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Abstract. This paper presents modified Potra andkPinethod to solve
nonlinear equations having single variable using McDougall and Wother-
spoon scheme. Also two iterative methods are obtained as variants of
Potra and Rtk method by merging iterations of secant method and the
method given by Amat and Bascular. The convergence order of each
newly obtained method is higher than that of Potra arak Rtethod. Fi-

nally, some examples are demonstrated to know performances of these
methods and to compare these among themselves and other existing meth-
ods.
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1. INTRODUCTION

Single variable nonlinear equations appear in almost all areas of mathematical as well as
physical sciences. However, analytic solutions of such equations are almost impossible or
the process of finding such solutions may be tedious. In such situation, numerical methods
are employed to get solution of nonlinear equation

f(z)=0 (1. 1)
The two commonly used such classical methods are Newton’s method

f(@n) (1.2)

T = T )
n

and secant method
Tp — Tpn-1
Tpal = Ty — - T 1.3
+1 f(xn)—f(:cnfl)f( ) 1.3)
The method (1.2) converges quadratically and convergence order of the method (1.3) is
1.618 [2]. Newton’s method requires first derivative of the function but sometime finding
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the derivative of the function becomes complicated. To avoid this difficulty, we can use
Steffensen’s method [7]

f2(xn)

f(@n + f(zn)) — f(zn)
The convergence order of this method is same as Newton’s method and is obtained by re-
placing f(z) by the ratiof(””"*-f}f;j%_f(”") in the Newton’s method (1. 1). In literature,
several methods have appeared as variants of these methods using different techniques.
Some of them are found in [1], [3] -[19] and references therein. Here, it is not possible
to describe the development of all methods. However, we will mention the work of those
authors which motivated us to carry out this investigations.

In the work of Weerakoon and Fernando [19], they used the technique of numerical in-
tegration to improve convergence order of Newton’s method. They used Newton'’s theorem

(1. 4)

Tptl = T —

f@) = fa)+ [ Fde (L5)
and approximated the integral by trapezoidal rule that is
[ rwa=ES0 0w+ e 1.6)

Then they obtained the variant of Newton’s method which is given by the formula

2f(an)

T P -

wherez? = z,, — ,{/((Z';))-
Recently in 2014, McDaugall and Wotherspoon [14] obtained a modified Newton’s
method using a different strategy. Their method is as follows:

If ¢ is the initial approximation, then

x5, = o (1. 8)
f (o)
T, = Tog— —F———. 1.9
1 o+ )]
Subsequently fon > 1, the iterations can be obtained as
T, = Tn— 5 f(@n) - (1. 10)
f [5(3:7&—1 + xn—l)]
f(zn)
n = gz, —0" 1.11
Tpy1 T P (wn+ 20)] ( )
It was proved that the last method is of ordet /2.
In [17], Potra and Rk proposed the iterative method
Tn
- (1.12)

Tn41 = Tp — f’(x )
n
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to solve nonlinear equations with single variable as a improved Newton’s method. The
convergence order of this method is three which can be shown easily by converting the
iteration ( 1. 12 ) to a fixed point problef(z) = x, where

X
o L2+ 5@

O(z)==x () . (1. 13)
For the third order convergence, it is sufficient to show that at the fixed poitt tlfie
derivative of®’ and®” vanish; this can be verified by elementary calculations . At first,
we modify this method using McDougall and Wotherspoon scheme [14] and obtain new
method having order of convergence 3.5615. Again, we construct hybrid methods by amal-
gamating the iterations of method (1.4) with existing method (1.3), and Amat and Busquier
method [1], respectively, and obtain two new methods having order of convergence 4 and
6. Finally, we observe some numerical examples to compare the effectiveness of newly
obtained methods and similar existing methods.

