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Abstract.:This article concerns existence of oscillatory solutions of the
conformable fractional equations with damping of the form

(
`
(
y(α)

)γ)(β)

(s) + g
(
s, xγ

µ (s)
)

= 0, for all s ∈ J0,

wherey(α) denotes conformable fractional,y (s) = x (s) + h (s) xξ (x) ,

xµ = x ◦ µ, xξ = x ◦ ξ, γ :=
2k + 1
2m + 1

, with k,m ∈ N, J0 = [0,∞) and

α, β ∈ (0, 1].

AMS (MOS) Subject Classification Codes: 34K11; 39A10; 39A99; 34C10; 39A11.
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1. INTRODUCTION

Consider the conformable fractional equations with damping of the form
(
`
(
y(α)

)γ)(β)

(s) + g
(
s, xγ

µ (s)
)

= 0, for all s ∈ J0, (1. 1)

wherey(α) denotes conformable fractional defined in [20],y (s) := x (s) + h (s)xξ (s) ,

xµ = x ◦ µ, γ :=
2k + 1
2m + 1

, with k, m ∈ N, J0 = [0,∞) andα, β ∈ (0, 1]. Equation(1.1)

will be studied under the following assumptions:
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(C1) g : J0×R→ R, such thatg ∈ C (J0 × R,R) , xg (s, x) > 0, for all (s, x) ∈ J0×R
and there isc ∈ C (J0, J0), such that

g (s, x)
x

≥ c (s) for all (s, x) ∈ J0 × R\ {0} .

(C2) `, h, ξ, µ ∈ C (J0, J0) , such asµ andξ tends to+∞, for s large enough, and

ξ (s) ≤ s ≤ µ (s) for all s ∈ J0.

The solution of equation(1.1) we mean a nontrivial real-valued function
y ∈ Cα ([Ty, +∞) ,R) and`

(
y(α)

)γ ∈ Cβ ([Ty, +∞) ,R), Ty > 0, which satisfies(1.1)
on [Ty, +∞).

The theory of the conformable fractional derivative was introduced by Khalil et al. [20]
to generalize the differentiation operator in order to obtain the local fractional derivativeα,
such asα /∈ N. Some articles are very interesting on the topics of fractional derivatives
compliant see [7, 23] and the references therein.

In recent years, many research activities have been conducted on the oscillation of dif-
ferential equations, including the theory of the oscillation of differential equations are ap-
plied to the study of oscillation phenomena in the fields of technology, natural sciences
and social sciences. For example, in medicine (cardiac sinusoidal rhythm), electricity (free
oscillations of anLC2 circuit), physics (the theory of fluid dynamics in astrophysics) and
in chemistry (oscillating reactions-chemical waves), etc. In recent years, many research ac-
tivities have been conducted on the oscillation of solutions of various dynamic equations.

2. PRELIMINARIES

In the first part of the preliminary, we present the definition and properties of theα-
differentiable andα integral in the conformal sense, puls to see [20].
We denote

Js0 := [s0,∞) for all s0 ∈ [0,∞) .

Definition 2.1. [20] Letu : J0→ R andα ∈ (0, 1] , We defineTα (u) (s) to be the number,
provided it exists, such that

Tα (u) (s) := lim
ε→0

u
(
s + εs1−α

)− u (s)
ε

for all s ∈ J0.

Often, we writeu(α) instead ofTα (u) to designate theconformable fractional derivative
of u of orderα.
In addition, ifu(α) exists, then we simply say thatu is α-differentiable.
If u is α-differentiable in somes ∈ (0, a), a > 0, and lim

s→0+
Tα (u) (s) exists, then we define

u(α) (0) = lim
s→0+

Tα (u) (s) .

Let u : J0→ R andα ∈ (0, 1]. Theconformable fractional integral of u of orderα
from a tos, denoted byIα

a (u) (s), is defined by

Iα
a (u) (s) :=

∫ s

a

u (τ)
τ1−α

dτ =
∫ s

a

u (τ) dατ,

where the above integral is the usual improper Riemann integral.
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Theorem 2.2. [20] Letα ∈ (0, 1] and assumeu, v to beα-differentiable. Then,

(1) Tα (au + bv) = aTα (u) + bTα (v) for all a, b ∈ R,
(2) Tα (uv) = uTα (v) + Tα (u) v,

(3) Tα

(u

v

)
=

1
v2

(Tα (u) v − uTα (v)) .

If, in addition,u is differentiable at a points > 0, thenTα (u) = s1−αu
′
(s) .

Remark 2.3. By Theorem 2.2 it follows that ifu ∈ C1 (Ja,R), then one has

lim
α→1

Tα (u) (s) = u
′
(s) , for all s ∈ Ja.

