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Abstract. This paper presents modified Potra and Pták method to solve
nonlinear equations having single variable using McDougall and Wother-
spoon scheme. Also two iterative methods are obtained as variants of
Potra and Pt́ak method by merging iterations of secant method and the
method given by Amat and Bascular. The convergence order of each
newly obtained method is higher than that of Potra and Pták method. Fi-
nally, some examples are demonstrated to know performances of these
methods and to compare these among themselves and other existing meth-
ods.
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1. INTRODUCTION

Single variable nonlinear equations appear in almost all areas of mathematical as well as
physical sciences. However, analytic solutions of such equations are almost impossible or
the process of finding such solutions may be tedious. In such situation, numerical methods
are employed to get solution of nonlinear equation

f(x) = 0 (1. 1)

The two commonly used such classical methods are Newton’s method

xn+1 = xn − f(xn)
f ′(xn)

(1. 2)

and secant method

xn+1 = xn − xn − xn−1

f(xn)− f(xn−1)
f(xn) (1. 3)

The method (1.2) converges quadratically and convergence order of the method (1.3) is
1.618 [2]. Newton’s method requires first derivative of the function but sometime finding
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the derivative of the function becomes complicated. To avoid this difficulty, we can use
Steffensen’s method [7]

xn+1 = xn − f2(xn)
f(xn + f(xn))− f(xn)

(1. 4)

The convergence order of this method is same as Newton’s method and is obtained by re-
placingf ′(x) by the ratiof(xn+f(xn))−f(xn)

f(xn) in the Newton’s method ( 1. 1 ). In literature,
several methods have appeared as variants of these methods using different techniques.
Some of them are found in [1], [3] -[19] and references therein. Here, it is not possible
to describe the development of all methods. However, we will mention the work of those
authors which motivated us to carry out this investigations.

In the work of Weerakoon and Fernando [19], they used the technique of numerical in-
tegration to improve convergence order of Newton’s method. They used Newton’s theorem

f(x) = f(xn) +
∫ x

xn

f ′(t) dt (1. 5)

and approximated the integral by trapezoidal rule that is
∫ x

xn

f ′(t) dt =
(x− xn)

2
[f ′(x) + f ′(xn)]. (1. 6)

Then they obtained the variant of Newton’s method which is given by the formula

xn+1 = xn − 2f(xn)
f ′(xn) + f ′(x∗n)

, (1. 7)

wherex∗n = xn − f(xn)
f ′(xn) .

Recently in 2014, McDaugall and Wotherspoon [14] obtained a modified Newton’s
method using a different strategy. Their method is as follows:
If x0 is the initial approximation, then

x∗0 = x0 (1. 8)

x1 = x0 − f(x0)
f ′[ 12 (x0 + x∗0)]

. (1. 9)

Subsequently forn ≥ 1, the iterations can be obtained as

x∗n = xn − f(xn)
f ′[ 12 (xn−1 + x∗n−1)]

(1. 10)

xn+1 = xn − f(xn)
f ′[ 12 (xn + x∗n)]

. (1. 11)

It was proved that the last method is of order1 +
√

2.
In [17], Potra and Pták proposed the iterative method

xn+1 = xn −
f

[
xn − f(xn)

f ′(xn)

]
+ f(xn)

f ′(xn)
(1. 12)
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to solve nonlinear equations with single variable as a improved Newton’s method. The
convergence order of this method is three which can be shown easily by converting the
iteration ( 1. 12 ) to a fixed point problemΦ(x) = x, where

Φ(x) = x−
f

[
x− f(x)

f ′(x)

]
+ f(x)

f ′(x)
. (1. 13)

For the third order convergence, it is sufficient to show that at the fixed point ofΦ, the
derivative ofΦ′ andΦ′′ vanish; this can be verified by elementary calculations . At first,
we modify this method using McDougall and Wotherspoon scheme [14] and obtain new
method having order of convergence 3.5615. Again, we construct hybrid methods by amal-
gamating the iterations of method (1.4) with existing method (1.3), and Amat and Busquier
method [1], respectively, and obtain two new methods having order of convergence 4 and
6. Finally, we observe some numerical examples to compare the effectiveness of newly
obtained methods and similar existing methods.