2. THE METHOD AND ITS CONVERGENCE RESULT

Here, we propose the method obtained by modifying the method ( 1. 12 ) given by
Potra and Rtk using McDougall and Wotherspoon’s predictor-corrector method [14]. The
method is given below:

If xq is the initial approximation, then

I |®o— % + f(wo)
()
1 =Xy — Totar
r (=)
flzo— }f,((i(;))] + f(zo)
=q9— — (o) (2. 15)
Subsequently, fon > 1, the iterations can be calculated as follows:
flan — Jw(gjf'r‘i:ll)] + f(zn)
T =Ty — — — : (2. 16)
)
flan — f,(fa(:f:zi;)] + f(xn)
Tpgl = Ty — —— 2 (2.17)

pr(zmys)

For the convergence of the method ( 2. 14 )-( 2. 17 ), we prove the result given below:
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Theorem 2.1. Let« be a simple zero of a functighwhich has enough number of contin-
uous derivatives in a neighborhood®f If z is sufficiently close ta, then the method
(2. 14)-(2. 17) is convergent and has the convergence Grdén 5.

Proof. Suppose,, ande;, denote, respectively, the errors in the termsandz,. Also,
J
we denote:; = {f,(?)), Jj =2,3,4..., which are constants. Then from ( 2. 14§, = =z,
"«
impliesej = eg. We now proceed to calculate the eregrin x;. By using Taylor series
expansion and binomial expansion, we get
f (o) fla+eo)
o — =a+ey— 7T
e " fllateo)
f'(@)leo + caeg + csef + O(eg)]
F(@)[1 + 2c2e0 + 3czed + deged + O(el)]
=a+ey— [eg + caed 4+ czed + O(ed)][1 + 2cae0 + 3ezed + degey + O(eg)] !
= a+ coed + (2c3 — 2c3)ed + O(ep),

so that after some calculations, we get

=a+ey—

7 (= 40 ) = pr@leac + (2ea — 2l + ced + O
f'(o)

£ (r0 = 28+ o) = 7@l + 262k + 800} - 236k + el + 0L

and

f (w0 = 225 ) + flo)
f'(xo)

= [eo + 2coe? + 3czey — 2c3ed 4 cheg + O(ed)]
[1+ 2caeg + 3czed + deged + O(eg)] ™t
= e — 2c2ey + O(ep).

Hence from (2. 15),

a+e =a+ey— e+ 2c2es + O(ep)
ie., e1 = ael, (2. 18)

wherea = 2c2 and we have neglected the higher powee,af Again, from ( 2. 16)

f [331 - f(xl)} + f(21)

f'(zo)
f'(%)

(2. 19)

321:371—

Here,
f(z1) = fla+er)
= ['(a)[er + cae + csef + O(eq)],
f'(xo) = f'(a+eo)
=1+ 2cpe0 + 3czed + deged + O(ed).
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Also,

e1 + cae? + czed + O(e})
1+ 2c2e0 + 3czed + O(e)

/ {x - }cf&))]

After some calculation, we get

f{xl— f(l’l)]

f|:0[+€1

f'(@)[2caeper + 3esep?er — dcieder + O(ed)]

f'(wo)
so that
f |:5U1 - ff/((zl()))] + f(l'l) = f’(a)[€1 + 2coepe1 + 3036(2361 — 40%6(2)61 + .- ]
and
/ [ - J{iﬂ T f(o)
- = [e1 + 2coeper + 3ezeder — Acieder 4 - -]
f'(xo)

[1+ 2coeq + 3czed +---]7 1
= e —4c3ete; + O(ef). (2. 20)
From (2. 19), the errog} in 27 can be calculated as
el =ey —[eg —4cieder + O(e])]
=4c3ete; + O(ed)
= abe, (2. 21)

whereb = 4¢3 and we have neglected the higher power terms,of
Next, we compute the err@p in 5. Now,

flx)  _ f(e)er + coef + esef + O(ed)]

pEE) S S
e1 + cae? + czed + O(ef)
1+ coeg + coef + %636% +O(e3)
1 3

=e + 763€1 caer€} — caetel + -

so that

f(z1) 1 4 * 2 2 «

— —————~— = «a — —c3e] + ceeje; + creje

f’(leer) 431 26161 2€1€1>
2

where the higher power terms are neglected. Thus

T

f(z1)

