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Abstract. This paper comes out with a fascinating fusion of soft
sets, multisets and rough sets. We introduce novel concepts of soft
multi rough sets (SMR-Sets) and soft multi approximation spaces.
We present some fundamental properties of SMR-approximations
and their related examples. We also discuss the variation between
some properties of Pawlak approximation space, soft approxima-
tion spaces and the same properties of soft multi approximation
spaces. Furthermore, we present two different algorithms based
on soft multi rough set with an application to multi-criteria group
decision-making (MCGDM) for the selection of humanoid robot.
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1. Introduction

The foundation of modern mathematics is thought of as having two pillars: math-
ematical logic and set theory. Mathematical logic and set theory indeed make up
the language spanning in almost all fields of mathematics. In fact the rapid devel-
opment of science has led to an urgent need for the development of modern sets
theoretic mathematical modeling. ”Keeping in view the uncertainty element Zadeh
[57], in 1965, floated the idea of fuzzy sets where a membership degree is assigned
to each member of the universe of discourse. In 1983, Atanassov [6, 7] introduced a
newfangled sort of sets titled intuitionistic fuzzy sets (IFS)– a set which is written
off as by two mappings communicating the degree of association and the degree
of non-association of members of the universe to the IFS. In 1999, Molodtsov [27]
proposed soft set theory as a novel mathematical model to deal with uncertainty
in the real world problems. Pawlak [32] presented rough set theory to overcome
the uncertainty and vagueness appears in the input data. Pawlak and Skowron
presented some significant results on rough set and its extension [33].
Many researcher including Akram et al. [1]-[3], Ali [4]-[5], Çağman et al. [13], Feng
et al. [14]-[17], Garg et al. [18]-[19], Hashmi et al. [20]-[21], Hayat et al. [22],
Karaaslan et al. [24]-[25], Kryskiewicz [26], Maji et al. [28]-[29], Khalid et al. [30]-
[31], Riaz et al. [35]-[37], Riaz and Hashmi [39]-[40], Xueling et al. [52], and Yager
[53]-[56] have contributed their work in the development of the theories of fuzzy
sets, soft sets, and rough sets. These theories are independently generalizations of
the crisp set theory.
Riaz and Naeem [38] introduced the idea of measurable soft mapping. Recently, Riaz
and Hashmi [41] introduced the notion of linear Diophantine fuzzy Set (LDFS) and
its applications towards MCDM problem. Riaz and Hashmi [42] introduced novel
concepts of soft rough Pythagorean m-Polar fuzzy sets and Pythagorean m-polar
fuzzy soft rough sets with application to decision-making. Riaz and Tehrim [43]-
[47] established the idea of bipolar fuzzy soft mappings, bipolar fuzzy soft topology,
bipolar neutrosophic soft topology, cubic bipolar fuzzy set and cubic bipolar fuzzy
ordered weighted geometric aggregation operators and their application using in-
ternal and external cubic bipolar fuzzy data.
Earlier in 1989, Blizard [10, 11] discovered the concept of multiset theory. This
theory is also generalization of the crisp set theory. In 2001, Syropoulos [49] defined
various operations on multiset. In 2009, Herawan and Mustafa [23] introduced the
concept of multi soft set (MS-set) for showing multi valued information system. In
2013, Babitha and John [8] presented the idea of soft multiset. As a broad view
of multiset, Yager [53] introduced the notion of fuzzy multiset (FMS) in which a
member of a fuzzy multiset can appear a finite number of times which may have
same or different membership values. In 2012, Shinoj and John [48] introduced a
new concept of intuitionistic fuzzy multiset and used this idea in medical diagnosis.
Calude et al. [12] worked on multiset processing in 2001. Bakier et al. [9] intro-
duced the notion of soft rough topology with application to the medical diagnosis.
In 2012, Thivagar et al. [50] introduced a modern topology in medical events. In



Novel Concepts of Soft Multi Rough Sets with MCGDM for Selection of Humanoid Robot 113

1998, Kryskiewicz [26] initiate rough set approach to incomplete information sys-
tems. In 2016, Wang et al. [51] presented properties of multi-granularity soft rough
sets. In 2017, Pi-Yu Li et al. [34] presented some results On multi-soft rough sets.
Zhan et al. [58]-[61] introduced certain concepts of soft rough hemirings, Z-soft
fuzzy rough set model, soft rough covering, intuitionistic fuzzy rough sets and their
multi-criteria group decision making (MCGDM). In 2014, Zhang and Xu et al. [62]
established an extension of TOPSIS in multiple criteria decision making (MCDM)
by means of Pythagorean fuzzy sets. Zhang et al. [63] establish covering-based
generalized IF rough sets with their applications to multi-attribute decision-making
(MADM).
The goal of this analysis is to introduce soft multi rough set (SMR-set). The
SMR-set is suitable to find roughness of multi universe with parameters. In most
of the real world problems including multi universe we cannot deal with rough-
ness of parameterized multi data by using soft rough set. That is why soft multi
rough set (SMR-set) is most suitable model to find the roughness of parameterized
multi data.” We discuss application of soft multi rough sets in multi-criteria group
decision-making (MCGDM) in the artificial intelligence of humanoid robots.
In section 2, we introduce some basic ideas, which helps us to develop SMR-set the-
ory. In section 3, we combine soft multi set and rough set to find roughness of soft
multi set, which gives rise to new concepts of soft multi approximation spaces, soft
multi rough approximations and soft multi rough sets. We find some fundamental
properties of SMR-approximations and introduce several related concepts. SMR-
set infers a good solution to a problem with multiple circumstances and outcomes
by approximating the parameterized data. Section 4, implies the novel algorithms
based on SMR-set and gives a numerical example of decision-marking in the con-
tent of artificial intelligence. The validity of the proposed approach is checked by
applying two different algorithms yielding the same result. In end we compare both
algorithms. We conclude our work in section 5.

2. Preliminaries

This section include some basic definitions like soft set, multiset, power multiset,
power whole multiset, soft rough set, operations of multiset, soft multiset (SM-set),
operations of SM-set, and rough set.

Definition 2.1. [27] ”Let J be the universal set. Let I(J ) be the collection of
all subsets of J . The pair (Γ,L) is said to be a soft set over the initial universe
J , Here L ⊆ E and Γ : L → I(J ) is a set-valued mapping. We denote soft set as
(Γ,L) or ΓL and mathematically we write it as

ΓL = {(l, Γ(l)) : l ∈ L, Γ(l) ∈ I(J )}.
For any l ∈ L, Γ(l) is l-approximate elements of soft set ΓL. The set containing all
soft sets over J is denoted by S(J )”.

