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Abstract. In this article some new fixed point and hybrid coincidence
point theorems for multivalued mappings satisfying generalized contrac-
tive conditions have been proved in generalized metric spaces. Some non-
trivial examples are given to support our main theorems. As application,
a differential inclusion problem for heat conduction in metals has been
given, using our main result, we prove the existence of solutions to the
given differential inclusion problem.
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1. INTRODUCTION

The most excited results in the existence theory of linear and non-linear operators is
systematically proved in 1922 by Banach. A systematic iterative procedure has been de-
veloped to prove the existence of a unique fixed point a self mapping in the settings of
complete metric spaces. This result has attracted a huge number of researchers in finding
out the solutions of many linear and non-linear physical problems. In theoretical aspect,
it has great impact on the existence theory of partial and ordinary differential equations.
Banach contraction principle has been generalized in various sense, like generalizing map-
pings, spaces, contractive conditions and combinations of any of these.

Generalizing the metric structure is also very important, and many generalizations have
been presented in the literature. Some of the most common are;2-metric space,D-metric
space,b-metric space, fuzzy metric space, partial metric space, and many others including
cone metric space [6, 9, 10, 14, 15, 16, 17, 20, 23, 41, 42, 45, 46, 49, 50]. Some of the flaws
have been recovered by Mustafa and Sims [27, 28], and a new metric was defined known as
G-metric space. Many fixed point results for single and multi-valued mappings have been
proved in the settings ofG-metric space [5, 12, 13, 19, 26, 29, 30, 31, 32, 33, 36, 38, 51].
Existence results in the theory of ordinary and partial differential equations are also proved
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using the results ofG-metric space, for details, see [2, 3, 4, 7, 8, 11, 21, 22, 24, 25, 34, 35,
37].

In [18], it has been shown that many fixed point results inG-metric space are just the
consequence of some classical fixed point results in standard metric space. Recently in
[12], author proves some innovative fixed point results inG-metric spaces. Inspired by
the results of [12], we initiated the study for finding fixed points of multi-valued mappings
in the settings of completeG-metric spaces [38]. In the following we prove some hybrid
coincidence points results in same settings. Examples are furnished to validate the results.
As an application we consider the following differential inclusion problem for conduction
in the metals with a closed and bounded set of source functions given as follows:

∂2µ (κ, t)
∂κ2

− ∂µ (κ, t)
∂t

∈ F (κ, t, µ, µκ) , for −∞ < κ < ∞, 0 < t < J,

with µ(κ, 0) = τ (κ) , −∞ < κ < ∞,

The result that describes the conditions for the existence of the solution the above differen-
tial inclusion has been proved. We remark that our fixed point results are not consequences
of classical results as mentioned in [18].

2. PRELIMINARIES

In this section we recall some basic concepts, definitions and results mostly from [19,
28], which will be useful in the proofs of our main results.

Definition 2.1. LetW be a non-empty set, a real valued functionG : W ×W ×W → R+

satisfying the following properties,
(1) G(µ, υ, w) = 0 iff µ = υ = w,
(2) 0 < G(µ, µ, υ), ∀ distinctµ, υ ∈ W ,
(3) G(υ, υ, w) ≤ G(µ, υ, w) for all µ, υ, w ∈ W with υ 6= w,
(4) G(µ, υ, w) = G(µ,w, υ) = G(υ, w, µ) = · · · , i.e., preserves symmetry,
(5) G(µ, υ, w) ≤ G(µ, a, a) + G(a, υ, w) ∀ µ, υ, w, a ∈ W ,
is called a generalized metric, or, more specifically aG-metric onW , and the pair(W,G)
is called aG-metric space. AG-metric is said to be symmetric ifG(κ, γ, γ) = G(γ,κ,κ)
for all κ, γ, ς ∈ W.

Definition 2.2. Let (W,G) be aG-metric space, a sequence{κp} in W is said to be a
G-convergent sequence if, for anyε > 0, there exist anκ ∈ W and N0 ∈ N such that
G(κ,κp,κq) < ε, for all p, q ≥ N0, and aG-Cauchy sequence if, for anyε > 0, there
existsN0 ∈ N such thatG(κp,κq,κl) < ε, for all p, q, l ≥ N0. The generalized metric
space(W, G) is called complete if everyG-Cauchy sequence isG-convergent.

The HausdorffG-distance on closed and bounded subsets ofW (denoted byCB (W ))
is listed as;

HG(H, K, S) = max{ sup
κ∈H

G(κ, K, S), sup
κ∈K

G(κ, S, H), sup
κ∈S

G(κ,H, K)}

where
G(κ,K, S) = dG(κ,K) + dG(K, S) + dG(κ, S)

dG(κ,K) = inf{dG(κ, γ) : γ ∈ K}
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dG(K,S) = inf{dG(a, b) : a ∈ K, b ∈ S}.
Recall that

G(κ, γ, S) = inf{G(κ, γ, ς) : ς ∈ S}.