* .
Flon— =70y | = F(@lezere] + Gefef — Sesed]
(57 '
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and
1
fla— g(xi)*) +f(z) = elf'(a)(1+0261+03e§+026*{+c§elef—103e%+~ o).
f/ 9512””1
Also,
x
Iz filil + f(z1)
I ( 2 1) 3 9
- =e; — —czejel + -
f/ (wl-"_wl) 2
2
From (2. 17),
x
[z - % + f(21)
(s3]
To = T1 —

7 EF)

3 2 %
a—l—egza—i—el—(el—§C3elel+--~)

Thus, substituting the values, we get

3
= eq = 5036%6T + 0(6(1)2)

3
€2 = 5036%61‘ = a®beept,

wherec = %c:»,. In fact, it can be worked out for > 1, that the following relation holds:
eny1 = celer. (2. 22)

In order to compute,, 1 explicitly, we neec: . We already find;. We now computes.
From (2. 16)

Using similar process as above, the eepin x5 can be calculated as
es = detes,
whered = c2. Again it can be checked that, in general, foi> 2, the following relation
holds:
el =de?_je,. (2. 23)
From (2. 22) and ( 2. 23), itis clear that the errefsande,, ., respectively, inc;, and
Zpy1 forn > 2inthe method ( 2. 14 )-( 2. 17 ) satisfy the following recursion formula:

el =de? e, (2. 24)
eni1 = celer. (2. 25)
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To find convergence order of this method, we find a relation in the form

€n+1 = A@Z, (2 26)
where A is some constant. Thus,
1
e, = Ael | or en_1 = Afie,’{' (2. 27)

From (2. 24),(2.25), (2. 26)and (2. 27),

_ 2 _ 2
Ael = celel = ce2de? e, = ccleiAT2 ehen, = cdAT eSer)'

Equating the power of,,,

2

p=3+-
p
or, pP?P—=3p—2=0
+v1
or,  p=>YIT

2
Taking positive valuep = 3.5615. Thus, the method ( 2. 14 )-( 2. 17) is convergent with
order 3.5615. O

3. HYBRID METHODS AND THEIR CONVERGENCE ANALYSIS

Here, our aim is to introduce new iterative methods whose convergence order are higher
than that of method ( 1. 12 ) given by Potra anédkin [17]. For this, we suggest the
method where iterations of method ( 1. 12 ) and secant method ( 1. 3 ) are performed
alternately. The method is given below:

— ﬂ — T
T T T ) = )
f'(wn) .

Again, we recall the following derivative free method presented by the Amat and Basquier
in [1]:

f(Zn), 3. 28)

where Ty = Ty —

(3. 29)

LTn+1 = Tp — Aglf(l‘n)a (3 30)
f(@n) — f(yn)

where An = [y’ruxn; f] = ﬁv
n n

Yn = Tn, + 5n(xn—1 - xn); 571, S |O(en)% ‘

This is the second order method. They obtained this method by modifying classical secant
method (1. 3). We shall prove that if we use the iterates alternatively from the method
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(1. 12) and this method, the resulting method will be sixth order convergence for suitable
value ofé,,. The proposed method is given below:

Tp41 = Tn — Aglf(xin% (3 31)
In — Yn
Yn = Tpn + 5n(zn - @)a op < ‘O(en)%|
a1 (20 = £33
and Ty = Tp — f(an)
I (xn)

Let us prove the following convergence result on above mentioned method ( 3. 28 )-( 3. 29

).

Theorem 3.1. Leta be a simple zero of a functighwhich has enough number of contin-
uous derivatives in a neighborhood @f If x is sufficiently close te, then the proposed
method ( 3. 28 )-( 3. 29) has convergence order at least 4.