Example 2.2. Consider J = {x1, x2, x3, x4, x5, x6} be the set containing of six
different Light Bulbs and set of features is given by L = {l1, l2, l3, l4, l5} = E , where
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l1 = reasonable price,
l2 = emit a small amount of UV rays,
l3 = durable,
l4 = best choice for eye health,
l5 = less electricity consuming.

The soft set ΓL expresses the ”quality of Light Bulbs” that Mr. Zain want to buy.
Consider a mapping Γ : L → I(J ) such that

Γ(l1) = {x3, x5},
Γ(l2) = {x1, x2, x5},
Γ(l3) = {x2, x4, x5},
Γ(l4) = {x2, x3},
Γ(l5) = {x2, x3, x5}.

Then the soft set ΓL is the set of approximations.

The tabular form of soft set (Γ,L) is given in Table 1.

(Γ,L) x1 x2 x3 x4 x5

l1 0 0 1 0 1
l2 1 1 0 0 1
l3 0 1 0 1 1
l4 0 1 1 0 0
l5 0 1 1 0 1
Table 1. Soft set (Γ,L)

Definition 2.3. [32] ”Suppose we have a set of objects under observation J and an
indiscernibility relation < ⊆ J ×J which indicates our information about elements
of J . For sake of our convenience, we take < as an equivalence relation and denote
it as <(x). The pair (J ,<) is referred as approximation space. A subset Y of J is
taken to characterize it w.r.t <.

(1) The union of the particles entirely included in the set Y forms lower ap-
proximation of the set Y w.r.t <. mathematically defined as;

<(Y) =
⋃

x∈J
{<(x) : <(x) ⊆ Y}.

(2) The union of the granules having non-empty intersection with the set Y
forms upper approximation of the set Y w.r.t <. mathematically defined
as;

<(Y) =
⋃

x∈J
{<(x) : <(x) ∩ Y 6= ∅}.

(3) The difference between upper and lower approximation forms boundary
region of the set Y w.r.t <. mathematically defined as;

B<(Y) = <(Y)−<(Y).
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The set Y is said to be defined if <(Y) = <(Y). The set Y is (imprecise) rough set
w.r.t <, if <(Y) 6= <(Y) i.e BR(Y) 6= ∅.”
Example 2.4. Consider we have set of people J = {x1, x2, x3, x4, x5, x6, x7, x8, x9}
who are using certain mobile network. Suppose set of attributes as set of mobile
network features. Consider Y = {x1, x2, x3, x4, x5, x6, x7} ⊆ J and Ja Network as
indiscernibility relation. We present the information in tabular form, rows indicate
(objects) people, columns shows attributes and entries of table give attribute val-
ues. Such tables are known as information systems. We can see that {x1, x3} are
using Ja-Network. Table 2 shows that a person x2 is using Ja-Network while x7

is not using Ja-Network, and they have same mobile network features, so x2 and
x7 lies in boundary region. Hence lower approximation of the set w.r.t relation
’Ja-Network’ is <(Y) = {x1, x3} and the upper approximation of this set is the set
<(Y) = {x1, x2, x3, x7}, while boundary region is B<(Y) = <(Y) \ <(Y) ={x2, x7}.

People Good Signals Fast Internet Reasonable Call Charges Ja Network
x1 ✗ ✓ ✓ ✓
x2 ✓ ✗ ✓ ✓
x3 ✓ ✓ ✓ ✓
x4 ✓ ✓ ✗ ✗
x5 ✗ ✓ ✗ ✗
x6 ✓ ✗ ✗ ✗
x7 ✓ ✗ ✓ ✗

Table 2. Information system

Definition 2.5. [15] ”Consider a soft set S = (Γ,L) over the universe J , where
L ⊆ E and Γ is a function given as

Γ : L → I(J ).

Then the pair G = (J ,S) is called a soft approximation space. Following the soft
approximation space G, we get two approximations to every subset Y ⊆ J given
by

apr
G?

(Y) = {x ∈ J : ∃l ∈ L, x ∈ Γ(l) ⊆ Y},

aprG
?(Y) = {x ∈ J : ∃l ∈ L, x ∈ Γ(l) ∩ Y 6= ∅},

which we call soft G-lower approximation and soft G-upper approximation of Y
respectively. Generally, apr

G?
(Y) and aprG

?(Y) are called SR-approximations of
Y w.r.t G. If apr

G?
(Y) 6= aprG

?(Y) then Y is said to be soft G-rough set otherwise
soft G-definable”.
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Example 2.6. Let J = {x1, x2, x3, x4, x5}, E = {l1, l2, l3, l4, l5, l6} and L =
{l1, l2, l3, l4} ⊆ E . Let S = (Γ,L) is soft set over J and

Γ(l1) = {x2, x3},
Γ(l2) = {x2, x4, x5},
Γ(l3) = {x1, x2, x5},
Γ(l4) = {x3, x5}.

The tabular form of soft set (Γ,L) is given in Table 3. Then we obtain soft approx-
imation space G = (J ,S).

(Γ,L) x1 x2 x3 x4 x5

l1 0 1 1 0 0
l2 0 1 0 1 1
l3 1 1 0 0 1
l4 0 0 1 0 1
Table 3. Soft set (Γ,L)

For Y = {x3, x4, x5} ⊆ J , we obtain apr
G?

(Y) = {x3, x5} and aprG
?(Y) =

{x1, x2, x3, x4, x5}.
Since apr

G?
(Y) 6= aprG

?(Y) and hence Y is said to be a soft G-rough set.

Definition 2.7. ”Let J be a set. A pair < J , CU > is said to be multiset, where
Count U or CU is a function defined as

CU : J → W
and W is a set of whole numbers. Here CU(x) is the number of occurrences of the
element x in the multiset U
In other words a set consist of unordered collection of objects or repetition of ob-
jects is allow in set is called Multiset. A multiset U is defined as:

U =< J , CU >=
[

s1

x1
,
s2

x2
,
s3

x3
, ...,

sn

xn

]

Here x1 occurring s1 times, x2 occurring s2 times and so on” (See [49]).