2. THE METHOD AND ITS CONVERGENCE RESULT

Here, we propose the method obtained by modifying the method ( 1. 12 ) given by
Potra and Pt́ak using McDougall and Wotherspoon’s predictor-corrector method [14]. The
method is given below:
If x0 is the initial approximation, then

x∗0 = x0 (2. 14)

x1 = x0 −
f


x0 − f(x0)

f ′
(

x0+x∗0
2

)

 + f(x0)

f ′
(

x0+x∗0
2

)

= x0 −
f

[
x0 − f(x0)

f ′(x0)

]
+ f(x0)

f ′(x0)
. (2. 15)

Subsequently, forn ≥ 1, the iterations can be calculated as follows:

x∗n = xn −
f


xn − f(xn)

f ′
(

xn−1+x∗n−1
2

)

 + f(xn)

f ′
(

xn−1+x∗n−1
2

) , (2. 16)

xn+1 = xn −
f


xn − f(xn)

f ′
(

xn+x∗n
2

)

 + f(xn)

f ′
(

xn+x∗n
2

) . (2. 17)

For the convergence of the method ( 2. 14 )-( 2. 17 ), we prove the result given below:
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Theorem 2.1. Letα be a simple zero of a functionf which has enough number of contin-
uous derivatives in a neighborhood ofα. If x0 is sufficiently close toα, then the method
( 2. 14 )-( 2. 17 ) is convergent and has the convergence order3.5615.

Proof. Supposeen ande∗n denote, respectively, the errors in the termsxn andx∗n. Also,

we denotecj =
f j(α)
j!f ′(α)

, j = 2, 3, 4..., which are constants. Then from ( 2. 14 ),x∗0 = x0

impliese∗0 = e0. We now proceed to calculate the errore1 in x1. By using Taylor series
expansion and binomial expansion, we get

x0 − f(x0)
f ′(x0)

= α + e0 − f(α + e0)
f ′(α + e0)

= α + e0 − f ′(α)[e0 + c2e
2
0 + c3e

3
0 + O(e4

0)]
f ′(α)[1 + 2c2e0 + 3c3e2

0 + 4c4e3
0 + O(e4

0)]

= α + e0 − [e0 + c2e
2
0 + c3e

3
0 + O(e4

0)][1 + 2c2e0 + 3c3e
2
0 + 4c4e

3
0 + O(e4

0)]
−1

= α + c2e
2
0 + (2c3 − 2c2

2)e
3
0 + O(e4

0),

so that after some calculations, we get

f

(
x0 − f(x0)

f ′(x0)

)
= f ′(α)[c2e

2
0 + (2c3 − 2c2

2)e
3
0 + c3

2e
4
0 + O(e5

0)],

f

(
x0 − f(x0)

f ′(x0)

)
+ f(x0) = f ′(α)[e0 + 2c2e

2
0 + 3c3e

3
0 − 2c2

2e
3
0 + c3

2e
4
0 + O(e5

0)]

and

f
(
x0 − f(x0)

f ′(x0)

)
+ f(x0)

f ′(x0)
= [e0 + 2c2e

2
0 + 3c3e

3
0 − 2c2

2e
3
0 + c3

2e
4
0 + O(e5

0)]

[1 + 2c2e0 + 3c3e
2
0 + 4c4e

3
0 + O(e4

0)]
−1

= e0 − 2c2
2e

3
0 + O(e4

0).