Proof. Assumee,, ande,, denote the errors im,, andz,,, respectively, that isy,, =

)
I

of Theorem 2.1, it is clear that the error equation of ( 3. 29) is given by

o+ e, andz, = a + &,. Denotec; = . If we give a little attention on the proof
&n = 2c5e;, + O(ey)
= Aed + O(e}), whereA = 2¢32. (3. 32)
Here,
Tp—2n = (4 &) — (a+e,)
=ée,—en
= Ae3 —e, +0(el)
Using Taylor’'s expansion, we get
flan) = fla+en)
= f(@)[en + €l + ez} + O(ey,)]
and using ( 3. 32 ), we obtain
f@n) = fla+e)
= f'(a)[Ae;, + O(ep)]-
Thus, we get
F(@) = fzn) = f'(@)[Ae;, + O(en)] — f'(@)len + c2e], + csep + Ofey)]
= —f'(@)en[l + c2ep + (c3 — A)ep + O(ey)]
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and

(Tn —20)f(Tn) _ [A€) — en + O(e)1f' (@) [Ae; + O(ey)]
[(@n) = f(zn)  —f(a)en]l+ caen + (c3 — A)e? + O(e})]
[Ae; + O(e))[1 + caen + (c3 — A)el + O(e;)] !

= [Ae3 — Acye? + 0O(eD)).

Thus, the error equation in ( 3. 28) is given by

ent1 = &n — A3 + Acger + O(ed)]
= Ae3 +0(el) — Aed 4 Acyel +0(€d)
= )\efl + O(ei),

where\ is some constant. Thus, convergence order of the method ( 3. 28 )-( 3. 29 ) is at
least 4 and the theorem is proved. d

Let us prove the following convergence result of method ( 3. 31):

Theorem 3.2. Leta be a simple zero of a functioghwhich has enough number of contin-
uous derivatives in a neighborhood®f If z is sufficiently close te, then the method
(3. 31) has convergence order at least 5.5 and it becomes 6 for the suitable chéjice of

Proof. From Theorem 3.1, the erre}, in z,, is given by
& = 2c5ed + O(el).
Since

yn:ﬂ"_én(l'n_l'in):ﬂ'i_ana an:(sn(xn_xn)7
we have by Taylor expansion

Fl) = 5+ ) = £(50) + 0 (57) + 2 () +
After some calculation, we get
An = (@) + O(an),
and the method ( 3. 31) can be expressed as
Fnst = Fn — }f,((% +O(an).
Thus, we have
tusr = 7 — LI 4 06, [, — ), (3. 33)

I'(Z7)
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From ( 3. 33), we have

. fla+ey) _
€n+1 = €n — m + O((Sn|a +ep, —a— en|)

=&y — (B + 28n° — 20285° + O(8.%) + O(0nlen — &)

o’ +O(6plen — Enl) + - -

ca(2c3€2)% + O(,)en — 2c5e2|) + - - -

=4c5e8 + O(6,len — 2¢3e3]) +--- . (3. 34)

Sincesd,, < |O(e,)?|, and so if we assume that < |O(e;)2|, thatis,d, < |O(e,)%),
then method ( 3. 31 )is at least sixth order convergence. But, if wedtake |O(e,)?|
the convergence order becomes 5.5.

Remark 3.3. If the solution of nonlinear equation is unknown, scheme which we use to
find §,, is the same as Amat and Basquier proposed in [1] . This scheme is

5o = O(107%) < O(ep)?
oy = 0(5(2)71)7
where k is an integer such that

O(107%) < |f(a) = f(zo)| = |f(x0)| < O(|le — mo))-
4. NUMERICAL RESULTS

Here, three numerical examples are presented to show the efficiency of methods ob-
tained in previous sections. We compare these methods with existing Potraé&n(@ P}
method ( 1. 12 ), Weerakoon and Fernando (WF) method [19], McDougall and Wother-
spoon(MW) method (1. 8 )-( 1. 11 ) and Newton’s method. To perform the numerical
calculation, we use Matlab Software and stopping critetia,; — z,,| < (10)712 or
|f(znsa] < (10)71
Example 4.1. We apply methods ( 2. 14 )-(2. 17 ) and ( 3. 28 )-( 3. 29 ) on the nonlinear
equation

3x +sinx —e® = 0. (4. 35)
To determine appropriate initial approximation of root, let us draw the graph.