A pointκ ∈ W is called a fixed point ofz : W → 2W , if κ ∈ zκ.

Remark 2.3. LetW be aG-metric space,κ ∈ W andK ⊆ W. For eachγ ∈ K,

G(κ,K, K) ≤ 6G(κ, γ, γ).

3. MAIN RESULTS

This section is divided into two subsections. In the first subsection, we initiate some
new fixed point results for multivalued operators with contractive conditions of rational and
non-rational types. The second subsection contains some new coincidence point results for
hybrid mappings, satisfying new generalized contractive conditions.

3.1. Fixed Point Results. We present our first main results for finding fixed point of a
multivalued mapping with rational type of contractive conditions.

Theorem 3.2. Let W be aG-completeG-metric space andJ be a mapping fromW to
CB(W ). If J satisfies the following condition:

HG(Jκ, Jγ, Jς) ≤ a

(
G(Jκ, γ, ς) + G(κ, Jκ, Jκ)

6G(κ, γ, ς) + 1

)
G(κ, γ, ς) + bG (γ, Jγ, Jγ) ,

for all κ, γ, ς ∈ W,a, b ∈ (0, 1), a + 6b < 1, then,
(a) J has at least one fixed pointξ ∈ W,
(b) for anyκ ∈ W , the sequence{Jpκ} G-converges to a fixed point ofJ .

Proof. Let κ0 be arbitrary and formulate the sequence{κp} such thatκp+1 ∈ Jκp. For
the triplet(κp,κp+1,κp+1) , we set

dp = G (κp,κp+1,κp+1) .

Now consider

0 < d1 = G (κ1,κ2,κ2) ≤ HG(Jκ0, Jκ1, Jκ1) + a

≤ a

(
G(Jκ0,κ1,κ1) + G(κ0, Jκ0, Jκ0)

6G(κ0,κ1,κ1) + 1

)
G(κ0,κ1,κ1)

+bG (κ1, Jκ1, Jκ1) + a

≤ a

(
G(κ1,κ1,κ1) + 6G(κ0,κ1,κ1)

6G(κ0,κ1,κ1) + 1

)
G(κ0,κ1,κ1) + 6bG (κ1,κ2,κ2) + a

=
(

a

1− 6b

)(
6d0

6d0 + 1

)
d0 +

(
a

1− 6b

)
.



96 Maliha Rashid and Nayyar Mehmood

Similarly

0 < d2 = G (κ2,κ3,κ3) ≤ HG(Jκ1, Jκ2, Jκ2) +
a2

1− 6b

≤ a

(
G(Jκ1,κ2,κ2) + G(κ1, Jκ1, Jκ1)

6G(κ1,κ2,κ2) + 1

)
G(κ1,κ2,κ2)

+bG (κ2, Jκ2, Jκ2) +
a2

1− 6b

≤ a

(
G(κ2,κ2,κ2) + 6G(κ1,κ2,κ2)

6G(κ1,κ2,κ2) + 1

)
G(κ1,κ2,κ2)

+6bG (κ2,κ3,κ3) +
a2

1− 6b

=
(

a

1− 6b

)(
6d1

6d1 + 1

)
d1 +

(
a

1− 6b

)2

≤
(

a

1− 6b

)2 (
6d1

6d1 + 1

)(
6d0

6d0 + 1

)
d0 +

(
a

1− 6b

)2 (
6d1

6d1 + 1

)

+
(

a

1− 6b

)2

,

Assuming,l = a
1−6b , ρp = 6dp

6dp+1 we get

d1 ≤ lρ0d0 + l,

d2 ≤ lρ1d1 + l2

≤ l2ρ1ρ0d0 + l2ρ1 + l2,

d3 ≤ lρ2d2 + l3

≤ l3ρ2ρ1ρ0d0 + l3ρ2ρ1 + l3ρ2 + l3,

dp ≤ lpρp−1...ρ1ρ0d0 + lpρp−1...ρ1 + lpρp−1...ρ2 + ...

+lpρp−1ρp−2 + lpρp−1 + lp.