Example 2.8. Consider J = {x1, x2, x3, x4, x5, x6} be a crisp set of chairs. Then
M =

[
s1
x1

, s2
x2

, s3
x3

, s4
x4

, s5
x5

, s6
x6

]
is a multiset of chairs under consideration, here si

represent multiplicity of xi, i = 1, 2, ..., 6.

Definition 2.9. [49] ”The power set of an multiset U is denoted by P (U) and
defined as the set of all sub-multisets of U . The cardinality of the power set P (U)
of U is

card(P (U)) =
∏

x∈U
(f(x) + 1)

Where f(x) is the multiplicity of x.
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Definition 2.10. [49] Let [N ]m denotes the set of all multisets whose elements are
in N such that no element in an multiset occurs more than m times.
Let U ∈ [N ]m be a multiset. The power whole multiset of U denoted by PW (U) is
defined
as the set of all whole sub-multisets of U . The cardinality of PW (U) is

card(PW (U)) = 2n,

Where n is the cardinality of the support set (root set) of U”.

We use basic operations on multiset as defined in [49].

Definition 2.11. Let U be an the initial universal multiset, E be a set of parame-
ters, PW (U) be a power whole multiset of U and L ⊆ E . Then an ordered pair
S = (Ξ,L) is called a soft multiset (SM-set), where

Ξ : L → PW (U).

In other words, a soft multiset over U is a parameterized family of whole submulti-
sets of U . Also the set of all soft multisets over U with parameters from E is denoted
by SM(U)” (See [8]).

Example 2.12. Let U =
[

s1
x1

, s2
x2

, s3
x3

, s4
x4

, s5
x5

, s6
x6

]
be an universal multiset repre-

senting microwave oven of different companies, where x1 = Dawlance, x2 = Haier,
x3 = Homage, x4 = PEL, x5 = LG, x6 = Samsung, and
E = {Power consumption, Auto Cook Menu, Timer, Defrost, Reasonable price,
Child lock} be the set of all attribute.
Let L = {Power consumption, Auto Cook Menu, Timer, Reasonable Price, } ⊆ E .
Then the soft multiset ΞE defined below describe the attractiveness of microwave
oven under consideration,

Ξ(Power comsumption) =
[

s1

x1
,
s3

x3

]
,

Ξ(Auto Cook Menu) =
[

s2

x2
,
s3

x3
,
s5

x5

]
,

Ξ(Timer) =
[

s1

x1
,
s6

x6

]
,

Ξ(Reasonable Price) =
[

s3

x3
,
s5

x5
,
s6

x6

]
.

The tablur form of soft multi set (Ξ,L) is given in Table 4.
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(Ξ,L) s1
x1

s2
x2

s3
x3

s4
x4

s5
x5

s6
x6

Power comsumption 1 0 1 0 0 0
Auto Cook Menu 0 1 1 0 1 0

Timer 1 0 0 0 0 1
Reasonable Price 0 0 1 0 1 1

Table 4. Soft multi set (Ξ,L)

3. Soft Multi Rough Set

In this section, we introduce the novel concept of soft multi rough set (SMR-set).
When we are dealing with approximations of parameterized crisp data we use soft
rough set but when we want to deal with approximations of parameterized multi
data then this SMR-set model is very suitable for this situation. Soft multi rough
set describes the roughness of soft multi set. We also define comparison analysis
between some fundamental properties of approximations of Pawlak space, Soft space
and Soft multi space.

Definition 3.1. Consider a soft multi set S = (ξ,L) over the universe of multiset
U and E be a set of parameters. Where L ⊆ E and ξ is a function given as

ξ : L → PW (U).

Then the pair P = (U ,S) is called a soft multi approximation space. Following
the soft multi approximation space P , we get two approximations to every whole
sub-multiset Y ⊆ U given by

apr
P

(Y) = { s

x
∈ U : ∃ l ∈ L,

[ s

x
∈ ξ(l) ⊆ Y

]
},

aprP (Y) = { s

x
∈ U : ∃ l ∈ L,

[ s

x
∈ ξ(l) ∩ Y 6= ∅

]
},

which we call soft multi P-lower approximation and soft multi P-upper approxima-
tion of Y. Generally, apr

P
(Y) and aprP (Y) are called SMR-approximations of Y

w.r.t P. If apr
P

(Y) 6= aprP (Y) then Y is said to be soft multi P-rough set otherwise
soft multi P-definable. Also, Soft multi P-positive region set, Soft multi P-negative
region set and Soft multi P-boundary region set are defined as follows
PoSP (Y) = apr

P
(Y)

NegP (Y) = −aprP (Y)
BndP (Y) = aprP (Y)− apr

P
(Y).

Example 3.2. Suppose that U =
[

3
x1

, 1
x2

, 2
x3

]
be universal multiset of dresses

under consideration, where 3, 1 and 2 is the multiplicity of dresses x1, x2 and x3,
respectively.
Let E = {modern style, reasonable price, comfortable, durable, digital printing,
expensive} and L = {modern style, reasonable price, comfortable, durable, digital
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priniting}⊆ E . Let S = (ξ,L) be soft multi set over U .
Since the cardinality of multiset U is as follows:

Card(P (U)) = (3 + 1)(1 + 1)(2 + 1)
= 4.2.3
= 24

All sub-multisets of multiset U or P (U) are as follows:

S1 =
[

0
x1

, 0
x2

, 0
x3

]
, S2 =

[
3
x1

, 0
x2

, 0
x3

]
, S3 =

[
2
x1

, 0
x2

, 0
x3

]

S4 =
[

1
x1

, 0
x2

, 0
x3

]
, S5 =

[
0
x1

, 1
x2

, 0
x3

]
, S6 =

[
0
x1

, 0
x2

, 2
x3

]

S7 =
[

0
x1

, 0
x2

, 1
x3

]
, S8 =

[
3
x1

, 1
x2

, 0
x3

]
, S9 =

[
2
x1

, 1
x2

, 0
x3

]

S10 =
[

1
x1

, 1
x2

, 0
x3

]
, S11 =

[
3
x1

, 0
x2

, 2
x3

]
, S12 =

[
0
x1

, 1
x2

, 2
x3

]

S13 =
[

0
x1

, 1
x2

, 1
x3

]
, S14 =

[
2
x1

, 1
x2

, 2
x3

]
, S15 =

[
2
x1

, 1
x2

, 1
x3

]