FIGURE 1. Graph off(x) = 3z + sinz — €”.

Figure 1 shows that the equation (4.1) has a simple roqts, i) and another simple root

in (0,1). Taking initial guess:; = 3, Table 1 displays the iterations of existing Potra and
Ptak method (1. 12 ), Weerakoon and Fernando method [19], McDougall and Wotherspoon
method (1. 8)-( 1. 11), and our methods (2. 14)-(2. 15) and ( 3. 28)-( 3. 29).
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Example 4.2. Again, we apply methods (2. 14 )-(2. 17 ) and (3. 28 )-( 3. 29) on
equation

flx) =2 4222 =3z —1=0. (4. 36)
From the Intermediate Value Theorem (also known as Bolzano’s theorem) [2], one of the
root of this equation lies i0, 2) sincef(0) f(2) < 0. Taking initial guess:y = 2, Table 2
displays the iterations of some existing methods and our methods.

Example 4.3. Finally, we apply methods ( 3. 28 )-( 3. 29 ) and ( 3. 31) on the nonlinear
equation

(x—2)2-1=0 (4. 37)
By inspection of above equation, it is clear that 3 is the root of this equation. Taking
initi guesszy = 4. Table 3 displays the iterations of Potra andkPinethod (1. 12 ), and
our methods (3. 28)-(3. 29) and (3. 31). Also Table 3 demonstrates that the convergence
rate can be improved by choosing the suitable valug,of
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TABLE 1. Comparison of distinct methods.

Method | n T |y — Tp—1] |f(xn)]
1| 2.3945174904173790.60548250958262[1 3.09985882680943
2| 1.9937513422674860.4007661481498930.44989432809971
MW 3| 1.8941360656045740.0996152766629120.01621576832129
method | 4 | 1.8900317573848650.0041043082197090.00000797748207
5 | 1.8900297292520080.0000020281328630.00000000000006
6 | 1.8900297292519850.00000000000001 0.00000000000000
1| 2.2230227167475210.7769772832524791.77140152839696
2| 1.9184299984890680.3045927182584530.11478646996365
PP 3] 1.8900683711184270.02836162737064/.0.00015199973314
method | 4 | 1.8900297292520920.0000386418663350.00000000000041
5 | 1.8900297292519850.00000000000010} 0.00000000000000
WF 1| 2.1824017981561150.8175982018438851.50164620270362
method | 2 | 1.9052171198726990.2771846782834150.06061476675166
3| 1.8900333240877350.01518379578496#0.00001413999115
4 | 1.8900297292519850.0000035948357500.00000000000000
Present | 1 | 2.22302271674752[L0.7769772832524791.77140152839696
method | 2 | 1.9032545782173900.31976813853013[10.05268301528949
(2.14) | 3| 1.8900300069893840.0132245712280060.00000109245375
-(2.17)| 4| 1.8900297292519850.0000002777373990.00000000000000
Present | 1 | 2.0729805889348830.9270194110651180.85300394965277
method | 2 | 1.89106653903140[70.1819140499034750.00408226143785
(3.28) | 3| 1.8900297292540350.0010368097773720.00000000000806
4

-(3.29)

1.89002972925198

50.00000000000205

00.00000000000000

O WUOT OO O F N OO OO0 OO WorhdNo oo ~NO oo
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TABLE 2. Comparison of distinct methods.