Hence from ( 2. 15 ),

α + e1 = α + e0 − e0 + 2c2
2e

3
0 + O(e4

0)

i.e., e1 = ae3
0, (2. 18)

wherea = 2c2
2 and we have neglected the higher power ofen. Again, from ( 2. 16 )

x∗1 = x1 −
f

[
x1 − f(x1)

f ′(x0)

]
+ f(x1)

f ′(x0)
. (2. 19)

Here,
f(x1) = f(α + e1)

= f ′(α)[e1 + c2e
2
1 + c3e

3
1 + O(e4

1)],

f ′(x0) = f ′(α + e0)

= 1 + 2c2e0 + 3c3e
2
0 + 4c4e

3
0 + O(e4

0).
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Also,

f

[
x1 − f(x1)

f ′(x0)

]
= f

[
α + e1 − e1 + c2e

2
1 + c3e

3
1 + O(e4

1)
1 + 2c2e0 + 3c3e2

0 + O(e3
0)

]
.

After some calculation, we get

f

[
x1 − f(x1)

f ′(x0)

]
= f ′(α)[2c2e0e1 + 3c3e0

2e1 − 4c2
2e

2
0e1 + O(e6

0)]

so that

f

[
x1 − f(x1)

f ′(x0)

]
+ f(x1) = f ′(α)[e1 + 2c2e0e1 + 3c3e

2
0e1 − 4c2

2e
2
0e1 + · · · ]

and

f

[
x1 − f(x1)

f ′(x0)

]
+ f(x1)

f ′(x0)
= [e1 + 2c2e0e1 + 3c3e

2
0e1 − 4c2

2e
2
0e1 + · · · ]

[1 + 2c2e0 + 3c3e
2
0 + · · · ]−1

= e1 − 4c2
2e

2
0e1 + O(e4

0). (2. 20)

From ( 2. 19 ), the errore∗1 in x∗1 can be calculated as

e∗1 = e1 − [e1 − 4c2
2e

2
0e1 + O(e4

0)]

= 4c2
2e

2
0e1 + O(e4

0)

= abe5
0, (2. 21)

whereb = 4c2
2 and we have neglected the higher power terms ofe0.

Next, we compute the errore2 in x2. Now,

f(x1)

f ′
(

x1+x∗1
2

) =
f ′(α)[e1 + c2e

2
1 + c3e

3
1 + O(e4

1)]
f ′

(
α + e1+e2

2

)

=
e1 + c2e

2
1 + c3e

3
1 + O(e4

1)
1 + c2e1 + c2e∗1 + 3

4c3e2
1 + O(e3

1)

= e1 +
1
4
c3e

3
1 − c2e1e

∗
1 − c2

2e
2
1e
∗
1 + · · ·

so that

x1 − f(x1)

f ′
(

x1+x∗1
2

) = α− 1
4
c3e

3
1 + c2e1e

∗
1 + c2

2e
2
1e
∗
1,

where the higher power terms are neglected. Thus

f


x1 − f(x1)

f ′
(

x1+x∗1
2

)

 = f ′(α)[c2e1e

∗
1 + c2

2e
2
1e
∗
1 −

1
4
c3e

3
1]
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and

f


x1 − f(x1)

f ′
(

x1+x∗1
2

)

+f(x1) = e1f

′(α)(1+c2e1+c3e
2
1+c2e

∗
1+c2

2e1e
∗
1−

1
4
c3e

2
1+· · · ).

Also,

f


x1 − f(x1)

f ′
(

x1+x∗1
2

)

 + f(x1)

f ′
(

x1+x∗1
2

) = e1 − 3
2
c3e

2
1e
∗
1 + · · · .