Theorem 2.4. If u is a continuous function in the domain ofIα
a , then

Tα (Iα
a u (s)) = u (s) , for all s ≥ a.

3. AUXILIARY RESULT

Before stating the main results, the following definition and lemma are used.

Definition 3.1. Let u : J0 → R, we say thatu is non-oscillating onJ0, If one of the
conditions is true

i) x (s) > 0, for s large enough.
ii) x (s) < 0, for s large enough.

Otherwise it is oscillating.

Let α ∈ (0, 1], for simplification, we note

Cα (J0,R) :=
{

u : J0 → R : u is α-differentiable andu(α) ∈ C (J0,R)
}

.

We put

E (J0,R) := {x : J0 → R, such asx (s) > 0, for s large enough} .

Lemma 3.2. [31] Let u ∈ Cα (J0,R), such thatu(α) (s) ≥ 0, for all s ∈ J0, thenu is
increasing onJ0.

Lemma 3.3. If x is a solution of(1.1), such asx ∈ E (J0,R). Then there are the following
two cases, fors ∈ Js∗ , wheres∗ ≥ 0 sufficiently large

(1)
(
`
(
y(α)

)γ
)(β)

(s) ≤ 0, y(α) (s) ≥ 0,

(2)
(
`
(
y(α)

)γ
)(β)

(s) ≤ 0, y(α) (s) ≤ 0.

Proof. If x ∈ E (J0,R), then it existss∗ ∈ J0, such asxµ (s) > 0, for all s ≥ s∗. From
(1.1) and(C1), we have

(
`
(
y(α)

)γ)(β)

(s) ≤ −c (s)xγ
µ (s) < 0 for all s ∈ Js∗ .

According to the Lemma 3.2, deduce that the functiony(α) is constant sign eventually.¤
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4. OSCILLATION RESULTS

In this section, we use the preceding hypotnosed and some sufficient conditions to find
that each solution of equation(1.1) is oscillating.

Theorem 4.1. Assume that there exist functions%, κ ∈ Cβ (J0, J0), such as,s∗ large
enough,

lim
s→∞

Iβ
s∗Ψ(s) = ∞ and lim

s→∞
Iβ
s∗Φ(s) = ∞. (4. 2)

where

Ψ(s) := % (s) {1− hµ (s)}γ −
sγ(β−α)` (s)

[
%
(β)
+ (s)

]1+γ

(γ + 1)γ+1
%γ (s)

,

Φ(s) := κ (s) ψ (s) + η (s)− [ϕ (s)]γ+1 ` (s)κ (s)
s(β−α)γ

− γ
`
−1
γ (s)

Γγ+1
α (s)

,

ψ (s) := c (s)
[
1− h (µ (s))

Γα (ξµ (s))
Γα (µ (s))

]
Γα (µ (s))

Γα (s)
,

ϕ (s) :=
sα−β

`
1
γ (s)κ

1
γ (s) Γα (s)

+
κ(β) (s)

(γ + 1) κ (s)
,

η (s) :=
sα−β

`
1
γ (s) κ

1
γ (s) Γγ+1

α (s)
, Γα (s) := lim

t→∞
Iα
s (`−

1
γ ) (t) .

So each solutionx of equation(1.1) is oscillating.

Proof. Suppose instead thatx is a solution of(1.1), such asx ∈ E (J0,R).
So there iss∗ ∈ J0, such as

x (s) > 0, xξ (s) > 0 and xµ (s) > 0, for all s ∈ Js∗ .

Suppose first thaty satisfies(1) of lemma 3.3.
Let

Θ(s) := % (s)
` (s)

(
y(α)

)γ
(s)

yγ (s)
, for all s ∈ Js∗ .

ThenΘ ∈ C (Js∗ , J0). From Theorem 2.2, we have

Θ(β) (s) =
%(β) (s)
% (s)

Θ (s) + % (s)

(
`
(
y(α)

)γ
)(β)

(s)

yγ (s)
− % (s)

` (s)
(
y(α) (s)

)γ
(yγ)(β) (s)

y2γ (s)

≤ %(β) (s)
% (s)

Θ (s)− % (s) c (s)
xγ (µ (s))

yγ (s)
− γ% (s)

` (s)
(
y(α) (s)

)γ
y(β) (s)

yγ+1 (s)
.
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From Theorem 2.4, we have

Iα
a

(
sβ−αy(β) (s)

)
=

∫ s

a

τβ−α y(β) (τ)
τ1−α

dτ

=
∫ s

a

y(β) (τ)
τ1−β

dτ

= Iβ
a

(
y(β) (s)

)

= y (s) ,

then, we get

y(α) (s) =
{

Iα
a

(
sβ−αy(β) (s)

)}(α)

= sβ−αy(β) (s) . (4. 3)

Therefore, ify(a) ∈ C (Js∗ , J0), by Lemma 3.2, we havey is a increasing function onJs∗ .
As ξ (s) ≥ s, we obtain

x (s) = y (s)− h (s)xξ (s)
≥ y (s)− h (s) yξ (s)
≥ (1− h (s)) y (s) .