S16 =
[

1
x1

, 1
x2

, 2
x3

]
, S17 =

[
1
x1

, 1
x2

, 1
x3

]
, S18 =

[
3
x1

, 1
x2

, 1
x3

]

S19 =
[

2
x1

, 0
x2

, 2
x3

]
, S20 =

[
2
x1

, 0
x2

, 1
x3

]
, S21 =

[
1
x1

, 0
x2

, 2
x3

]

S22 =
[

1
x1

, 0
x2

, 1
x3

]
, S23 =

[
3
x1

, 0
x2

, 1
x3

]
, S24 =

[
3
x1

, 1
x2

, 2
x3

]

The cardinality of power whole multiset U is as follows:

card(PW (U)) = 23

= 8

Now the PW (U) = {S1, S2, S5, S6, S8, S11, S12, S24} and ξ : L → PW (U). Then
the soft multiset ξL defined below describe the attractiveness of dress under con-
sideration,

ξ(modern style) = S2 =
[

3
x1

,
0
x2

,
0
x3

]
,

ξ(reasonable price) = S5 =
[

0
x1

,
1
x2

,
0
x3

]
,

ξ(comfortable) = S8 =
[

3
x1

,
1
x2

,
0
x3

]
,

ξ(durable) = S24 =
[

3
x1

,
1
x2

,
2
x3

]
,

ξ(digital priniting) = S2 =
[

3
x1

,
0
x2

,
0
x3

]
.

The tabular form of soft multi set S = (ξ,L) is given in Table 4. Then we obtain
soft multi approximation space P = (U ,S).
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(ξ,L) 3
x1

1
x2

2
x3

modern style 1 0 0
reasonable price 0 1 0

comfortable 1 1 0
durable 1 1 1

digital priniting 1 0 0

Table 5. Soft Multi Set (ξ,L)

For whole sub-multiset Y =
[

3
x1

, 2
x3

]
⊆ U , we obtain apr

P
(Y) =

[
3
x1

]
and aprP (Y) =[

3
x1

, 1
x2

, 2
x3

]
. Thus apr

P
(Y) 6= aprP (Y) and Y is a soft multi P-rough set. Here

PosP (Y) = {
[

3
x1

]
}, NegP (Y) = ∅ and BndP (Y) =

[
1
x2

, 2
x3

]
.

If apr
P

(Y) = aprP (Y) then Y is said to be a soft multi P-definable set.

Remark:
Its clear from above example the approximations of SMR-set are multi sets. So the
operations use in SMR-set are multi operations.

3.1. Proposition. Let S = (ξ,L) be a soft multi set over U and P = (U ,S) a soft
multi approximation space. Then we have

apr
P

(Y) =
⋃

l∈L
{ξ(l) : ξ(l) ⊆ Y}

aprP (Y) =
⋃

l∈L
{ξ(l) : ξ(l) ∩ Y 6= ∅}

for all whole sub-multiset Y ⊆ U .
Suppose that S = (ξ,L) is a soft multi set over multiset U and P = (U ,S) is a
corresponding soft multi approximation space. One can verify that soft multi rough
approximations satisfy the following properties:

(i) apr
P

(∅) = aprP (∅) = ∅
(ii) apr

P
(U) = aprP (U) =

⋃
l∈L ξ(l)

(iii) apr
P

(X ∩ Y) ⊆ apr
P

(X ) ∩ apr
P

(Y)
(iv) apr

P
(X ∪ Y) ⊇ apr

P
(X ) ∪ apr

P
(Y)

(v) aprP (X ∪ Y) = aprP (X ) ∪ aprP (Y)
(vi) aprP (X ∩ Y) ⊆ aprP (X ) ∩ aprP (Y)
(vii) X ⊆ Y ⇒ apr

P
(X ) ⊆ apr

P
(Y)

(viii) X ⊆ Y ⇒ aprP (X ) ⊆ aprP (Y)

Example 3.3. We verify above soft multi rough approximations properties by
considering following example. Let U =

[
2
x1

, 1
x2

, 2
x3

, 1
x4

]
be a multi universe and

S = (ξ,L) a soft multi set over multi set U , where L = {l1, l2, l3, l4, l5}, is set of
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parameter

ξ(l1) =
[

2
x1

]
,

ξ(l2) =
[

2
x1

,
2
x3

]
,

ξ(l3) =
[

1
x2

,
2
x3

,
1
x4

]
,

ξ(l4) =
[

1
x2

,
1
x4

]
,

ξ(l5) =
[

2
x1

,
1
x2

,
2
x3

]
.

Then P = (U ,S) is soft multi approximation space. The tabular form of soft multi
set S = (ξ,L) is given in Table 6.

(ξ,L) 2
x1

1
x2

2
x3

1
x4

l1 1 0 0 0
l2 1 0 1 0
l3 0 1 1 1
l4 0 1 0 1
l5 1 1 1 0

Table 6. Soft Multi Set (ξ,L)

Its obvious property (i) and (ii) hold.
(iii) Suppose X =

[
2
x1

, 1
x2

, 1
x4

]
⊆ U and Y =

[
2
x1

, 2
x2

]
⊆ U . So X ∩ Y =

[
2
x1

]
and

apr
P

(X ∩Y) =
[

2
x1

]
. Also apr

P
(X ) =

[
2
x1

, 1
x2

]
, apr

P
(Y) =

[
2
x1

, 2
x3

]
and apr

P
(X )∩

apr
P

(Y) =
[

2
x1

]
. Its clear property (iii) hold as apr

P
(X ∩Y) ⊆ apr

P
(X )∩apr

P
(Y).

(iv) We have X ∪ Y =
[

2
x1

, 1
x2

, 2
x3

, 1
x4

]
and apr

P
(X ∪ Y) =

[
2
x1

, 1
x2

, 2
x3

, 1
x4

]
. Also

apr
P

(X ) =
[

2
x1

, 1
x2

]
, apr

P
(Y) =

[
2
x1

, 2
x3

]
and apr

P
(X ) ∪ apr

P
(Y) =

[
2
x1

, 1
x2

, 2
x3

]
.

So property (iv) satisfy.
(v) As aprP (X ∪ Y) = U , aprP (X ) = U , aprP (Y) = U and aprP (X ) ∪ aprP (Y).
Hence this property also satisfy.
(vi) While aprP (X ) ∩ aprP (Y) = U and aprP (X ∩ Y) =

[
2
x1

, 1
x2

, 2
x3

]
. Therefore

property (vi) proved here.
For property (vii) and (viii), we take Y =

[
2
x1

, 1
x2

, 1
x4

]
⊆ U and X =

[
2
x1

, 1
x2

]
⊆ U .

