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Abstract. In this article some new fixed point and hybrid coincidence
point theorems for multivalued mappings satisfying generalized contrac-
tive conditions have been proved in generalized metric spaces. Some non-
trivial examples are given to support our main theorems. As application,
a differential inclusion problem for heat conduction in metals has been
given, using our main result, we prove the existence of solutions to the
given differential inclusion problem.
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1. INTRODUCTION

The most excited results in the existence theory of linear and non-linear operators is
systematically proved in 1922 by Banach. A systematic iterative procedure has been de-
veloped to prove the existence of a unique fixed point a self mapping in the settings of
complete metric spaces. This result has attracted a huge number of researchers in finding
out the solutions of many linear and non-linear physical problems. In theoretical aspect,
it has great impact on the existence theory of partial and ordinary differential equations.
Banach contraction principle has been generalized in various sense, like generalizing map-
pings, spaces, contractive conditions and combinations of any of these.

Generalizing the metric structure is also very important, and many generalizations have
been presented in the literature. Some of the most commorR-anetric spaceD-metric
spacep-metric space, fuzzy metric space, partial metric space, and many others including
cone metric space [6, 9, 10, 14, 15, 16, 17, 20, 23, 41, 42, 45, 46, 49, 50]. Some of the flaws
have been recovered by Mustafa and Sims [27, 28], and a new metric was defined known as
G-metric space. Many fixed point results for single and multi-valued mappings have been
proved in the settings af-metric space [5, 12, 13, 19, 26, 29, 30, 31, 32, 33, 36, 38, 51].
Existence results in the theory of ordinary and partial differential equations are also proved
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using the results aff-metric space, for details, see [2, 3, 4, 7, 8, 11, 21, 22, 24, 25, 34, 35,
37].

In [18], it has been shown that many fixed point result&fimetric space are just the
consequence of some classical fixed point results in standard metric space. Recently in
[12], author proves some innovative fixed point resultgzimetric spaces. Inspired by
the results of [12], we initiated the study for finding fixed points of multi-valued mappings
in the settings of complet&-metric spaces [38]. In the following we prove some hybrid
coincidence points results in same settings. Examples are furnished to validate the results.
As an application we consider the following differential inclusion problem for conduction
in the metals with a closed and bounded set of source functions given as follows:

O (1) Ou(at)

02 ot
with pu(2,0) = 7(3¢), — o0 < 3 < 00,

€ F(5e,t, 1), fOr —oo < <o0, 0<t<J,

The result that describes the conditions for the existence of the solution the above differen-
tial inclusion has been proved. We remark that our fixed point results are not consequences
of classical results as mentioned in [18].

2. PRELIMINARIES

In this section we recall some basic concepts, definitions and results mostly from [19,
28], which will be useful in the proofs of our main results.

Definition 2.1. LetWW be a non-empty set, areal valued funct@n W x W x W — Rt
satisfying the following properties,

(1) G, v,w) =0iff p = v = w,

(2) 0 < G(p, p,v), Vdistincty,v € W,

(3) G(v,v,w) < G(p,v,w) forall p,v,w € W withv # w,

(4) G, v,w) = G(u, w,v) = G(v,w, u) = -- -, i.e., preserves symmetry,

(5) G(u,v,w) < G(p,a,a) + G(a,v,w) ¥ p,v,w,a € W,

is called a generalized metric, or, more specificallgzanetric onW, and the pair(IV, G)
is called aG-metric space. A7-metric is said to be symmetric@ (¢, v,v) = G(v, », »)
forall »,~v,¢ € W.

Definition 2.2. Let (W, G) be aG-metric space, a sequender,} in 1V is said to be a
G-convergent sequence if, for any> 0, there exist anr € W and Ny € N such that
G(s, 5, 34) < g, forall p,q > Ny, and aG-Cauchy sequence if, for any> 0, there
existsNy € N such thatG(s,, »,, ) < ¢, for all p, ¢, > Ny. The generalized metric
space(W, G) is called complete if evergf-Cauchy sequence (s-convergent.

The HausdorfiG-distance on closed and bounded subset§’ddenoted byC'B (W))
is listed as;

HY(H,K,S) = max{sup G(», K, S), sup G(s,S, H), sup G(>, H, K)}
»weH »eK »€ES
where
G(%7Ka S) = dG(%7 K) + dG(Ka S) + dG(%a S)

da (¢, K) = inf{dg(5,7) : v € K}



Application of Fixed Points in Differential Inclusions of Heat Conduction 95

da(K,S) =inf{dg(a,b):a € K,b € S}.
Recall that
G(5,7,5) = inf{G(5,7,¢) : s € S}.