Sincea + 6b < 1, sol < 1 andlp → 0 asp →∞, so we have

lim
p→∞

dp = 0.
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For any two natural numbersq andp, with q > p, and by using triangular inequality we
have

G (κp,κq,κq) ≤ G (κp,κp+1,κp+1) + G (κp+1,κq,κq)
≤ G (κp,κp+1,κp+1) + ... + G (κq−1,κq,κq)

≤
q−p−1∑

j=0

G (κp+j ,κp+j+1,κp+j+1)

=
q−p−1∑

j=0

dp+j ,

which givesG (κp,κq,κq) → 0 asq, p → ∞. That is,{κp} is aG-Cauchy sequence. So
G-completeness ensures the existence of someω ∈ W such thatκp → ω.
Using definition ofHG, consider

G (κp+1, Jω, Jω) ≤ HG(Jκp, Jω, Jω)

≤ a

(
G(Jκp, ω, ω) + G(κp, Jκp, Jκp)

6G(κp, ω, ω) + 1

)
G(κp, ω, ω)

+bG (ω, Jω, Jω) .

Taking limit on the both sides of above inequality, we get

(1− b)G (ω, Jω, Jω) ≤ 0.

Since0 < b < 1, thereforeG (ω, Jω, Jω) = 0, that isω ∈ Jω. This proves the result.¤

Example 3.3. Let W = {0, 1, 2}. Define a mappingJ : W → CB(W ) by J0 = {0} =
J1, J2 = {1}. Define aG-metric onW by

G(κ, γ, ς) = 1000,κ 6= γ 6= ς,

G(0, 1, 1) = 0.008, G (0, 0, 1) = 0.01,

G(κ,κ,κ) = 0, G(κ, γ, ς) = 600, otherwise.

Then fora = 9
10 , b = 1

100 , all requirements of Theorem 1 are fulfilled and0 is the fixed
point of mappingJ .

In the next result, we use an other new contractive condition to find fixed point of a
multivalued mapping.
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Theorem 3.4. Let (W,G) be aG-completeG-metric space whereJ is a mapping fromW
to CB(W ). If J satisfies the following condition:

HG(Jκ, Jγ, Jς) ≤ a1G(κ, γ, ς) + a2




G(κ, Jκ, Jκ)+
G(γ, Jγ, Jγ)+
G(ς, Jς, Jς)




+a3




G(Jκ, γ, ς)+
G(κ, Jγ, ς)+
G(κ, γ, Jς)


 G(Jκ, γ, ς)

1 + G(κ, γ, ς)

+a4 min





G(Jκ, γ, ς),
G(γ, Jγ, Jγ),
G(ς, Jς, Jς)





[1 + G(κ, Jκ, Jκ)]
1 + G(κ, γ, ς)

+a5

[
1 + G(κ, Jγ, ς)+

G(κ, γ, Jς)

]
G(Jκ, γ, ς)

1 + G(κ, γ, ς)

+a6

[
1 + G(κ, Jκ, ς)+

G(Jκ, γ, ς)

]
G(κ, γ, ς)

1 + G(κ, γ, ς)
+a7G(γ, Jγ, Jς)

for all κ, γ, ς ∈ W whereai, i = 1, · · · , 7, are nonnegative scalars such that

α = a1 + 6a2 + a6 < 1,

β = ka2 + la7 < 1, k, l ∈ N
α + β < 1,

then,J has a fixed point inW .

Proof. Let κ0 be arbitrary and formulate the sequence{κp} such thatκp+1 ∈ Jκp. For
the triplet(κp,κp+1,κp+1) , we set

dp = G (κp,κp+1,κp+1) .
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Now consider

0 < d1 = G (κ1,κ2,κ2) ≤ HG(Jκ0, Jκ1, Jκ1) + α

≤ a1G(κ0,κ1,κ1) + a2

[
G(κ0, Jκ0, Jκ0)+

G(κ1, Jκ1, Jκ1) + G(κ1, Jκ1, Jκ1)

]

+a3




G(Jκ0,κ1,κ1)+
G(κ0, Jκ1,κ1)+
G(κ0,κ1, Jκ1)


 G(Jκ0,κ1,κ1)

1 + G(κ0, γ, ς)

+a4 min





G(Jκ0,κ1,κ1),
G(κ1, Jκ1, Jκ1),
G(κ1, Jκ1, Jκ1)





[1 + G(κ0, Jκ0, Jκ0)]
1 + G(κ0,κ1,κ1)

+a5

[
1 + G(κ0, Jκ1,κ1)+

G(κ0,κ1, Jκ1)

]
G(Jκ0,κ1,κ1)
1 + G(κ0, γ, ς)

+a6

[
1 + G(κ0, Jκ0,κ1)+

G(Jκ0,κ1,κ1)

]
G(κ0,κ1,κ1)

1 + G(κ0,κ1,κ1)
+a7G(κ1, Jκ1, Jκ1) + α,

which gives

d1 ≤ a1d0 + a2[6d0 + 12d1] + a6d0 + a7 [6d1] + α

that is

d1 ≤
(

α

1− β

)
d0 +

(
α

1− β

)
.