As X ⊆ Y, apr
P

(X ) =
[

2
x1

]
and apr

P
(Y) =

[
2
x1

, 1
x2

]
. Consequently it is clear

X ⊆ Y ⇒ apr
P

(X ) =
[

2
x1

]
⊆ apr

P
(Y) =

[
2
x1

, 1
x2

]
.
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Again if X ⊆ Y, aprP (X ) =
[

2
x1

]
and aprP (Y) =

[
2
x1

, 1
x2

]
. It is clear X ⊆ Y ⇒

aprP (X ) = U ⊆ aprP (Y) = U . All properties proved here successfully by the help
of example.

3.2. Comparison Analysis. Consider the soft multi approximation space P =
(U ,S), where S = (ξ,L) is soft multi set over multiset U . The following Table 7
indicates some deviations between Pawlak space, Soft space and Soft multi space
on some properties of lower and upper approximations.

Pawlak Space <(U) = <(U) = U
<(X ∩ Y) = <(X ) ∩ <(Y)
-
<(X ∪ Y) = <(X ) ∪ <(Y)
-

Soft Space apr
P ?

(Y) = aprP
?(Y) =

⋃
l∈L Γ(l)

apr
P ?

(X ∩ Y) ⊆ apr
P ?

(X ) ∩ apr
P ?

(Y)
apr

P ?
(X ∪ Y) ⊇ apr

P ?
(X ) ∪ apr

P ?
(Y)

aprP
?(X ∪ Y) = aprP

?(X ) ∪ aprP
?(Y)

aprP
?(X ∩ Y) ⊆ aprP

?(X ) ∩ aprP
?(Y)

Soft Multi Space apr
P

(U) = aprP (U) =
⋃

l∈L ξ(l)
apr

P
(X ∩ Y) ⊆ apr

P
(X ) ∩ apr

P
(Y)

apr
P

(X ∪ Y) ⊇ apr
P

(X ) ∪ apr
P

(Y)
aprP (X ∪ Y) = aprP (X ) ∪ aprP (Y)
aprP (X ∩ Y) ⊆ aprP (X ) ∩ aprP (Y)

Table 7. Comparison Analysis

3.3. Proposition. Let S = (ξ,L) be a soft multi set over multiset U and P = (U ,S)
a soft multi approximation space. Then for any whole sub-multiset Y ⊆ U , Y is
soft multi P-definable if and only if aprP (Y) ⊆ Y.
Proof
Firstly if Y is soft multi P-definable, then apr

P
(Y) = aprP (Y), and so apr

P
(Y) =

aprP (Y) ⊆ Y.
Conversely, suppose that aprP (Y) ⊆ Y for Y ⊆ U . To show that Y is soft P-
definable, we only need to prove that aprP (Y) ⊆ apr

P
(Y) since the reverse in-

equality is trivial. Let s
x ∈ aprP (Y). Then s

x ∈ ξ(l) and ξ(l) ∩ Y 6= ∅ for some
l ∈ L. It follows that s

x ∈ ξ(l) ⊆ aprP (Y) ⊆ Y. Hence s
x ∈ apr

P
(Y), and so

aprP (Y) ⊆ apr
P

(Y) as required.

3.4. Theorem. If S = (ξ,L) be a soft multi set over multiset U and P = (U ,S) be
soft multi-approximation space. Then following hold:

(1) apr
P

(aprP (Y)) = aprP (Y)
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(2) aprP (apr
P

(Y)) ⊇ apr
P

(Y)
(3) apr

P
(apr

P
(Y)) = apr

P
(Y)

(4) aprP (aprP (Y)) ⊇ apr
P

(Y)
for all Y ⊆ U
Proof :

(1) If X = aprP (Y) and s
x ∈ X . Then s

x ∈ ξ(l) 6= ∅ for some l ∈ L. By using
Proposition 3.1 X = aprP (Y) =

⋃
l∈L{ξ(l) : ξ(l) ∩ Y 6= ∅}. So, ∃l ∈ L such

that s
x ∈ ξ(l) ⊆ X . Hence s

x ∈ apr
P

(X ), and so X ⊆ apr
P

(X ). Also, we
know that for any X ⊆ U , apr

P
(X ) ⊆ X holds. From this we obtain our

required result which is X = apr
P

(X ).
(2) If X = apr

P
(Y) and s

x ∈ X . Then s
x ∈ ξ(X ) for some l ∈ L. Since

by Proposition 3.1 Y = aprP (X ) =
⋃

l∈L{ξ(l) : ξ(l) ∩ Y}. We obtain that
s
x ∈ ξ(l) and ξ(l)∩X = ξ(l) 6= ∅. Hence s

x ∈ aprP (X ), and so X ⊆ aprP (X ).
(3) Consider X = apr

P
(Y) and s

x ∈ X . Then s
x ∈ ξ(X ) for some l ∈ L. But

X = apr
P

(Y) =
⋃

l∈L{ξ(l) : ξ(l)∩Y}. We deduce that s
x ∈ ξ(l) ⊆ X forl ∈

L. Thus s
x ∈ apr

P
(X ), and so X ⊆ apr

P
(X ).Also apr

P
(X ) ⊆ X for any

Y ⊆ U . Hence X = apr
P

(X ).
(4) Consider X = aprP (Y) and s

x ∈ ξ(l). Then s
x ∈ ξ(l) and ξ(l) ∩ Y 6= ∅ for

some l ∈ L. But X = aprP (Y) =
⋃

l∈L{ξ(l) : ξ(l) ∩ Y 6= ∅}, this implies
s
x ∈ ξ(l) and ξ(l) ∩ X 6= ∅. Thus, s

x ∈ aprP (X ) and then X ⊆ aprP (X ).