A point s € W is called a fixed point of : W — 2W if sz € F ».
Remark 2.3. LetW be aG-metric spaceyr €¢ W and K C W. For eachy € K,
G, K,K) < 6G(5,7,7).

3. MAIN RESULTS

This section is divided into two subsections. In the first subsection, we initiate some
new fixed point results for multivalued operators with contractive conditions of rational and
non-rational types. The second subsection contains some new coincidence point results for
hybrid mappings, satisfying new generalized contractive conditions.

3.1. Fixed Point Results. We present our first main results for finding fixed point of a
multivalued mapping with rational type of contractive conditions.

Theorem 3.2. Let W be aG-completeG-metric space and/ be a mapping froniV to
CB(W). If J satisfies the following condition:

G(Js,7,5) + G(32, 3, )
6G (5, 7,¢) +1
forall s¢,v,¢ € W,a,b € (0,1),a + 6b < 1, then,

(a) J has at least one fixed poigte W,
(b) for any > € W, the sequencéJ?s<} G-converges to a fixed point df

HE (e, I, J6) < a ( ) G54,7,<) + G (7,07, 7).

Proof. Let s, be arbitrary and formulate the sequerieg,} such thatz,,, € J,. For
the triplet(s¢,, s¢p41, 26p41) , We set
dyp = G (55, 7p11, 7p11) -
Now consider
0 < d1:G(%l,%Q,}fg)SHG(J%O,le,J%1)+a

G(Jx0, 50, 0) + G, 0, Jx0)
< 6G(%07J{17%1)+1 G(%07%17%1)
+bG(%17J%17J%1) +a

<

IN

a G (521, 501, 301) + 6G (3¢9, 521, 5¢1)
6G (51, 51, 201) + 1

a 6dy do + a
1-6b) \6do+1)°" " \1-60)"

) G (300, 701, 221) + 60G (5¢1, 52, 300) + a
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Similarly
a2
0 < dy =G (309,503,3¢) < HY(J3e1, J 320, J523) + 1—6b
G(J%l,%g,%g) +G(%17J%1,J%1)
G
- < 6G(%1,%2,%2) +1 (%17%27%2)
2
a
b
+ G(%Q,J%Q,J%Q) + 1 —6b
G (59, 59, 309) + 6G (5¢1, 522, 519)
< G
- @ < 60(%1,%2,%2) + 1 (%1,%2’ %2)
a?
+6bG (%2,%3, %3) -+ 1— 6b
a 6dy a 2
= d -
(16b> (6d1 +1) L (16b)
2 2
S a 6d1 6d0 do + a 6d1
1—-6b 6d; + 1 6dp + 1 1—6b 6d; + 1
a 2
\iZe)
: a 6d
Assuming/ = %, pp = %ﬁ we get
dy < lPOdO +la
dg S lp1d1+l2
< Ppipodo + 1Ppy + 12,
d3 S lp2d2 +ld
< Ppapipodo + Ppapr + Ppa + 17,
dy < Ppp_i..p1podo+Ppp_1..01+Ppp_1..p2+ ...

+lppp,1pp,2 + lppp,1 =+ lp.
Sincea + 6b < 1, sol < 1 andl? — 0 asp — oo, SO we have

lim d, = 0.

p— 00
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For any two natural numbegsandp, with ¢ > p, and by using triangular inequality we
have

G (3p, 509, 529) < G (5, 55p41, 50p11) + G (56541, 5%, 744)
< G (g 2p41, 55p41) + o+ G (3541, 55, %)
q—p—1
<Y G ity i)

o

J=(

qg—p—1

bS]

- dp+j,

<
Il
o

which givesG (¢, »,4, 2¢,) — 0 asq,p — oo. Thatis,{s¢,} is aG-Cauchy sequence. So
G-completeness ensures the existence of somell” such thate, — w.
Using definition ofH“, consider

G (p11, Jw, Jw) < HOE (s, Jw, Jw)
G(Jsp,w,w) + G(5¢p, J 52y, J32p)
( 6G (5, w,w) +1
+bG (w, Jw, Jw) .