Similarly

0 < d2 = G (κ2,κ3,κ3) ≤ HG(Jκ1, Jκ2, Jκ2) + α,

which implies

d2 ≤
(

α

1− β

)
d1 +

(
α

1− β

)

≤
(

α

1− β

)2

d0 +
(

α

1− β

)2

+
(

α

1− β

)
.

Continuing this way we get

dp ≤
(

α

1− β

)p

d0 +
(

α

1− β

)p

+ ... +
(

α

1− β

)2

+
(

α

1− β

)
.

Sinceα + β < 1, so
(

α
1−β

)
< 1, and lettingp →∞, we get

lim
p→∞

dp = 0.

Applying the same steps as in the Theorem 1, it can be shown that{κp} is a G-Cauchy
sequence. TheG-completeness ensures the existence of someω ∈ W such thatκp → ω.
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Using definition ofHG we consider,

G (κp+1, Jω, Jω) ≤ HG(Jκp, Jω, Jω)

≤ a1G(κp, ω, ω) + a2




G(κp, Jκp, Jκp)+
G(ω, Jω, Jω)+
G(ω, Jω, Jω)




+a3




G(Jκp, ω, ω)+
G(κp, Jω, ω)+
G(κp, ω, Jω)


 G(Jκp, ω, ω)

1 + G(κp, ω, ω)

+a4 min





G(Jκp, ω, ω),
G(ω, Jω, Jω),
G(ω, Jω, Jω)





[1 + G(κp, Jκp, Jκp)]
1 + G(κp, ω, ω)

+a5

[
1 + G(κp, Jω, ω)+

G(κp, ω, Jω)

]
G(Jκp, ω, ω)

1 + G(κp, ω, ω)

+a6[1 + G(κp, Jκp, ω) + G(Jκp, ω, ω)]
G(κp, ω, ω)

1 + G(κp, ω, ω)
+a7G(ω, Jω, Jω).

Applying limit p →∞, we have

G(ω, Jω, Jω) ≤ 3a2G(ω, Jω, Jω) + a7G(ω, Jω, Jω),

that is

(1− 3a2 − a7)G(ω, Jω, Jω) ≤ 0.

As 3a2 + a7 < 1 andG(ω, Jω, Jω) = 0 which impliesω ∈ Jω. This proves the theorem.
¤

Example 3.5. Let W = {0, 1, 2}. Define a mappingJ : W → CB(W ) by J0 = {0} =
J1, J2 = {1}. Define aG-metric onW by

G(κ, γ, ς) = 1000,κ 6= γ 6= ς,

G(0, 1, 1) = 0.008, G (0, 0, 1) = 0.01,

G(κ,κ,κ) = 0, G(κ, γ, ς) = 600, otherwise.

Then fora1 = 9
10 , a2 = 1

100 , a3 = 2, a4 = 4, a5 = 5, a6 = 1
1000 , a7 = 1

10000 , all
requirements of Theorem 2, are fulfilled and0 is the fixed point of mappingJ .

3.6. Coincidence Point Theorems.Now we present new coincidence point theorems for
hybrid mappings with a generalize contractive condition.

Theorem 3.7. Let W be aG-metric space. Assuming thatg : W → W,Q, J : W →
CB(W ) are satisfing

HG(Jκ, Qγ, Qς) ≤ aG(gκ, gγ, gς) + bG(gκ, Jκ, Jκ) (3. 1)

+cG(gγ, Qγ,Qγ) + dG(gς, Qς, Qς),
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and

HG(Qκ, Jγ, Jς) ≤ aG(gκ, gγ, gς) + bG(gκ, Qκ, Qκ) (3. 2)

+cG(gγ, Jγ, Jγ) + dG(gς, Jς, Jς)

for all κ, γ, ς ∈ W, wherea, b, c, d ∈ [0, 1), anda + 6b + 6c + 6d < 1, c + d < 1. If
(i) J(W ) ⊆ g(W ), Q(W ) ⊆ g(W ),
(ii) g(W ) is aG-complete subspace ofW ,
then, there existsω in W such thatgω ∈ Jω ∩Qω.

Proof. For arbitraryκ0 ∈ W , we consider a sequence{gκp} in g(W ) such that

gκ2p ∈ Jκ2p−1, gκ2p+1 ∈ Qκ2p.

Let
dp = G (gκp, gκp+1, gκp+1) ,

then forgκ1, gκ2 in the sequence, by using inequality(3.2) we get

0 < d1 = G (gκ1, gκ2, gκ2) ≤ HG(Qκ0, Jκ1, Jκ1) + (a + 6b)
≤ aG(gκ0, gκ1, gκ1) + bG(gκ0, Qκ0, Qκ0)

+cG(gκ1, Jκ1, Jκ1) + dG(gκ1, Jκ1, Jκ1) + (a + 6b)
≤ ad0 + 6bd0 + 6cd1 + 6dd1 + (a + 6b) ,

which gives

d1 ≤
(

a + 6b

1− 6c− 6d

)
d0 +

(
a + 6b

1− 6c− 6d

)
.