From ( 2. 17 ),

x2 = x1 −
f


x1 − f(x1)

f ′
(

x1+x∗1
2

)

 + f(x1)

f ′
(

x1+x∗1
2

)

Thus, substituting the values, we get

α + e2 = α + e1 − (e1 − 3
2
c3e

2
1e
∗
1 + · · · )

⇒ e2 =
3
2
c3e

2
1e
∗
1 + O(e12

0 )

∴ e2 =
3
2
c3e

2
1e
∗
1 = a3bce11

0 ,

wherec = 3
2c3. In fact, it can be worked out forn ≥ 1, that the following relation holds:

en+1 = ce2
ne∗n. (2. 22)

In order to computeen+1 explicitly, we neede∗n. We already finde∗1. We now computee∗2.
From ( 2. 16 )

x∗2 = x2 −
f


x2 − f(x2)

f ′
(

x1+x∗1
2

)

 + f(x2)

f ′
(

x1+x∗1
2

) .

Using similar process as above, the errore∗2 in x∗2 can be calculated as

e∗2 = de2
1e2,

whered = c2
2. Again it can be checked that, in general, forn ≥ 2, the following relation

holds:
e∗n = de2

n−1en. (2. 23)

From ( 2. 22 ) and ( 2. 23 ), it is clear that the errorse∗n anden+1, respectively, inx∗n and
xn+1 for n ≥ 2 in the method ( 2. 14 )-( 2. 17 ) satisfy the following recursion formula:

e∗n = de2
n−1en (2. 24)

en+1 = ce2
ne∗n. (2. 25)
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To find convergence order of this method, we find a relation in the form

en+1 = Aep
n, (2. 26)

where A is some constant. Thus,

en = Aep
n−1 or en−1 = A−

1
p e

1
p .
n (2. 27)

From ( 2. 24 ), ( 2. 25 ), ( 2. 26 ) and ( 2. 27 ),

Aep
n = ce2

ne∗n = ce2
nde2

n−1en = cde2
nA

−2
p e

2
p
n en = cdA

−2
p e

(3+ 2
p ).

n

Equating the power ofen,

p = 3 +
2
p

or, p2 − 3p− 2 = 0

or, p =
3±√17

2
.

Taking positive value,p = 3.5615. Thus, the method ( 2. 14 )-( 2. 17 ) is convergent with
order 3.5615. ¤

3. HYBRID METHODS AND THEIR CONVERGENCE ANALYSIS

Here, our aim is to introduce new iterative methods whose convergence order are higher
than that of method ( 1. 12 ) given by Potra and Pták in [17]. For this, we suggest the
method where iterations of method ( 1. 12 ) and secant method ( 1. 3 ) are performed
alternately. The method is given below:

xn+1 = xn − xn − xn

f(xn)− f(xn)
f(xn), (3. 28)

where xn = xn −
f(xn) + f

(
xn − f(xn)

f ′(xn)

)

f ′(xn)
. (3. 29)

Again, we recall the following derivative free method presented by the Amat and Basquier
in [1]:

xn+1 = xn −A−1
n f(xn), (3. 30)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn
,

yn = xn + δn(xn−1 − xn), δn ≤ |O(en)
3
2 |.

This is the second order method. They obtained this method by modifying classical secant
method ( 1. 3 ). We shall prove that if we use the iterates alternatively from the method
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( 1. 12 ) and this method, the resulting method will be sixth order convergence for suitable
value ofδn. The proposed method is given below:

xn+1 = xn −A−1
n f(xn), (3. 31)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn
,

yn = xn + δn(xn − xn), δn ≤ |O(en)
3
2 |

and xn = xn −
f(xn) + f

(
xn − f(xn)

f ′(xn)

)

f ′(xn)
.

Let us prove the following convergence result on above mentioned method ( 3. 28 )-( 3. 29
).

Theorem 3.1. Letα be a simple zero of a functionf which has enough number of contin-
uous derivatives in a neighborhood ofα. If x0 is sufficiently close toα, then the proposed
method ( 3. 28 )-( 3. 29 ) has convergence order at least 4.