<

) G

Taking limit on the both sides of above inequality, we get
(1-0)G(w,Jw,Jw) <0.

Since0 < b < 1, thereforeG (w, Jw, Jw) = 0, that isw € Jw. This proves the result. (]

Example 3.3. LetW = {0,1,2}. Define a mapping : W — CB(W) by J0 = {0} =
J1,J2 = {1}. Define aG-metric onWV by

G(s,7,6) = 1000, # v #,
G(0,1,1) = 0.008,G(0,0,1) = 0.01,
G(5,5,2) = 0,G(5,7,5) =600, otherwise

Then fora = 35,b = 155, all requirements of Theorem 1 are fulfilled afds the fixed

point of mapping/.

In the next result, we use an other new contractive condition to find fixed point of a

multivalued mapping.
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Theorem 3.4. Let (W, G) be aG-completeG-metric space wherd is a mapping fromi?/
to CB(W). If J satisfies the following condition:

HE(J, Jy,Js) < a1G(s,7,¢) +as | Gy, Jv, Jy)+

G(s,Js, Jg)

G(st, Jse, J30)+ ]

G(J,7,9)+
G (s, Jv,5)+
G(,7,J<)

G(J,7,5),
. 14+ G(s, I, I
+a4mln{ Gy, J7v, Jv), } [ 1+(G(% S )]

G(s,Js, Jg)

G(J,7,5)

+a Bl St M ALY
° 1+ G(5,7,5)

tas { 14 G (s, Jy, )+ } G(J,7,5)
G(,7,J9) 1+ G(5,7,5)
o { 1+ G (3¢, Joe,¢)+ } G(5,7:9)
G(J5,7,5) 1+ G(s,7,9)
+a7G(v, Jv, J<)

for all s¢,v,¢ € W wherea;,i = 1,--- , 7, are nonnegative scalars such that
a = a1 +6ax+ag <1,
8 = kas+lay <1,k leN
at+fB < 1,

then,J has a fixed point i/

Proof. Let s be arbitrary and formulate the sequeriee,} such thats,; € Js,. For
the triplet(s¢,, s¢p41, 26p41) , We set

dp =G (%Pv Xp+1, J";D-i-l) .
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Now consider

0 < di= G(%h%g,%g) < HG(J%O,J%17J%1) +
G(%O,J%O7J%O)+
G(%l,J%1,J%1)—|—G(%1,J%1,J%1)
G(J%()v%la%l)"_
G(%(),J%l,%l)+
G(%Q,%l,J%l)

G(J%Oa M1, %1)7
+a4min{ G(%h‘]%hj%l), [1+G(%0,J%0,J%0)]

< alG(%o,%l,%1)+a2 |:

G(J%O, i, %1)

“+a
° 1+ G(0,7,9)

G(%].M]%l,a]%l) 1+G(%07%17%1)

tay | LTG0 T )t | GU0, 21, 21)
g G50, 201, J 521) 14+ G(290,7,59)
ta 1+ G(520, J 50, 301)+ G(520, 301, 511)
6 G(J%O,%l,%l) 1 +G(%o,%1,%1)
+a7G(se1, Iy, J01) +
which gives
dy < apdy + a2[6d0 + 12d1} + agdp + ar [Gdl] + «
that is
o o
<(— — .
ws(125) a0+ (125)
Similarly

0 < dy = G (500, 563, 53) < HE (J 321, Js2g, J523) + a,

which implies

da

IN
N
—
e
=
N———
RS
+
N\
—_
e
»
N———

= <1f6>2d0+(1fﬁ>2+<1fﬁ>'

Continuing this way we get

@] p 0] b (@) 2 (0]
d”§<1ﬂ) d°+(1ﬂ> +'"+<15) +(1ﬂ>'

Sincea+ 3 < 1, so( e ) < 1, and lettingp — oo, we get

1-p
lim d, =0.

p—0o0

Applying the same steps as in the Theorem 1, it can be showr thatis a G-Cauchy
sequence. Thé&-completeness ensures the existence of soraglV’ such thate, — w.
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Using definition ofH we consider,

G (#pr1, Jw, Jw) < HO (s, Jw, Jw)

< a1G(3p,w,w) + ag Gw, Jw, Jw)+

Gw, Jw, Jw)

G(%Pv J 3, J%p)JF ]