Now for gκ2, gκ3 in the sequence and using inequality(3.1) we get

0 < d2 = G (gκ2, gκ3, gκ3) ≤ HG(Jκ1, Qκ2, Qκ2) + (a + 6b)
≤ aG(gκ1, gκ2, gκ2) + bG(gκ1, Jκ1, Jκ1)

+cG(gκ2, Qκ2, Qκ2) + dG(gκ2, Qκ2, Qκ2) + (a + 6b)
≤ ad1 + 6bd1 + 6cd2 + 6dd2 + (a + 6b) ,

which gives

d2 ≤
(

a + 6b

1− 6c− 6d

)
d1 +

(
a + 6b

1− 6c− 6d

)

≤
(

a + 6b

1− 6c− 6d

)2

d0 +
(

a + 6b

1− 6c− 6d

)2

+
(

a + 6b

1− 6c− 6d

)
.

Applying similar steps as we perform in the proof of Theorem1, it can be shown that{gκp}
is aG-Cauchy sequence. TheG-completeness ensures the existence of somegω ∈ g(W )
such thatgκp → gω.
Now consider,

G (gκ2p+1, Jω, Jω) ≤ HG(Qκ2p, Jω, Jω)
≤ aG(gκ2p, gω, gω) + bG(gκ2p, Qκ2p, Qκ2p)

+cG(gω, Jω, Jω) + dG(gω, Jω, Jω)
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As p →∞, we get
(1− c− d)G(gω, Jω, Jω) ≤ 0.

Sincec + d < 1, thereforeG(gω, Jω, Jω) = 0 which impliesgω ∈ Jω.
Now consider,

G (gκ2p, Qω,Qω) ≤ HG(Jκ2p−1, Qω, Qω)
≤ aG(gκ2p−1, gω, gω) + bG(gκ2p−1, Jκ2p−1, Jκ2p−1)

+cG(gω, Qω,Qω) + dG(gω,Qω, Qω)

As p →∞, we get
(1− c− d)G(gω,Qω, Qω) ≤ 0.

Again as,c + d < 1 thereforeG(gω, Qω, Qω) = 0 which impliesgω ∈ Qω. ¤

Example 3.8. Let W = [0, 1], define a mappingg : W → W andJ,Q : W → CB(W )
bygκ = 3κ

4 ,

Jκ =
[
0,
κ
25

]
and Qκ =

[
0,
κ
20

]

respectively. Then fora = 1
11 , b = 1

24 , c = 1
50 , d = 2

35 ,all requirements of Theorem 3 are
fulfilled and 0 is the coincidence point of mappingsQ, J andg.

Corollary 3.9. Let (W,G) be aG-completeG-metric space. Assume thatQ, J : W →
CB(W ) satisfy

HG(Jκ, Qγ, Qς) ≤ aG(κ, γ, ς) + bG(κ, Jκ, Jκ)
+cG(γ, Qγ, Qγ) + dG(ς, Qς,Qς),

and

HG(Qκ, Jγ, Jς) ≤ aG(κ, γ, ς) + bG(κ, Qκ, Qκ)
+cG(γ, Jγ, Jγ) + dG(ς, Jς, Jς)

for all κ, γ, ς ∈ W, wherea, b, c, d ∈ [0, 1), anda + 6b + 6c + 6d < 1, c + d < 1. Then
there existsω in W such thatω ∈ Jω ∩Qω.

Proof. By assumingg = I in the Theorem3, we obtain the required result. ¤

Theorem 3.10. Let (W,G) be aG-completeG-metric space. Assume thatJ : W →
CB(W ) satisfy

HG(Jκ, Jγ, Jς) ≤ a

6
G(κ, γ, ς), (3.3)

for all κ, γ, ς ∈ W, wherea ∈ [0, 1). Then there existsω in W such thatω ∈ Jω.

Proof. For arbitraryκ0 ∈ W , Jx0 ∈ CB(W ) andJx0 6= ϕ implies the existence of an
elementx1 ∈ Jx0. In continuation a sequence{xn} in W such thatκn+1 ∈ Jκn.
By using condition(3.3) we get

G (κ1,κ2,κ2) ≤ HG(Jκ0, Jκ1, Jκ1) +
a

6
≤ a

6
G(κ0,κ1,κ1) +

a

6
.
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G (κ2,κ3,κ3) ≤ HG(Jκ1, Jκ2, Jκ2) +
a2

62

≤ a

6
G(κ1,κ2,κ2) +

a2

62

≤ a2

62
G(κ0,κ1,κ1) +

2a2

62
.