4. SMR-set in multi-criteria group decision-making problem for the
selection of humanoid robots

In this section we present the technique of SMR-set in object estimation and
multi-criteria group decision-making. Consider U =

[
s1
x1

, s2
x2

, s3
x3

, ..., sn

xn

]
be the

multi-set of objects under observation, E be the set of criterions to find the ob-
jects in U . Here s1 is the multiplicity of x1, s2 is the multiplicity of x2 and so
on. Suppose L ⊆ E . We take a soft multi set S = (ξ,L) for real worlds prob-
lems. For the sake of betterment we take full soft multi set over U . Consider
Z = {D1,D2,D3, ..., Dn} be the set consisting to decision makers who examine the
objects to identify the possible solution and Xi be the initial estimation derived
by members of experts Di which is express by the soft multi set Ω = (ω,S). To
get better results we find out SMR-approximation of initial estimated results Xi

according to soft multi-approximation space P = (U ,S), consequently we obtain
two soft multi sets Ω? = (ω?,S) and Ω? = (ω?,S). Following these soft multi sets
define fuzzy multi sets uΩ?(

[
sk

xk

]
), uΩ(

[
sk

xk

]
) and uΩ?(

[
sk

xk

]
) defined as:

uΩ?(
[

sk

xk

]
) = 1

n

n∑
i=1

Cω?Di
(
[

sk

xk

]
),

uΩ(
[

sk

xk

]
) = 1

n

n∑
i=1

CωDi
(
[

sk

xk

]
),

uΩ
?(

[
sk

xk

]
) = 1

n

n∑
i=1

Cω?Di
(
[

sk

xk

]
).

Soft multi-set and fuzzy results are then combined.
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Suppose C = {not recommended, recommended,highly recommended} is the set of
parameters. Define fuzzy soft multi set R(γ,C) over U as
γ(not recommended) = uΩ

?

γ(recommended) = uΩ

γ(highly recommended) = uΩ?

Calculate the choice value ci corresponding to each object
[

sk

xk

]
as: ci =

∑
j

[
sij

xij

]

Here sij is the multiplicity of xij . At the end we are in position to choose the
favorable substitute having maximum choice value ci.

Algorithm 1:

The strategy of the algorithm is given as:
Input
Step-1: Write the soft multi-set S = (ξ,L) which describes the given data.
Step-2: Based on initial estimated results of the group of advisers Z, define a soft
multi-set.
Step-3: Obtain SMR-approximations in the form of soft multi sets Ω? = (ω?,Z)
and Ω? = (ω?,Z).
Step-4: Define fuzzy multi sets uΩ?, uΩ and uΩ

? corresponding to the soft multi
sets Ω? = (ω?,Z), Ω = (ω,Z) and Ω? = (ω?,Z).
Step-5: Characterize the recommended level of experts in the form of parameter
set
C={not recommended,recommended,highly recommended}.
Step-6: Define fuzzy soft multi set R(γ, C) over U using fuzzy multi sets uΩ?, uΩ

and uΩ
?.

Output
Step-7: Calculate choice value ci for each object. Select the object having maxi-
mum choice value.

Case Study:
In this problem we consider case of Artificial Intelligence. It is clear from the name
Artificial means Fake and Intelligence means understanding, sense or brainpower.
Artificial Intelligence(AI) is basically a ability of a computer program or a machine
to think, learn or act like human. Best advantage of AI is that machines don,t
require sleep or break.
In this modern era, we are using AI in different fields of life like Agriculture, Cars,
Education, Healthcare and of course in security system. Common examples of AI
software are Siri Siri in iphone, Tesla in smart phones and automobiles, Delta Cars,
Flying Drones, Robots and Humanoid Robots.
In 1920 Czech writer Karel Capek published a science fiction play named ”Rossum,s
Uuniversal Robots” also named as (RUR).
In this problem our area of interest is humanoid robots, so we talk about AI of hu-
manoid robots only. Humanoid means resembles with human. So simply humanoid
robot may be defined as a robot that resembles or looks like a human and having
characteristic like ability to walk, talk, facial expression and eye contact just like
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human. First recorded designs of humanoid robot was made by Leonardo da Vinci
(1452-1519) around in 1495.
Some known humanoid robots names are Sophia robot, Han robot, Actroid robot,
Albert Einstein Hubo robot, Erica robot, Alice robot, Jia Jia robot and many others.
The detail infomation about Sophia robot, Actroid robot, Erica robot and Jia Jia
robot are given below:

Start Input a multiset of
objects

Input set of

ExpertsZ

criterionsL

Input set of

Construct a soft multi
setS = (ξ,L)

Define a soft multi set of experts

initial assessment(Ω = (ω,Z))

Obtain SMR-approximations in the

Define fuzzy multi sets
uΩ?, uΩ anduΩ

?

Construct fuzzy soft multi set
R(γ, C) using fuzzy multi sets

uΩ?, uΩ anduΩ
?

Calculate choice valueci

for each object

Stop

form of soft multi sets
Ω? = (ω?,Z) andΩ? = (ω?,Z)

Input parameter set of
experts recommendation
levelC = {NR,R, HR}

Select

choice value

the object having

maximum

Figure 1. Graphical representation of Algorithm 1

Sophia: Sophia was first activated on April 19, 2015 in Hong Kong Japan. She is
also a world first humanoid robot who receive the citizenship from Saudi Arabia.
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She has seven siblings. Sophia humanoid robot can walk also.

Figure 2. Sophia Humanoid Robot

Erica: Erica is humanoid robot made in Japan. Erica, is developed by Hiroshi, the
director of the Intelligent Robotics Laboratory at Osaka University Japan. This
robot use first time as News Anchor in Japan.

Figure 3. Erica Humanoid Robot

Jia Jia: Jia jia humanoid robot is made by China. Jia jia is first chinese humanoid
robot. She looks fairly realistic, with a flexible plastic face.

Figure 4. Jia Jia Humanoid Robot



Novel Concepts of Soft Multi Rough Sets with MCGDM for Selection of Humanoid Robot 127

Actroid: In 2003 Actroid first version come in market. But with the passage of
time Japan make improvement in Actroid robot. Best quality of this humanoid
robot is that it seems like breathing which look realistic.

Figure 5. Actroid Humanoid Robot

Example 4.1. Now we apply the concept of SMR-set for the selection of humanoid
robots for hotel staff members. Suppose a multinational hotels company name JAL
Hotels Company decided to have AI humanoid robot staff members in their hotels.
For this purpose the CEO of the company contact with three Artificial Intelligence
experts to decide which humanoid robot is better as hotel staff.
Consider a multi set of Humanoid Robots

U =
[
20
x1

,
30
x2

,
25
x3

,
35
x4

]

for the selection as a hotels staff member. Here the multiplicity of humanoid robots
denotes the number of robots that are required as a staff in hotels.
Let L = {e1, e2, e3, e4} be the set of features considered for humanoid robots where,

e1 = Facial Recognition,

e2 = Conversations Skills,

e3 = Movable,

e4 = Affordable Price.