G(J3p,w,w)+
G (5, Jw,w)+
G(5p,w, Jw)

G(J%p, w, u_))’
G(w, Jw, Jw) Hp, W, W

o [ 14+ G(5t, Jw,w)+ ] G(Jxp,w,w)

° G (5, w, Jw) 14+ G, w,w)

G (5, w,w)
1+G(%P7w7w)

G(Jsp,w,w)

s 14+ G(op,w,w)

+ag[l + G (s, Jotp, w) + G(J 32, w, w)]
+a7G(w, Jw, Jw).
Applying limit p — oo, we have
G(w, Jw, Jw) < 3a2G(w, Jw, Jw) + a7G(w, Jw, Jw),
that is
(1 —3as —a7) G(w, Jw, Jw) < 0.

As 3as + a7 < 1 andG(w, Jw, Jw) = 0 which impliesw € Jw. This proves the theorem.

O
Example 3.5. LetW = {0,1,2}. Define a mapping : W — CB(W) by J0 = {0} =
J1,J2 = {1}. Define aG-metric onV by
G(%a Vs <) = 1000, » 7é 0 7& Sy
G(0,1,1) = 0.008,G (0,0,1) = 0.01,
G(s,2,2) = 0,G(5,7,5) = 600, otherwise
Then fora; = %,ag = ﬁ,ag = 2,a4 = 4,a5 = 5,a6 = ﬁ,m = ﬁ7 all

requirements of Theorem 2, are fulfilled ah@s the fixed point of mapping.

3.6. Coincidence Point Theorems.Now we present new coincidence point theorems for
hybrid mappings with a generalize contractive condition.

Theorem 3.7. Let W be aG-metric space. Assuming that: W — W,Q,J : W —
CB(W) are satisfing

HE(J3,Qv,Qs) < aG(gs, g7, 9s) + bG(gs, Js, J3) (3.1)
+cG(g7, Qv, Q) + dG(gs, Qs, Qs),
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and
HE(Qs,Jv,Js) < aG(gs,gv.95) + bG(gsx, Qs, Q) 3.2
+cG(gv, Jv, Jv) +dG(gs, Js, Js)

for all 5,7,¢ € W, wherea, b, c,d € [0,1),anda + 6b+ 6¢c + 6d < 1,c¢+d < 1. If
(1) J(W) € g(W), QW) € g(W),

(i) g(W) is aG-complete subspace ©f,

then, there exists in W such thagw € Jw N Qw.

Proof. For arbitrarys«, € W, we consider a sequenéess, } in g(1V) such that

gstap € Jap_1, gropi1 € Qiezp.
Let
dp = G (954, g5p+1, 95p+1) ,
then forgs«, gse5 in the sequence, by using inequal{B/2) we get
0 < dy=G(gs,g,9%) < HY(Qs, Js1, Js1) + (a + 6b)
< aG(g, gsa1, goa) + bG (g3, Q, Q)
+cG(gse, I, Joe1) + dG(gser, 51, J3e1) + (a + 6b)
< ady + 6bdy + 6¢dy + 6ddy + (a + 6b),

a + 6b a + 6b
h < (1—6c—6d> do + <1—6c—6d>'
Now for gs¢2, gs¢3 in the sequence and using inequalidyl ) we get
0 < dy=G(gsz,gs,9%) < HY(Js1,Q, Qe2) + (a + 6b)
< aG(gs, gsa, gxa) + bG(gse1, J»1, Jo1)
+cG (g, Qrez, Q3e0) + dG (g2, Qe2, Q3¢2) + (a + 6b)
< ady + 6bdy + 6edy + Gddy + (a + 6b) ,

a + 6b a + 6b
(1—60—6d)d1+ (1—6c—6d>

< a+ 6b 2d " a+ 6b 2+ a+ 6b

= \1-6c-6d) """ \1-6c—6d 1—6c—6d)"
Applying similar steps as we perform in the proof of Theorkrit can be shown thety s, }
is aG-Cauchy sequence. Thg-completeness ensures the existence of spme g(W)

such thatys, — gw.
Now consider,

which gives

which gives

d>

< HY(Qrp, Jw, Jw)
< a‘G(g%va gw, g(“-)) + bG(Q”Zpa Q%2p7 Q%2p)
+cG(gw, Jw, Jw) + dG(gw, Jw, Jw)