Thus,

Θ(β) (s) ≤ %(β) (s)
% (s)

Θ (s)− % (s) [1− hµ (s)]γ − γsα−β

`
1
γ (s) %

1
γ (s)

Θ1+ 1
γ (s) .

Using inequality [5]

Ax−Bx1+ 1
α ≤ αα

(1 + α)1+α

A1+α

Bα
for all x,A, B, α > 0. (4. 4)

Then

Θ(β) (s) = −% (s) [1− hµ (s)]γ +
sγ(β−α)` (s)

[
%
(β)
+ (s)

]1+γ

(γ + 1)γ+1
%γ (s)

= −Ψ (s) .

Then, we obtain

Iβ
s∗Ψ(s) ≤ −Iβ

s∗Θ
(β) (s) ≤ −Θ(s) + Θ (s∗)

≤ Θ(s∗) ,

which contradicts with(4.2).
Secondly suppose thaty satisfies(2) of lemma 3.3.
By (1.1), then the functioǹ

(
y(α)

)γ
is decreasing onJs∗ , therefore, for anyτ ≥ s ≥ s∗,

we have

y(a) (τ) ≤
{

` (s)
` (τ)

} 1
γ

y(a) (s) ,



78 F. Z. Ladrani and A. Benaissa Cherif

from Theorem 2.4, we have

y (s) ≥ −{` (s)} 1
γ y(a) (s)

∫ ∞

s

{
1

` (τ)

} 1
γ

dατ

= −{` (s)} 1
γ Γα (s) y(a) (s) , (4. 5)

by Theorem 2.2, we get

Γ(a)
α (s) = s1−αΓ

′
α (s) = −

{
1

` (s)

} 1
γ

, (4. 6)

then (
y (s)

Γα (s)

)(α)

=
y(a) (s) Γα (s)− y (s) Γ(α)

α (s)
Γ2

α (s)
> 0.

So the function
y

Γα
is decreasing onJs∗ , then

x (s) ≥ y (s)− h (s) yξ (s)

≥
[
1− h (s)

Γα (ξ (s))
Γα (s)

]
y (s) . (4. 7)

We havethe functiony is decreasing onJs∗ . As µ (s) ≤ s, we obtain

x (µ (s)) ≥
[
1− h (µ (s))

Γα (ξ (µ (s)))
Γα (µ (s))

]
y (µ (s))

≥
[
1− h (µ (s))

Γα (ξ (µ (s)))
Γα (µ (s))

]
y (s) . (4. 8)

We pose

V (s) := κ (s)
[
` (s) (yα)γ (s)

yγ (s)
+

1
Γγ

α (s)

]
for all s ∈ Js∗ ,

by (4.5) , thenV (s) > 0, for all s ∈ Js∗ . Applying Theorem 2.4, we find the following
relationship

V(β) (s) =
κ(β) (s)
κ (s)

V (s) + κ (s)
[
` (s) (yα)γ (s)

yγ (s)
+

1
Γγ

α (s)

](β)

≤ κ(β) (s)
κ (s)

V (s)− κ (s) c (s)
xγ

µ (s)
yγ (s)

−γκ (s)
` (s) (yα)γ (s) y(β) (s)

yγ+1 (s)
− (Γγ

α (s))(β)

Γ2γ
α (s)

.

In view (4.3) and(4.8), we find

V(β) (s) ≤ κ(β) (s)
κ (s)

V (s)− κ (s) c (s)
xγ

µ (s)
yγ (s)

− γsα−β

`
1
γ (s)κ

1
γ (s)

[
V (s)− 1

Γγ
α (s)

]1+ 1
γ

+ γ

{
1

` (s)

} 1
γ 1

Γγ+1
α (s)

.
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Using inequality [25],

(A−B)1+
1
γ ≥ A1+ 1

γ − B
1
γ

γ
[(γ + 1) A−B] AB ≥ 0.

If we choose

As := V (s) and Bs :=
1

Γγ
α (s)

.

We obtain the following inequality,

V(β) (s) ≤ −κ (s) c (s)
xγ

µ (s)
yγ (s)

+

[
(γ + 1) sα−β

`
1
γ (s)κ

1
γ (s) Γα (s)

+
κ(β) (s)
κ (s)

]
V (s)

− γsα−β

`
1
γ (s)κ

1
γ (s)

V1+ 1
γ (s) + γ

`
−1
γ (s)

Γγ+1
α (s)

− sα−β

`
1
γ (s)κ

1
γ (s) Γγ+1

α (s)
.