Proof. Assumeen anden denote the errors inxn andxn, respectively, that is,xn =

α + en andxn = α + en. Denotecj =
f j(α)
j!f ′(α)

. If we give a little attention on the proof

of Theorem 2.1, it is clear that the error equation of ( 3. 29 ) is given by

en = 2c2
2e

3
n + O(e4

n)

= Ae3
n + O(e4

n), whereA = 2c2
2. (3. 32)

Here,

xn − xn = (α + en)− (α + en)
= en − en

= Ae3
n − en + O(e4

n)

Using Taylor’s expansion, we get

f(xn) = f(α + en)

= f ′(α)[en + c2e
2
n + c3e

3
n + O(e4

n)]

and using ( 3. 32 ), we obtain

f(xn) = f(α + en)

= f ′(α)[Ae3
n + O(e6

n)].

Thus, we get

f(xn)− f(xn) = f ′(α)[Ae3
n + O(e6

n)]− f ′(α)[en + c2e
2
n + c3e

3
n + O(e4

n)]

= −f ′(α)en[1 + c2en + (c3 −A)e2
n + O(e3

n)]
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and

(xn − xn)f(xn)
f(xn)− f(xn)

=
[Ae3

n − en + O(e4
n)]f ′(α)[Ae3

n + O(e6
n)]

−f ′(α)en[1 + c2en + (c3 −A)e2
n + O(e3

n)]
= [Ae3

n + O(e5
n)][1 + c2en + (c3 −A)e2

n + O(e3
n)]−1

= [Ae3
n −Ac2e

4
n + O(e5

n)].

Thus, the error equation in ( 3. 28 ) is given by

en+1 = en −Ae3
n + Ac2e

4
n + O(e5

n)]

= Ae3
n + O(e4

n)−Ae3
n + Ac2e

4
n + O(e5

n)

= λe4
n + O(e5

n),

whereλ is some constant. Thus, convergence order of the method ( 3. 28 )-( 3. 29 ) is at
least 4 and the theorem is proved. ¤

Let us prove the following convergence result of method ( 3. 31 ):

Theorem 3.2. Letα be a simple zero of a functionf which has enough number of contin-
uous derivatives in a neighborhood ofα. If x0 is sufficiently close toα, then the method
( 3. 31 ) has convergence order at least 5.5 and it becomes 6 for the suitable choice ofδn.

Proof. From Theorem 3.1, the erroren in xn is given by

en = 2c2
2e

3
n + O(e4

n).

Since

yn = xn + δn(xn − xn) = xn + an, an = δn(xn − xn),
we have by Taylor expansion

f(yn) = f(xn + an) = f(xn) + anf ′(xn) +
a2

n

2
f ′′(xn) + · · · .

After some calculation, we get

An = f ′(xn) + O(an),

and the method ( 3. 31 ) can be expressed as

xn+1 = xn − f(xn)
f ′(xn)

+ O(an).

Thus, we have

xn+1 = xn − f(xn)
f ′(xn)

+ O(δn|xn − xn|), (3. 33)
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From ( 3. 33 ), we have

en+1 = en − f(α + en)
f ′(α + en)

+ O(δn|α + en − α− en|)

= en −
(
en + c2en

2 + c3en
3 + O(en

4)
)(

1 + 2c2en + 3c3en
2 + O(en

3)
)−1 + O(δn|en − en|)

= en − (en + c2en
2 − 2c2en

2 + O(en
3) + O(δn|en − en|)

= c2en
2 + O(δn|en − en|) + · · ·

= c2(2c2
2e

3
n)2 + O(δn|en − 2c2

2e
3
n|) + · · ·

= 4c5
2e

6
n + O(δn|en − 2c2

2e
3
n|) + · · · . (3. 34)

Sinceδn ≤ |O(en)
3
2 |, and so if we assume thatδn ≤ |O(en)2|, that is,δn ≤ |O(en)6|,

then method ( 3. 31 )is at least sixth order convergence. But, if we takeδn = |O(en)
3
2 |,

the convergence order becomes 5.5. ¤
Remark 3.3. If the solution of nonlinear equation is unknown, scheme which we use to
find δn is the same as Amat and Basquier proposed in [1] . This scheme is

δ0 = O(10−k) ≤ O(e0)
3
2

δn = O(δ2n

0 ),
where k is an integer such that

O(10−k) ≤ |f(α)− f(x0)| = |f(x0)| ≤ O(|α− x0|).