G (gse2p11, Jw, Jw)
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Asp — oo, we get

(1-¢—d)G(gw, Jw,Jw) < 0.
Sincec + d < 1, thereforeG (gw, Jw, Jw) = 0 which impliesgw € Jw.
Now consider,

G(Q”QpaQvaw) HG(J%2p—17QwaQw)
aG(gse2p—1, gw, gw) + bG(gre2p—1, J 202p 1, J 202p 1)

+cG(gw, Qw, Qw) + dG(gw, Qw, Qw)

<
<

Asp — oo, we get

(1—-c¢—d)G(gw,Quw,Quw) < 0.
Again asc + d < 1 thereforeG(gw, Qw, Qw) = 0 which impliesgw € Quw. O
Example 3.8. LetW = [0, 1], define a mapping : W — W andJ,Q : W — CB(W)
by gse = %,

T = [0, %} and Qs = [0, 2%}

respectively. Then far = 5,b = 55, ¢ = &5, d = 2 all requirements of Theorem 3 are

fulfilled and 0 is the coincidence point of mappin@sJ andg.

Corollary 3.9. Let(W,G) be aG-completeG-metric space. Assume th@ J : W —
CB(W) satisfy
HE(J,Qv,Qc) < aG(s,7,<) 4 bG(s, Js, Jx)
+cG(y, @y, Qy) + dG(s, Qs, Q),
and
HG(Q%, Jv,Js) < aG(s,7,s) + bG (5, Qx, Q)
+cG (v, I, Jy) + dG(s, Js, Js)

for all 5¢,~,¢ € W, wherea, b, ¢,d € [0,1), anda + 6b + 6¢c+ 6d < 1,¢+d < 1. Then
there existso in W such thatw € Jw N Quw.

Proof. By assuming; = I in the Theoren®, we obtain the required result. d

Theorem 3.10. Let (W, G) be aG-completeG-metric space. Assume thdt: W —
CB(W) satisfy

HE (J, 77, <) < £G(.7.9), (3.3)
for all 5,v,¢ € W, wherea € [0,1). Then there exists in W such thatv € Jw.

Proof. For arbitraryscg € W, Jxg € CB(W) andJz, # ¢ implies the existence of an
elementr; € Jxp. In continuation a sequende;,, } in W such thate,, 11 € J,.
By using condition(3.3) we get

Q

G (51, 522, 502) HE (s, Jser, Jo1) + —

IN
o

IN

%G(%@, u, %1) + %
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2
G(%27%3)%3) S HG(']%17J%27J%2)+Q

62
< aG( )+ a?
—G (21, 309, 3¢ —
>~ 6 1, 722, 12 62
a? 2a2
S @G(%O,%l,%l)"—GT.
Similarily, we have
G (5tn, i1, #ny1) < 67(;(%07%1,%1) + o

Consider form > n and using inequality3.4) we get

G (%na A, %'m) S G (%’ru Hn+1, J’fn-‘,-l) + G (%n-‘rla HAn+42, %’n+2) + ...+ G (%'rn—la A, %’m)

o mel
6’IL
< 1_%G(%0,%1,%1)+ e

1=n

Applying limit m,n — oo, the sequencéz,, } is proved to be &-Cauchy sequence. The
G-completeness ensures the existence of soradV such thate, — w.
Now consider,

G (stni1, Jw, Jw) < HE (I, Jw, Jw)

< %G(%mw,w)

Asn — oo, we get
Gw,Jw,Jw) =0,
which impliesw € Jw. g

4. APPLICATION

Differential inclusions arise in many physical problems, such as arise for Amonton-
Coulomb friction model in mechanical systems, in the theory of differential games and
ideal switches in power electronics. Some certain differential inclusions also originate at
the groundwork of non-smooth dynamical system analysis which is used in the analog
study of switching electrical circuits using idealized component equations(see [1, 21, 39,
40, 43, 44, 47, 48]). In the following we present a differential inclusion with a compact set
of source functions, i.e., many source functions can be taken, this problem is very useful in
the theory of conduction in the metals. The problem is given as;

Pu () Ou(x7)
02 oy

with p(22,0) = 7 (3¢), — 00 < 3¢ < o0, for (5,7, p, s) € Qrr x RP x RP, where
Qr.p = R x Qp such thatQy = [0,7] and (3¢) and7 (3¢) are bounded and () is
assumed to be continuously differentiable.