Similarily, we have

G (κn,κn+1,κn+1) ≤ an

6n
G(κ0,κ1,κ1) +

nan

6n
.

Consider form > n and using inequality(3.4) we get

G (κn,κm,κm) ≤ G (κn,κn+1,κn+1) + G (κn+1,κn+2,κn+2) + ... + G (κm−1,κm,κm)

≤
an

6n

1− a
6

G(κ0,κ1,κ1) +
m−1∑

i=n

iai

6i
.

Applying limit m,n →∞, the sequence{xn} is proved to be aG-Cauchy sequence. The
G-completeness ensures the existence of someω ∈ W such thatκn → ω.
Now consider,

G (κn+1, Jω, Jω) ≤ HG(Jκn, Jω, Jω)

≤ a

6
G(κn, ω, ω)

As n →∞, we get

G(ω, Jω, Jω) = 0,

which impliesω ∈ Jω. ¤

4. APPLICATION

Differential inclusions arise in many physical problems, such as arise for Amonton-
Coulomb friction model in mechanical systems, in the theory of differential games and
ideal switches in power electronics. Some certain differential inclusions also originate at
the groundwork of non-smooth dynamical system analysis which is used in the analog
study of switching electrical circuits using idealized component equations(see [1, 21, 39,
40, 43, 44, 47, 48]). In the following we present a differential inclusion with a compact set
of source functions, i.e., many source functions can be taken, this problem is very useful in
the theory of conduction in the metals. The problem is given as;

∂2µ (κ, γ)
∂κ2

− ∂µ (κ, γ)
∂γ

∈ F (κ, γ, µ, µκ) , for −∞ < κ < ∞, 0 < γ < T, (4. 3)

with µ(κ, 0) = τ (κ) , − ∞ < κ < ∞, for (κ, γ, µ, µκ) ∈ ΩR,T × Rp × Rp, where
ΩR,B = R × ΩT such thatΩT = [0, T ] andτ (κ) and τ́ (κ) are bounded andτ (κ) is
assumed to be continuously differentiable.

We use one of our results to find the existence of the solution of above differential
inclusion, in the following settings.
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Let Σ = C (ΩR,T ,Rp) , and define aG-metric onΣ as follows:

(G (w1, w2, w3)) (κ, γ) = sup
(κ,γ)∈ΩR,T

‖w1 (κ, γ)− w2 (κ, γ)‖+

sup
(κ,γ)∈ΩR,T

∥∥∥∥
∂w1 (κ, γ)

∂κ
− ∂w2 (κ, γ)

∂κ

∥∥∥∥ +

sup
(κ,γ)∈ΩR,T

‖w2 (κ, γ)− w3 (κ, γ)‖+

sup
(κ,γ)∈ΩR,T

∥∥∥∥
∂w2 (κ, γ)

∂κ
− ∂w3 (κ, γ)

∂κ

∥∥∥∥ +

sup
(κ,γ)∈ΩR,T

‖w1 (κ, γ)− w3 (κ, γ)‖+

sup
(κ,γ)∈ΩR,T

∥∥∥∥
∂w1 (κ, γ)

∂κ
− ∂w3 (κ, γ)

∂κ

∥∥∥∥ ,

for w1, w2, w3 ∈ Σ. ThenΣ is a completeG-metric space. Define a partial order≤ on Σ
as

p, q ∈ Σ, p ≤ q if and only if

‖p (κ, γ)‖ ≤ ‖q (κ, γ)‖ and

∥∥∥∥
∂p (κ, γ)

∂κ

∥∥∥∥ ≤
∥∥∥∥

∂q (κ, γ)
∂κ

∥∥∥∥ .

Let L = L1 (ΩR,T ,Rp) be the Banach space consisting of all measurable functionsω :
ΩR,T → Rp which are also Lebesgue integrable with

‖ω‖L =

∣∣∣∣∣∣

∞∫

−∞

T∫

0

ω (κ, γ) dγdκ

∣∣∣∣∣∣
, for ω ∈ L.

Let F : ΩR,T × Rp × Rp → 2R
p

be a set-valued mapping. For eachs in the Banach space
Σ, the collection of all selections ofF is denoted and defined as:

ΘF,s = {ω ∈ L : ω ∈ F (κ, γ, s, sκ) a.e (κ, γ) ∈ ΩR,T } .