4. NUMERICAL RESULTS

Here, three numerical examples are presented to show the efficiency of methods ob-
tained in previous sections. We compare these methods with existing Potra and Pták (PP)
method ( 1. 12 ), Weerakoon and Fernando (WF) method [19], McDougall and Wother-
spoon(MW) method ( 1. 8 )-( 1. 11 ) and Newton’s method. To perform the numerical
calculation, we use Matlab Software and stopping criteria|xn+1 − xn| < (10)−12 or
|f(xn+1| < (10)−14.

Example 4.1. We apply methods ( 2. 14 )-( 2. 17 ) and ( 3. 28 )-( 3. 29 ) on the nonlinear
equation

3x + sin x− ex = 0. (4. 35)

To determine appropriate initial approximation of root, let us draw the graph.

FIGURE 1. Graph off(x) = 3x + sin x− ex.

Figure 1 shows that the equation (4.1) has a simple roots in(1, 2) and another simple root
in (0, 1). Taking initial guessx0 = 3, Table 1 displays the iterations of existing Potra and
Pt́ak method ( 1. 12 ), Weerakoon and Fernando method [19], McDougall and Wotherspoon
method ( 1. 8 )-( 1. 11 ), and our methods ( 2. 14 )-( 2. 15 ) and ( 3. 28 )-( 3. 29 ).
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Example 4.2. Again, we apply methods ( 2. 14 )-( 2. 17 ) and ( 3. 28 )-( 3. 29 ) on
equation

f(x) = x3 + 2x2 − 3x− 1 = 0. (4. 36)

From the Intermediate Value Theorem (also known as Bolzano’s theorem) [2], one of the
root of this equation lies in(0, 2) sincef(0)f(2) < 0. Taking initial guessx0 = 2, Table 2
displays the iterations of some existing methods and our methods.

Example 4.3. Finally, we apply methods ( 3. 28 )-( 3. 29 ) and ( 3. 31 ) on the nonlinear
equation

(x− 2)23 − 1 = 0 (4. 37)

By inspection of above equation, it is clear thatx = 3 is the root of this equation. Taking
initi guessx0 = 4. Table 3 displays the iterations of Potra and Pták method ( 1. 12 ), and
our methods ( 3. 28 )-( 3. 29 ) and ( 3. 31 ). Also Table 3 demonstrates that the convergence
rate can be improved by choosing the suitable value ofδn.
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TABLE 1. Comparison of distinct methods.

Method n xn |xn − xn−1| |f(xn)|

1 2.3945174904173790.6054825095826213.099858826809431
2 1.9937513422674860.4007661481498930.449894328099718

MW 3 1.8941360656045740.0996152766629120.016215768321299
method 4 1.8900317573848650.0041043082197090.000007977482077

5 1.8900297292520030.0000020281328630.000000000000068
6 1.8900297292519850.0000000000000170.000000000000000
1 2.2230227167475210.7769772832524791.771401528396967
2 1.9184299984890680.3045927182584530.114786469963655

PP 3 1.8900683711184270.0283616273706410.000151999733143
method 4 1.8900297292520920.0000386418663350.000000000000419

5 1.8900297292519850.0000000000001070.000000000000000
WF 1 2.1824017981561150.8175982018438851.501646202703620
method 2 1.9052171198726990.2771846782834150.060614766751669

3 1.8900333240877350.0151837957849640.000014139991158
4 1.8900297292519850.0000035948357500.000000000000000

Present 1 2.2230227167475210.7769772832524791.771401528396967
method 2 1.9032545782173900.3197681385301310.052683015289491
( 2. 14 ) 3 1.8900300069893840.0132245712280060.000001092453759
-( 2. 17 ) 4 1.8900297292519850.0000002777373990.000000000000000
Present 1 2.0729805889348830.9270194110651180.853003949652775
method 2 1.8910665390314070.1819140499034750.004082261437855
( 3. 28 ) 3 1.8900297292540350.0010368097773720.000000000008063
-( 3. 29 ) 4 1.8900297292519850.0000000000020500.000000000000000
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TABLE 2. Comparison of distinct methods.