We use one of our results to find the existence of the solution of above differential
inclusion, in the following settings.

€ F (5t,y, ), fOr —oco < s <00, 0<y<T, (4.3)
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LetX = C (Qr,r,R?), and define & -metric onX as follows:

(G (w17w27w3)) (%77) = sup le (%7’7) — W2 (%7’7)H +

(%77)€QR,T

sup awl (%7 7) - an (%7 7) H +
(5¢,7)EQR. T 6% 6%

sup  [lwa (3¢,7) — w3 (52, 7)[| +
(2¢,7)EQR, T

Sup an (%7 7) o aw3 (%7 ’Y) H +
(5¢,7)EQr. T 6% O

sup  [lwi (3¢,7) — w3 (5¢,7)[| +
(3¢,7)EQR, T

sup Owy (3,7)  Ows (5,7) ’
(%,V)EQR,T 8% 8%

for wy, wo, w3 € X. ThenX is a completer-metric space. Define a partial orderon 3
as

p,q € X, p<gq ifandonlyif

lpGeNI < [lg(3,7)] and 9p (5,7)

Let L = L' (Qr 7, RP) be the Banach space consisting of all measurable functions
Qr r — RP which are also Lebesgue integrable with

oo T
ol = / / o (s2.7) didse| . for w e L.
oo 0

Let F': Qr 7 X RP x RP — 2R” be a set-valued mapping. For eacim the Banach space
¥, the collection of all selections df is denoted and defined as:

Ops ={weL:weF (x5, ae (3,7) € Qrr}.
Now we assign a multivalued operator ¥ — 2 to the mapping” as
o(s)={veLl:v(mny)€F(x7,5s,8.),0,7) €},

whereo represents the Niemytsky operator [4] associated With
For the purpose of our application theorem we consider a continuous mappihg—
Y. defined as

Y oo
¢ (s) = / / £ (9, 0) s (9, 0) dido.
0 —o0
In the next theorem, we use our Theorem 4 to obtain the solution of above differential

inclusion 4.1.

Theorem 4.1. Suppose the multivalued mappifig Qg 7 x RP xR? — C'B (R?) satisfies
the subsequent conditions:
(i) F (52,7, i, pi.) is a closed and bounded subset for each elerfyent, u, ii..) € Qg 7%



Application of Fixed Points in Differential Inclusions of Heat Conduction

105

Y x 3. Also assume tha& r , is non-empty for every € ;
(éi) foranypy, pa € X, if 1 < po then for eachyy (s¢,y) € F (52,7, p1, p1,.) there exists
vg (5¢,7) € F (5,7, o, 1t2,.) such that

(Jvr = p2] + V1, — pas]) +
a ([p1 — v2] + [p15c — v2se])
(TJFV%) 3min (Jur — po| + [V1 — p2x|) +1

1 (5,7) =12 (35,7)] <

X2 (Jur — pa] + [V15c — H25])

b

T (12 = va] + |2 — vl
(T+\/ﬁ>

fora.e (>e,7) € Qgrr, anda+6b <1,

+2

whereC B (RP) is the set of closed and bounded subsef&”ofThen there exists a solution
of the differential inclusiorf4.1).

Proof. Note that the problem.1 is equivalent to the following integral inclusion

kES:n() = | (e Cy)r(Q)dCH
p(32,7) € -

)

Y oo
b/’![ E(x = (v —Yw (¢, 7) d¢d, forw € Op

where{(5¢,v) represents the Green’s function defined by

1 _ .2
5(%,7)=\/me><p{ 4: }

Define the mappings : ¥ — 2% by

RETiR(y) = | €l —CT(Qdc+
(Js) () =4 o o =
Of_f £ — C,y —yw (¢, ) dCdy, forw € Op

Now we show tha(Js) (s¢,7) is compact for eack € ¥ andw € ©p . For this, it is
enough to prove that o © 5 , is compact. For this, lefw,} be a sequence i@ ,, then
by the definition o0 £,

wp € Landwy, € F (s,7,s,s,.) a.e (3,7) € Qr 7.

SinceF (x,, s, s,.) is compact so there exists( s, y) € F (x,7, s, s,.) such thatv, —
v. By the continuity of¢, ¢ o w, — ¢ ov. Sincerv € L andv (s¢,7) € F (,7,s,55)
thereforep o v € ¢ o O s which implies the compactness b O ;.