By (4.7) and(4.7), we obtain

V(β) (s) ≤ −κ (s) ψ (s) + γ
`
−1
γ (s)

Γγ+1
α (s)

− η (s)

+

[
(γ + 1) sα−β

`
1
γ (s) κ

1
γ (s) Γα (s)

+
κ(β) (s)
κ (s)

]
V (s)− γsα−β

`
1
γ (s)κ

1
γ (s)

V1+ 1
γ (s) .

Using inequality(4.4), we get

V(β) (s) ≤ −κ (s)ψ (s)− η (s) + ϕγ+1 (s)
` (s)κ (s)
s(α−β)γ

+ γ
`
−1
γ (s)

Γγ+1
α (s)

= −Φ (s) .

Then, we obtain
Iβ
s∗Φ(s) ≤ −Iβ

s∗V(β) (s) ≤ V (s∗) .

which contradicts with(4.2). ¤

Theorem 4.2. Assume that there a function% ∈ Cβ (J0, J0) such as

lim
s→∞

Iβ
s∗Ψ(s) = +∞ and lim

s→∞
Iα
s∗

(
`−

1
γ (s)

)
= +∞. (4. 9)

So each solutionx of equation(1.1) is oscillating.

Proof. Suppose instead thatx solution to an equation(1.1), such asx ∈ E (J0,R).
So there iss∗ ≥ 0, such as

x (s) > 0, xξ (s) > 0 and xµ (s) > 0 for all s ∈ Js∗ .

By Equ (1.1), we deduce that functioǹ
(
y(α)

)
is decreasing onJs∗ , and from it we find

that functioǹ
(
y(α)

)γ ∈ C (Js∗ , J0). If not, it means there iss ∈ Js∗ such as

` (s)
(
y(α)

)γ

(s) ≤ −σ for all s ∈ Js,

whereσ > 0. Then, we obtain

Iα
s

(
y(α) (s)

)
≤ −σIα

s

(
`
−1
γ (s)

)
for all s ∈ Js,
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Thus the following inequality can be concluded

y (s) ≤ y (s)− σIα
s

(
`
−1
γ (s)

)
for all s ∈ Js,

this givesy (s) tends to−∞, for s large enough, which gives the contradiction withx (s) >
0, for s large enough.
We have found ors ∈ Js∗ , wheres∗ ≥ 0 sufficiently large

y(α) (s) ≥ 0, for s ∈ Js∗ .

We conclude that there is one case, this case(1) of lemma 3.3. The proof is the same as
that of Case(1) in Theorem 4.1, and so is omitted. This completes the proof. ¤

5. EXAMPLES

In the following, we illustrate possible applications with two example

Example 5.1. Consider the differential equation following
[(

x (s) +
1
2
x s

2
(s)

)( 1
2 )

(s)

]( 1
4 )

+ s−3x2s (s) = 0 for all s ∈ J0, (5. 10)

here,α =
1
2
, β =

1
4
, γ = 1, ξ (s) =

s

2
, µ (s) = 2s and` (s) = 1, h (s) =

1
2

.

Thenc (s) =
1
s3

and we have

Iα
s∗

(
`−

1
γ (s)

)
= I

1
2
s∗ (1) =

∫ s

s∗
s−1/2ds '

√
s

2
, for s large enough.

Set% (s) := s, we get%( 1
4 ) (s) = s

3
4 and

Ψ(s) =
1
4

(
2s− s

1
4

)
, for all s ∈ J0.

Then

Iβ
s∗Ψ(s) ' s

5
4

10
, for s large enough,

Thus,(4.9) hold. By Theorem 4.2, equation(5.10) is oscillatory.

Example 5.2. Consider a second-order half-linear delay dynamic equation
[
x (s) + λx

(
s
2

)]′′
+ s2x (2s) = 0 for all s ∈ J0, (5. 11)

here,α = β = γ = 1, ξ (s) =
s

2
, µ (s) = 2s, ` (s) = 1, andh (s) = λ ∈ (0, 1).

Thenc (s) = s2 and we have

Iα
s∗

(
`−

1
γ (s)

)
= I1

s∗ (1) = (s− s∗) ' s

2
, for s large enough.

Set% (s) := 1, we get
Ψ(s) = 1− λ, for all s ∈ J0.

Then
I1
0Ψ(s) = Iβ

0 Ψ(s) = (1− λ) s, for all s ∈ J0.
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Thus,(4.9) hold. By Theorem 4.2, equation(5.11) is oscillatory.

6. CONCLUSION

In the manuscript, we have studied the oscillations of the solutions of the conformable
fractional equations with damping, it’s a generalization of the equation of the form

(`(y
(1)

)γ)
(1)

(s) + g
(
s, xγ

µ (s)
)

= 0 for all s ∈ J0,

as particular case, forα = β = 1.
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