Construct a soft multi set S = (ξ,L) which specify the Artificial Intelligence of
humanoid robots. Consider a team of AI experts Z = {D1, D2, D3} to evaluate the
Artificial Intelligence of robots in U . The tabular form of soft multi set S = (ξ,L)
is given in Table 8.
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[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

e1 0 1 0 1
e2 1 0 1 0
e3 0 1 0 1
e4 0 1 1 0

Table 8. Soft multi set S = (ξ,L)

Let Xi be the initial estimated results of the experts team. We represent this
evaluation by means of soft multi-set Ω = (ω,Z) whose tabular representation is
given in Table 9.

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 1 0 0 1
D2 0 1 0 1
D3 1 1 1 0

Table 9. Soft multi set Ω = (ω,Z)

From this soft multi set Ω = (ω,Z) initial evaluated result of experts are

X1 = ω(D1) =
[

20
x1

, 35
x4

]
,

X2 = ω(D2) =
[

30
x2

, 35
x4

]
,

X3 = ω(D3) =
[

20
x1

, 30
x2

, 25
x3

]
.

Now we find out the SMR-approximation as

ω?(D1) = apr
P

(X1) = [∅] ,
ω?(D2) = apr

P
(X2) =

[
30
x2

, 35
x4

]
,

ω?(D3) = apr
P

(X3) =
[

20
x1

, 30
x2

, 25
x3

]

and

ω?(D1) = aprP (X3) =
[

20
x1

, 30
x2

, 25
x3

, 35
x4

]
,

ω?(D2) = aprP (X3) =
[

30
x2

, 25
x3

, 35
x4

]
,

ω?(D3) = aprP (X3) =
[

20
x1

, 30
x2

, 25
x3

, 35
x4

]
.

Following these SMR-approximations, we get two soft multi sets Ω? = (ω?,Z) and
Ω? = (ω?,Z) where, ω?(Di) = apr

P
(Xi) and ω?(Di) = aprP (Xi).

Tabular representation of soft multi sets Ω? = (ω?,Z) and Ω? = (ω?,Z) are given
in Table 10 and Table 11.
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[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 0 0 0 0
D2 0 1 0 1
D3 1 1 1 0

Table 10. Soft multi set Ω?

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 1 1 1 1
D2 0 1 1 1
D3 1 1 1 1

Table 11. Soft multi set Ω?

Now we define fuzzy multi sets uΩ?(
[

sk

xk

]
), uΩ(

[
sk

xk

]
) and uΩ

?(
[

sk

xk

]
) as follows

uΩ?(
[

sk

xk

]
) =

1
3

3∑

i=1

Cω?Di
(Pk),

uΩ(
[

sk

xk

]
) =

1
3

3∑

i=1

CωDi
(Pk),

uΩ
?(

[
sk

xk

]
) =

1
3

3∑

i=1

Cω?Di
(Pk),

uΩ?(
[

sk

xk

]
) = {(

[
20
x1

]
,
1
3
), (

[
30
x2

]
,
2
3
), (

[
25
x3

]
,
1
3
), (

[
35
x4

]
,
1
3
)},

uΩ(
[

sk

xk

]
) = {(

[
20
x1

]
,
2
3
), (

[
30
x2

]
,
2
3
), (

[
25
x3

]
,
1
3
), (

[
35
x4

]
,
2
3
)},

uΩ
?(

[
sk

xk

]
) = {(

[
20
x1

]
,
2
3
), (

[
30
x2

]
, 1), (

[
25
x3

]
, 1), (

[
35
x4

]
, 1)}.

Suppose C = {NR,R,HR} be the set of parameters by AI experts which represents
“Not Recommended“, “Recommended“ and “Highly Recommended“. Then we get
the fuzzy soft multi set R(γ, C) over U by setting
γ(NR) = uΩ? ,
γ(R) = uΩ

and
γ(HR) = uΩ? .



130 Muhammad Riaz, Iqra Nawaz and Mahwish Sohail

Calculating choice value corresponding to each humanoid robot. Fuzzy soft multi
set R(γ, C) with estimated values is given in Table 12.

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

Not Recommended 2/3 1 1 1
Recommended 2/3 2/3 1/3 2/3

Highly Recommended 1/3 2/3 1/3 1/3
choice value ci 1.6 2.3 1.6 2

Table 12. R(γ, C)

From table we can arrange all the alternatives according to their choice evaluation
values: [

30
x2

]
Â

[
35
x4

]
Â

[
25
x3

]
º

[
20
x1

]
.

Thus,
[

30
x2

]
is the robot to be selected for the hotels staff member.

0

1

2decision value
1.6

2.3
2

1.6

20
x1

30
x2

25
x3

35
x4

Humanoid Robots

3

Figure 6. Bar chart of Algorithm 1

Algorithm 2

The scheme of the algorithm is given as:
Step-1: Write the soft multi set S = (ξ,L) which describes the given data.
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Step-2: Based on initial assessment results of the group of analyst Z, define a soft
multi set.
Step-3: Obtain SMR-approximations in the form of soft multi sets Ω? = (ω?,Z)
and Ω? = (ω?,Z).
Step-4: Find choice value for all selected soft multi sets Ω? = (ω?,Z), Ω = (ω,Z)
and Ω? = (ω?,Z).
Step-5: Find the decision set by adding all the choice values of obtained soft multi
sets.
Step-6: Characterize the recommendation level of experts in the form of parameter
set C = {not recommended, recommended, highly recommended}.
Input the weighting vector W = (wNR, wR, wHR) and compute the weighted eval-
uation value for each object.
Step-7: Find the decision set by adding all the weighted values

∑
i wi.Choose the

object having maximum value.