Now supposev;, we € 3 with w; < w9 andk; € Jwy, then there exists; € O, such
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that

/5% CAT(OC + 6 (1 (52,7))

/w )T d<+//£% 9,7 — o)1 (9, 0) dodr,

0 —oo
for (5¢,7) € Qrr.
Now by the given assumption there existsia F' (5, vy, ws, wa,.) such that

‘V] (%”y)_§| S a |:(|’U1 _'LU23| +.|U1%_w2%|)+(|w1 _'U2|+w11%—1)2%|):|
(T—|— \/ﬁ) min (Jwy — wa| + w1, — was|) +
b
2 (Jwr — wa| + w1, — was|) +2 o (w2 = va| + [was — val).
(1+ %)
Define a multivalued mapping : Qr 7 — RP by
SERY: oy () =] < g [ (e o el
Ve
U(%7’7) = ><2(|w1—w2|+\w1%—w2,4|)
+2—2L (Jwy — va| + |was — Vax)
T+ 2=

then the mappin@ : Qr + — RP? defined by
o (%7 ’7) =0 (%7 P)/) n ®F,w1
is a measurable selection which has non-empty values [4]. So therewgist® such that
vy € F (52,7, wa, wa,,) and
(lUl - w2‘ + |U1% - w2%|)
a + (Jw1 — v2| + w1, — vas|)

(T—&—\/%) 3min (|wy — we| + |wi, — wa,|) + 1

1 (5e,7) —v2 (3,7)] <

2 (|Jwr — wa| + w1, — wasl)

b
+2) (lwa — va| + Jwase — V2x]) ,

2
(T + VT
forall (s,7) € Qgrr.

For each(s¢,v) € Qr 7, Set

ka(oe) = / £ — C)T(QdC + 6 (v2 (52,7))

0o Y oo

/u )T dC+//f% 9,7 — 0) 2 (9, 0) dodr.

— o0
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Then
vy oo
faGen) = ma (el < [ [ €Ge=0ir = o)l (9.0) = 1 (9.0)| dodr
0 —o0
(Jvr = wa| + V1, — was|) +
- a (Jw1 = va| + [wise — vas|)
= 2 3min (Jwy — wa| + |wi, — way|) + 1
(TJF\/?) (lwy = wa| + |ws 252|)
x2 (Jwy — w2\ + Wi — was)
. (Jwz — va| + |wase — v2x])
(T+m)
eS)
X//f% d,v — o) dodt
Takmg sup on both sides,
G (Jwy,wa,w2) + G (wy, Jwy, Jwy)
< ol G (wy, wo,
- [ 6G (w1, wo,ws) + 1 (w1, wa, w2) +
bTG(’LUQ,JU)Q,JU)Q),
Now

(Jur — wal + V1, — was]) +
a (|lwr — va| + |wise — V25.])

(T+ \/%) 3min (Jwy — wa| + |w1, — was|) + 1

“%1% (%57) — K25 (%77)| <

2 (Jwy = wa| + [wise — was|)

b
+27 (|w2 - ’U2| + |w2% - U2%|)
(T+ %)
7T
v

></ 7 &5 (3¢ = ¥,y — )| dodT
0 —o0

G(le,wg,wg) +

a 2 G (wy, Jwr, Jwn)
< T G (w1, w2, ws)
2 \/ 6G (w1, wa,ws) + 1
(T—i— FT) T (w1, wa, w2)
b 2

TG (U}Q, J’U.)Q,JU)Q) .

) T
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Thus we have

G(thwg,wg) +
G(wl, Jﬂ)l, le)

HG(le,Jwg,Jwg) < a 6G (wr, wa.wy) + 1 G (w1, wa, wa)

+bG (’ZUQ, JU}Q, J’wg) .

Thanks to main Theorem 1, to find € ¥ such thai € Ju, which is the solution of the
Problem 4.1. O

5. CONCLUSION

In this article some fixed points and coincidence point theorem for hybrid mappings are
proved. New types of contractive conditions are used. In [18], the authors have claimed
that many fixed point results i&G-metric spaces can be deduced from fixed point results
in metric spaces, but in our case none of the techniques used in [18] can be applied to
our results. Moreover we also present some non-trivial examples and an application for
existence of solution of differential inclusion used in heat conduction problems.
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