Method

=

Tn

|:L'n - xn—1|

|f (@)

MW
method

1.47058823529411
1.22688990960456
1.19888316238907
1.19869124458855
1.19869124351599

80.52941176470588
50.24369832568955
40.02800674721549
70.00019191780051
70.00000000107256

22.09383268878485
20.17663486652845
20.00117193745506
70.00000000654834
00.00000000000000

PP
method

1.34742160654206
1.20216786969256
1.19869131327211
1.19869124351599

70.65257839345793
50.14525373684950
50.00347655642045
70.00000006975611

31.03512969341084
20.02129369079716
00.00000042588533
80.00000000000000

O N O O 01roy o

WEF
method

1.31741241306915
1.19988271660204
1.19869124507133
1.19869124351599

10.68258758693084
10.11752969646711
80.00119147153070
70.00000000155534

00.80538235587976
00.00728230263309
30.00000000949589
10.00000000000000

O O O

Present
method
(2.14)
-(2.17)

1.34742160654206
1.19967316670573
1.19869124353671
1.19869124351599

70.65257839345793
50.14774843983633
90.00098192316901
70.00000000002072

31.03512969341084
20.00600037839620
50.00000000012651
20.00000000000000

Present
method
(3.28)
-(3.29)

WNERPWONRERPPRPRONRERPRAPONRPRPOMMWDNEE

1.26261127739109
1.19871109137087
1.19869124351599

20.73738872260890
10.06390018602022
70.00001984785487

80.41337942813018
10.00012118024703
40.00000000000000

O O0row o NOO
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— MW method
PP method
= \W/F method
Present metthod (2.14)-(2.17) [
Present method (3.28)- (3.29)

09

08

07r

06

05r

Errors

0.4r

03r

02r

0.1r

Iterations

FIGURE 2. Graphs of the errors of different methods up to four iterations

using Table 1.
1 :
— MW method
09 PP method
——— WF method
08r Present metthod (2.14)-(2.17) [
07 Present method (3.28)- (3.29)
06
[
505
w
0.4}
03}
02}
0.1
0 .
1 2 3

Iterations

FIGURE 3. Graphs of the errors of different methods up to three itera-
tions using Table 2.

5. CONCLUSION

From the observation of above comparison tables and graphs of different numerical
methods, we conclude that our newly introduced methods modified from Potra @nd Pt
method using different techniques can easily compete with McDougall and Wotherspoon
method, Potra and & method ( 1. 12 ), and Weerakoon and Fernando method [19]. In
each iteration, we need to calculate one more function in methods (2. 14 )-(2. 17 ) and (
3. 28)-( 3. 29), and two more functions in method ( 3. 31 ) than Potra aldrRéthod.
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TABLE 3. Comparison of distinct methods.

PP method

Present method
(3.28)-(3.29)

Present method
(3.31)
0n = (83— xn)3/2

Present method
(3.31)
O = (3 —x,)2

O©oo~NOULh, WNPRE

3.88176228175700
3.77051469101286
3.66584411335631
3.56736223534100
3.47470514507217
3.38753596568811
3.30555882323490
3.22857574437747
3.15670502648871
3.09118049001662
3.03685694820528
3.00555304515496
3.00003620752448
3.00000000001147
3.00000000000000

53.84314310430864
83.69858840725138
13.56537183788537
43.44260881723875
03.32950754225174
33.22547913839357
03.13081900666063
13.05043520442329
53.00489267371849
23.00000132733255
53.00000000000000
0

O~ +s

23.81465826509632
13.64508990213949
53.48473900212126
43.33802693104299
63.20511762270969
03.08851726018895
13.01035216861320
73.00000048337889
53.00000000000000
0
0

43.72923803611272
53.52677023683517
73.36125849069588
43.22019456560015
13.09943511752832
83.01475965859477
03.00000331888018
L
0

O = W0 & O

Nevertheless, this cost is nominal in the comparison of order of convergence of the methods

introduced in this paper.
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