Now we assign a multivalued operatorσ : Σ → 2L to the mappingF as

σ (s) = {υ ∈ L : υ (κ, γ) ∈ F (κ, γ, s, sκ) , (κ, γ) ∈ ΩR,T } ,

whereσ represents the Niemytsky operator [4] associated withF.
For the purpose of our application theorem we consider a continuous mappingφ : L →

Σ defined as

φ (s) =

γ∫

0

∞∫

−∞
ξ (ϑ, %) s (ϑ, %) dϑd%.

In the next theorem, we use our Theorem 4 to obtain the solution of above differential
inclusion 4.1.

Theorem 4.1. Suppose the multivalued mappingF : ΩR,T×Rp×Rp → CB (Rp) satisfies
the subsequent conditions:
(i) F (κ, γ, µ, µκ) is a closed and bounded subset for each element(κ, γ, µ, µκ) ∈ ΩR,T×
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Σ× Σ. Also assume thatΘF,s is non-empty for everys ∈ Σ;
(ii) for anyµ1, µ2 ∈ Σ, if µ1 . µ2 then for eachυ1 (κ, γ) ∈ F (κ, γ, µ1, µ1κ) there exists
υ2 (κ, γ) ∈ F (κ, γ, µ2, µ2κ) such that

|ν1 (κ, γ)− ν2 (κ, γ)| ≤ a(
T + 2√

πT

)




(|υ1 − µ2|+ |υ1κ − µ2κ |) +
(|µ1 − υ2|+ |µ1κ − υ2κ |)

3min (|υ1 − µ2|+ |υ1κ − µ2κ|) + 1




×2 (|υ1 − µ2|+ |υ1κ − µ2κ|)
+2

b(
T + 2√

πT

) (|µ2 − υ2|+ |µ2κ − υ2κ |) ,

for a.e (κ, γ) ∈ ΩR,T , anda + 6b < 1,

whereCB (Rp) is the set of closed and bounded subsets ofRp. Then there exists a solution
of the differential inclusion(4.1).

Proof. Note that the problem4.1 is equivalent to the following integral inclusion

µ (κ, γ) ∈





κ ∈ Σ : κ(κ, γ) =
∞∫
−∞

ξ(κ − ζ, γ)τ(ζ)dζ+
γ∫
0

∞∫
−∞

ξ(κ − ζ, γ − γ)ω (ζ, γ) dζdγ, for ω ∈ ΘF,s





,

whereξ(κ, γ) represents the Green’s function defined by

ξ(κ, γ) =
1√
4πγ

exp
{−κ2

4γ

}
.

Define the mappingsJ : Σ → 2Σ by

(Js) (κ, γ) =





κ ∈ Σ : κ(κ, γ) =
∞∫
−∞

ξ(κ − ζ, γ)τ(ζ)dζ+
γ∫
0

∞∫
−∞

ξ(κ − ζ, γ − γ)ω (ζ, γ) dζdγ, for ω ∈ ΘF,s





.

Now we show that(Js) (κ, γ) is compact for eachs ∈ Σ andω ∈ ΘF,s. For this, it is
enough to prove thatφ ◦ ΘF,s is compact. For this, let{ωp} be a sequence inΘF,s, then
by the definition ofΘF,s

ωp ∈ L andωp ∈ F (κ, γ, s, sκ) a.e (κ, γ) ∈ ΩR,T .

SinceF (κ, γ, s, sκ) is compact so there existsυ (κ, γ) ∈ F (κ, γ, s, sκ) such thatωp →
ν. By the continuity ofφ, φ ◦ ωp → φ ◦ ν. Sinceν ∈ L andυ (κ, γ) ∈ F (κ, γ, s, sκ)
thereforeφ ◦ ν ∈ φ ◦ΘF,s which implies the compactness ofφ ◦ΘF,s.
Now supposew1, w2 ∈ Σ with w1 ≤ w2 andκ1 ∈ Jw1, then there existsν1 ∈ ΘF,w1 such
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that

κ1(κ, γ) =

∞∫

−∞
ξ(κ − ζ, γ)τ(ζ)dζ + φ (ν1 (κ, γ))

=

∞∫

−∞
ξ(κ − ζ, γ)τ(ζ)dζ +

γ∫

0

∞∫

−∞
ξ (κ − ϑ, γ − %) ν1 (ϑ, %) d%dτ,

for (κ, γ) ∈ ΩR,T .

Now by the given assumption there exists aς in F (κ, γ, w2, w2κ) such that

|ν1 (κ, γ)− ς| ≤ a(
T + 2√

πT

)
[
(|υ1 − w2|+ |υ1κ − w2κ |) + (|w1 − υ2|+ |w1κ − υ2κ |)

3min (|w1 − w2|+ |w1κ − w2κ|) + 1

]

×2 (|w1 − w2|+ |w1κ − w2κ|) + 2
b(

T + 2√
πT

) (|w2 − υ2|+ |w2κ − υ2κ|) .