Start Input multiset of
objects

Input set of
criterionsE

Input set of
ExpertsZ

Construct a soft multi set
S = (ξ,L)

Define a soft multi set of experts
initial assessment(Ω = (ω,Z)

Obtain SMR-approximations in the
form of soft sets

Ω∗ = (ω∗,Z) andΩ∗ = (ω∗,Z)

Find choice value for selected soft multiset

Ω∗ = (ω∗,Z), Ω = (ω,Z) andΩ∗ = (ω∗,Z)

Find the decision set by
adding all choice values

Input parameter set of
experts recommendation
C = {NR, R, HR}

Input weighting vector

Compute weighted choice value
for each object

Find decision set by
adding weighted choice values

Stop the object having
Select

maximum value

Figure 7. Graphical representation of Algorithm 2
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Example 4.2. Consider Example 4.1. First three steps same as done by algorithm
1. Find choice value for all selected soft multi sets Ω? = (ω?,Z), Ω = (ω,Z) and
Ω? = (ω?,Z). Choice value for soft multi sets Ω? = (ω?,Z), Ω = (ω,Z) and
Ω? = (ω?,Z) are given in Table 13, Table 14 and Table 15.

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 0 0 0 0
D2 0 1 0 1
D3 1 1 1 0

choice value c1 1 2 1 1

Table 13. Choice value for soft multi set Ω?

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 1 0 0 1
D2 0 1 0 1
D3 1 1 1 0

choice value c2 2 2 1 2

Table 14. Choice value for soft multi set Ω

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

D1 1 1 1 1
D2 0 1 1 1
D3 1 1 1 1

choice value c3 2 3 3 3

Table 15. Choice value for soft multi set Ω?

Now, we find the decision table by adding choice values for each humanoid robot.
Choice values for each humanoid robot is given in Table 16.

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

c1 1 2 1 1
c2 2 2 1 2
c3 2 3 3 3

final choice value 5 7 5 6

Table 16. Choice value
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Let C = {not recommended, recommended, highly recommended} be the set of
parameters. Suppose that weighting vector W = (wNR, wR, wHR) = (.2, .3, .5).
Calculate weighted choice value for each robot. Find the decision set by adding all
the weighted values

∑
i wi. Final weighted choice value is given in Table 17.

[
20
x1

] [
30
x2

] [
25
x3

] [
35
x4

]

notrecommended = {NR}(.2) 1 1.4 1 1.2
recommended = {R}(.3) 1.5 2.1 1.5 1.8

highlyrecommended = {HR}(.5) 2.5 3.5 2.5 3
final weighted choice value=Wc 5 6.7 5 5.5

Table 17. Final weighted choice value

Select the robot having maximum final weighted choice value. we can arrange all
the humanoid robots according to their choice evaluation values:

[
30
x2

]
Â

[
35
x4

]
Â

[
25
x3

]
º

[
20
x1

]
.

Thus,
[

30
x2

]
is the robot to be selected for the hotel stuff member.

0

3

6decision value
5

6.7
5.5

5

20
x1

30
x2

25
x3

35
x4

Humanoid Robots

9

Figure 8. Bar chart of Algorithm 2



134 Muhammad Riaz, Iqra Nawaz and Mahwish Sohail

Comparison Analysis:
Since both algorithms yields the same result. So both algorithms are valid and
strong we can use any algorithm according to our decision marking problem. Also
both algorithms have different formulation strategies we can produced lightly dif-
ferent results but the final optimal choices would same in any decision marking
problem. Table 18 gives the comparison analysis between Algorithm 1 and Algo-
rithm 2.

Algorithms Alternative selected Analysis

Algorithm 1
[

30
x2

]
Final result remains same

Algorithm 2
[

30
x2

]
Final result remains same

Table 18. Comparison Analysis

Remark:
(i) It is great significance mention here that both algorithms as given above

give the same result.
(ii) In this models we can notice that the use of SMR- scientific procedure refines

the primary evaluation results and permit the experts to choose the optimal
alternative in a suitable manner. Incredibly, SMR-upper approximation can
be used to add the optimal objects possibly neglected by the experts in
primary evaluation while SMR- lower approximation can be used to remove
the objects that are asymmetrically selected as optimal. Hence SMR-reduce
the error to some extent caused by personal nature of analyst during group
decision-making.

5. Conclusion

We introduced novel concept of soft multi rough set (SMR-set) with a fasci-
nating fusion of soft set, multiset and rough set. We proposed soft multi rough
approximation spaces (SMR-approximations spaces). We presented some funda-
mental properties of SMR-approximations along with their examples and results.
We also discussed the variation between some properties of Pawlak approximation
space, soft approximation spaces and the same properties of soft multi approxima-
tion spaces. Furthermore, we presented Algorithm 1 and Algorithm 2 based on soft
multi rough sets for multi-criteria group decision-making (MCGDM) for the selec-
tion of humanoid robot and to deal with vagueness and uncertainties in the field of
artificial intelligence.

References

[1] M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant
N-soft sets, Expert System With Applications, 115(2019), 95-105.

[2] M. Akram, A. Adeel, J. C. R. Alcantud, Fuzzy N-soft sets: A novel model with applications,
Journal of Intelligent & Fuzzy Systems, 35(4)(2018), 4757-4771.



Novel Concepts of Soft Multi Rough Sets with MCGDM for Selection of Humanoid Robot 135

[3] M. Akram, F. Feng, A. B. Saeid and V. Leoreanu-Fotea, A new multiple criteria decision-
making method based on bipolar fuzzy soft graphs, Iranian Journal of Fuzzy Systems,
15(4)(2018), 73-92.

[4] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min and M. Shabir, On some new operations in soft set
theory, Computers and Mathematics with Applications, 57(2009), 1547-1553.

[5] M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Applied Soft Computing
11(2011), 3329-3332.

[6] K. T. Atanassov, Intuitionistic Fuzzy sets, VII ITKRs Session, Sofia (deposed in Central
Science-Technical Library of Bulgarian Academy of Science 1697(84)(1983).

[7] K. T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96.
[8] K. V. Babitha and S. J. John, On soft multi-set, Annals of Fuzzy Mathematics and Informat-

ics, 5(1)(2013), 35-44.
[9] M. Y. Bakier, A. A. Allam and SH. S. Abd-Allah, Soft rough topology, Annals of Fuzzy

Mathematics and Informatics, 11(2)(2016), 4-11.
[10] W. D. Blizard, Multiset theory, Notre Dame J. Formal. Logic, 30(1989), 36-65.
[11] W. D. Blizard, Dedekind multisets and function shells, Theoretical Computer Science,

110(1993), 79-98.
[12] C. S. Calude, G. Paun, G. Rozenberg and A. Salomaa Multiset Processing, Springer-Verlag,

Germany,(2001).
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