Method n xn |xn − xn−1| |f(xn)|

1 1.4705882352941180.5294117647058822.093832688784858
2 1.2268899096045650.2436983256895520.176634866528456

MW 3 1.1988831623890740.0280067472154920.001171937455065
method 4 1.1986912445885570.0001919178005170.000000006548349

5 1.1986912435159970.0000000010725600.000000000000000
1 1.3474216065420670.6525783934579331.035129693410847

PP 2 1.2021678696925650.1452537368495020.021293690797169
method 3 1.1986913132721150.0034765564204500.000000425885336

4 1.1986912435159970.0000000697561180.000000000000001
1 1.3174124130691510.6825875869308490.805382355879769

WF 2 1.1998827166020410.1175296964671100.007282302633090
method 3 1.1986912450713380.0011914715307030.000000009495896

4 1.1986912435159970.0000000015553410.000000000000000
Present 1 1.3474216065420670.6525783934579331.035129693410847
method 2 1.1996731667057350.1477484398363320.006000378396200
( 2. 14 ) 3 1.1986912435367190.0009819231690160.000000000126513
-( 2. 17 ) 4 1.1986912435159970.0000000000207220.000000000000000
Present 1 1.2626112773910920.7373887226089080.413379428130185
method 2 1.1987110913708710.0639001860202210.000121180247031
( 3. 28 ) 3 1.1986912435159970.0000198478548740.000000000000000
-( 3. 29 )
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FIGURE 2. Graphs of the errors of different methods up to four iterations
using Table 1.

FIGURE 3. Graphs of the errors of different methods up to three itera-
tions using Table 2.

5. CONCLUSION

From the observation of above comparison tables and graphs of different numerical
methods, we conclude that our newly introduced methods modified from Potra and Pták
method using different techniques can easily compete with McDougall and Wotherspoon
method, Potra and Pták method ( 1. 12 ), and Weerakoon and Fernando method [19]. In
each iteration, we need to calculate one more function in methods ( 2. 14 )-( 2. 17 ) and (
3. 28 )-( 3. 29 ), and two more functions in method ( 3. 31 ) than Potra and Pták method.
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TABLE 3. Comparison of distinct methods.

n PP method Present method Present method Present method
( 3. 28 )-( 3. 29 ) ( 3. 31 ) ( 3. 31 )

δn = (3− xn)3/2 δn = (3− xn)2

1 3.8817622817570053.8431431043086423.8146582650963243.729238036112728
2 3.7705146910128683.6985884072513813.6450899021394953.526770236835179
3 3.6658441133563113.5653718378853753.4847390021212673.361258490695884
4 3.5673622353410043.4426088172387543.3380269310429943.220194565600152
5 3.4747051450721793.3295075422517463.2051176227096913.099435117528323
6 3.3875359656881133.2254791383935793.0885172601889583.014759658594771
7 3.3055588232349003.1308190066606313.0103521686132093.000003318880189
8 3.2285757443774713.0504352044232973.000000483378891
9 3.1567050264887153.0048926737184953.000000000000000

10 3.0911804900166223.000001327332550
11 3.0368569482052853.000000000000000
12 3.005553045154960
13 3.000036207524484
14 3.000000000011477
15 3.000000000000000

Nevertheless, this cost is nominal in the comparison of order of convergence of the methods
introduced in this paper.
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