Define a multivalued mappingf : ΩR,T → Rp by

f (κ, γ) =





ς ∈ Rp : |ν1 (κ, γ)− ς| ≤ a�
T+ 2√

πT

�
[

(|υ1−w2|+|υ1κ−w2κ |)+(|w1−υ2|+|w1κ−υ2κ |)
3 min(|w1−w2|+|w1κ−w2κ |)+1

]

×2 (|w1 − w2|+ |w1κ − w2κ|)
+2 b�

T+ 2√
πT

� (|w2 − υ2|+ |w2κ − υ2κ |)





;

then the mappingΦ : ΩR,T → Rp defined by

Φ (κ, γ) = f (κ, γ) ∩ΘF,w1

is a measurable selection which has non-empty values [4]. So there existsν2 in Φ such that
ν2 ∈ F (κ, γ, w2, w2κ) and

|ν1 (κ, γ)− ν2 (κ, γ)| ≤ a(
T + 2√

πT

)




(|υ1 − w2|+ |υ1κ − w2κ |)
+ (|w1 − υ2|+ |w1κ − υ2κ|)

3min (|w1 − w2|+ |w1κ − w2κ|) + 1




×2 (|w1 − w2|+ |w1κ − w2κ|)
+2

b(
T + 2√

πT

) (|w2 − υ2|+ |w2κ − υ2κ |) ,

for all (κ, γ) ∈ ΩR,T .

For each(κ, γ) ∈ ΩR,T , set

κ2(κ, γ) =

∞∫

−∞
ξ(κ − ζ, γ)τ(ζ)dζ + φ (ν2 (κ, γ))

=

∞∫

−∞
ξ(κ − ζ, γ)τ(ζ)dζ +

γ∫

0

∞∫

−∞
ξ (κ − ϑ, γ − %) ν2 (ϑ, %) d%dτ.
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Then

|κ1 (κ, γ)− κ2 (κ, γ)| ≤
γ∫

0

∞∫

−∞
ξ (κ − ϑ, γ − %) |ν2 (ϑ, %)− ν1 (ϑ, %)| d%dτ

≤ a(
T + 2√

πT

)




(|υ1 − w2|+ |υ1κ − w2κ |) +
(|w1 − υ2|+ |w1κ − υ2κ |)

3min (|w1 − w2|+ |w1κ − w2κ|) + 1




×2 (|w1 − w2|+ |w1κ − w2κ|)
+2

b(
T + 2√

πT

) (|w2 − υ2|+ |w2κ − υ2κ |)

×
γ∫

0

∞∫

−∞
ξ (κ − ϑ, γ − %) d%dτ

Taking sup on both sides,

≤ aT

[
G (Jw1, w2, w2) + G (w1, Jw1, Jw1)

6G (w1, w2, w2) + 1

]
G (w1, w2, w2) +

bTG (w2, Jw2, Jw2) ,

Now

|κ1κ (κ, γ)− κ2κ (κ, γ)| ≤ a(
T + 2√

πT

)




(|υ1 − w2|+ |υ1κ − w2κ |)+
(|w1 − υ2|+ |w1κ − υ2κ |)

3min (|w1 − w2|+ |w1κ − w2κ |) + 1




×2 (|w1 − w2|+ |w1κ − w2κ |)
+2

b(
T + 2√

πT

) (|w2 − υ2|+ |w2κ − υ2κ|)

×
γ∫

0

∞∫

−∞
|ξκ (κ − ϑ, γ − %)| d%dτ

≤ a(
T + 2√

πT

)T
2√
πT




G (Jw1, w2, w2)+
G (w1, Jw1, Jw1)

6G (w1, w2, w2) + 1


 G (w1, w2, w2)

+
b(

T + 2√
πT

) 2√
πT

TG (w2, Jw2, Jw2) .
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Thus we have

HG(Jw1, Jw2, Jw2) ≤ a




G (Jw1, w2, w2)+
G (w1, Jw1, Jw1)

6G (w1, w2, w2) + 1


 G (w1, w2, w2)

+bG (w2, Jw2, Jw2) ..

Thanks to main Theorem 1, to findµ ∈ Σ such thatµ ∈ Jµ, which is the solution of the
Problem 4.1. ¤

5. CONCLUSION

In this article some fixed points and coincidence point theorem for hybrid mappings are
proved. New types of contractive conditions are used. In [18], the authors have claimed
that many fixed point results inG-metric spaces can be deduced from fixed point results
in metric spaces, but in our case none of the techniques used in [18] can be applied to
our results. Moreover we also present some non-trivial examples and an application for
existence of solution of differential inclusion used in heat conduction problems.
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