for the generation of the nominal tra-
jectory by using onlyy; andgg in the canonical approximate model

The variablesF and W were restored to the identity matrix. Figures 12-15 reveal
acceptable solutions.

Trajectory Tracking in the Cartesian Frame Trajectory Tracking in the Cartesian Frame
14 e

— X
——r
12 X1
X
X

0 2 a 6 8 10 -02 -01 00 01 02 03 04 05 06
Time s] Timels]

FIGURE 12. Tracking of a nominal trajectory generated by using only
g7 andgg in the canonical approximate model
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FIGURE 13. The tracking error of the end-point and the orientation for
the nominal trajectory generated by using oglyandgs in the canonical
approximate model

It is an interesting question to see how the trajectory generated by the motion gfonly
andgs is tracked if the motion of the last two axles is “reduced” by usitig; = Ws g =
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The Solution for Axles 1 to 4 The Solution for Axles 5 to 8
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FIGURE 14. The solution in the space of the joint coordinates for the
nominal trajectory generated by using omty and gs in the canonical
approximate model

The Angle of Adaptive Counter-Rotation The Angle of Adaptive Abstract Rotation
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FIGURE 15. The angle of the “stabilizing rotation®” and the “abstract
rotations” of the FPI-based algorithm for the nominal trajectory gener-
ated by using only; and;s in the canonical approximate model

0.01. Figure 16 reveals degraded precision while in Fig. 17 the reduction of the motion of
the last two links can be tracked. According to Fig. 18 it can be sated that the algorithm
remained stable and convergent. The numerical conditions are characterized by Fig. 19
describing the minimum and the maximum of the real part of the eigenvaluégJf 7 (¢).
Regarding the minimum, the numerical value that seems to be randomly scattered around
0 with the order of magnitud&0—!* practically means zero, i.e. the satisfactory condition

of the convergence set by Dineva was not guranteed. It can be seen, too, that the maximum
also varied within a wide range. This testifies that the suggested algorithm was able to
successfully tackle a numerically “delicate”, nontrivial problem.

5. CONCLUSION

In this paper a Fixed Point Iteration-based, matrix inversion-free algorithm was fur-
ther refined and investigated for the adaptive numerical solution of the differential inverse
kinematic task of redundant robots when the available kinematic model suffers from im-
precisions. Such effects are important whenever the robot arm consists of long links, and
the precision of manufacturing of the components is limited.
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Trajectory Tracking in the Cartesian Frame 1000 Times the Orientation Error
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FIGURE 16. Tracking of a nominal trajectory generated by using only
g7 andgg in the canonical approximate model when the motion of the
generating axles is reduced

The Solution for Axles 1 to 4 The Solution for Axles 5 to 8
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FIGURE 17. The solution in the space of the joint coordinates for the
nominal trajectory generated by using omly and gs in the canonical
approximate model when the motion of the generating axles is reduced

The Angle of Adaptive Counter-Rotation The Angle of Adaptive Abstract Rotation
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FIGURE 18. The angle of the “stabilizing rotation¥” and the “abstract
rotations” of the FPI-based algorithm for the nominal trajectory gener-
ated by using only;; andgsg in the canonical approximate model when
the motion of the generating axles is reduced

Based on the assumption that the position and the pose of the last link is precisely
measurable, the effects of the modeling errors can be compensated adaptively. The main
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1e—fEhe Minimal Real Part of the Eigenvalue of J1 Jexact The Maximal Real Part of the Eigenvalue of /1, Jexact

450 — Jipplexsct

Time s] Timels]

FIGURE 19. The minimal and maximal real part of the eigenvalues
J(q)T J(q) for the nominal trajectory generated by using oglyandgs

in the canonical approximate model when the motion of the generating
axles is reduced

advantage in comparison with the matrix inversion-based solutions is that the suggested
algorithm does not require the experimental investigation of the behavior of the robot arm
for each independent direction during the measurements. So less hectic motion of the robot
arm is required. The new algorithm also can be utilized in the process of more precise
identification of the kinematic parameters. It can be used for a precise enough model, too.

According to the earlier simulations, tfeon plus ultra” of the expectations, i.e. get-
ting rid of the burden of computing the approximate Jacobian was viable only in the case
of very low degree of freedom problems. So for a multiple degree of freedom case the
calculation of at least the approximate Jacobian was found to be necessary.

The algorithm used abstract multiple dimensional rotations in two different phases of
the calculations: in the calculation of the “counter-rotations” with the aim of guaranteeing
the convergence of the algorithm, and in the fixed point iterations providing the solutions.
It further was “colored” by the inclusion of parameters that affect the distribution of the
ambiguous solution over the redundant axles, and influence a compromise between requir-
ing higher or lower precision of the location and the pose of the last link.

As an application example, a redundahtlegree of freedom open kinematic chain was
considered, in which the “counter-rotations” were realizedi dimensional space, while
the adaptive rotations were made i dimensional real space.

Regarding further research, we should like to return to the application of the same
method in the adaptive solution of the optimal controllers in which the fixed point iteration-
based solution could substitute Lagrange’s “General Reduced Gradient Algorithm” by us-
ing a rough estimation for the Jacobian.
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