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Abstract. Stock price forecasting, which is an important topic in finance and 
economics, has prodded the enthusiasm of specialists throughout the years to 
develop models for better forecasts. Stock market is a key factor of monetary 
markets and signs of economic growth. Therefore, differ-ent forecasting models 
have been explored in literature for the stock data prediction. In this article, 
classical ARIMA model is mentioned and then Fuzzy Auto Regressive Integrated 
Moving Average (FARIMA) model is proposed as a new model. These two models 
are used for forecasting the stock exchange market of Attock cement Pakistan 
limited. Due to vague natures of stock data and parameter, fuzzy least square 
method is used in proposed FARIMA model. FARIMA model is based on the 
possibil-ity of success. These possibilities are defined by linguistic term, such as 
very low, low, average, high, and very high. This model makes it possible 
for decision makers to forecast the best based on fewer observations than 
the ARIMA model. Finally, comparison between the proposed model and 
ARIMA shows that the proposed model has better performance than ARIMA by 
using different criteria, such as mean squared error, mean ab-solute percentage 
error, and mean absolute deviation.
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1. INTRODUCTION

Forecasting is a technique for the estimation or prediction of the future trend using the
past and present information. Forecasting gives upcoming pattern about future occasions
and their consequences to the organization so that they must prepare themselves or make
the strategies according to those results.

In international economics forecasting, the conduct of ostensible trade rates and stock
venture has been a central subject in business analysts’ work while the Stock business sec-
tor contributes a genuine and testing fiscal movement. Stock trade is the field of the capital
business division. The economy of a country depends upon capital business division, fore-
casting the stock costs and their patterns in accomplishing huge increase in money related
markets. The stock cost has profound impact in the financial event of the country and the
large-scale economic approach. Stock value variances depict the states economy change
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to a specific degree influencing the national macroeconomic arrangement. However, pre-
dicting the stock market prices and movements is not an easy task because of the critical
impact of full scale financial variables, including political occasions, general monetary
conditions, speculators’ desires, financial specialists, decisions, sudden circumstances in
security exchanges, and speculators brain research.

Enormous profits can be earned when a good forecasting model gives precise expecta-
tions, but violent fluctuations sometimes caused by economic proxy factors, such as fiscal
levy, price level, war disaster, make forecasting challengeable in stock market activity. It
is essential for building a more exact forecasting model or giving a superior model to busi-
ness sector that can empower the speculators to foresee the costs ahead of time; it would
also help the financial specialists in keeping independent national economy.

In the previous era, various models and techniques have been created for stock value
forecast. Among them quantitative methodologies are utilized for estimating the inves-
tigation of chronicled information by utilizing factual standards and ideas. Quantitative
methodology consists of Time Series Strategies,such as Autoregressive Integrated Moving
Average, Autoregressive Conditional Heteroscedasticity (ARCH), and Generalized Au-
toregressive Conditional Heteroscedasticity (GARCH) using the previous information of
the variable for estimating its future qualities.

In view of the time series methodology, BoxJenkins [3] presented an AutoRegressive In-
tegrated Moving Average (ARIMA) model that depicts homogeneous non-stationary pro-
cess. It is also stated as Box-Jenkins methodology made out of set of events for identifying
the values, evaluating the unknown parameter and diagnostic testing whether the model
is fitting the information well. This model is utmost important in economic technique for
forecasting the future trends in the most important fields.

Box-Jenkins models have the benefit of precise forecasting in a small period; it likewise
has the impediment that not less than 50 and ideally 100 observations ought to be utilized.
Due to this, Autoregressive Integrated Moving Average has limitation that large amount of
data is required to run the model.

In modern era, lots of developments have occurred due to the modern technology and
uncertain factors in environment. Owing to this uncertain situation, we generally should
estimate future circumstances utilizing little information in a short period. In this scenario,
autoregressive integration moving average model becomes less applicable and cannot work
for short term forecasting. In addition to this, we sometimes have to deal with uncertain
observations that cannot be handled by simple quantitative concepts so in this context,
fuzzy is used to deal with this impreciseness and uncertain environment.

Tanaka et al [5] used the fuzzy regression to deal with fuzzy uncertain environment and
elude the error of model. Song and Chissom [8] proposed the method related to fuzzy time
series for demonstrating the forecasting. They also examined the robustness of the method.

This article is grounded upon the works of quantitative models of Box Jenkins ARIMA
models - and proposed fuzzy model. We have joined the points of interest of two strategies
to build up the proposed fuzzy ARIMA model .To compare the worth of proposed model
fuzzy ARIMA with ARIMA model, we conduct a delineation for forecasting the stock
exchange of Attock cement Industry Pakistan limited. In the outcomes, we found that the
proposed model fuzzy autoregressive integrated moving average is appropriate and better
than autoregressive integrated moving model in forecasting.

This article is structured into the following sections: Concepts of ARIMA are mentioned
in Section 2. In Section 3, the proposed FARIMA model is introduced and examined.
The ARIMA and Proposed FARIMA model are applied to forecast the stock exchange of
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Attock Cement Pakistan in Section 4. Finally, the comparison of both models and results
are discussed.

2. REVIEW OF ARIMA MODEL

The Autoregressive Integrated Moving Average model of Box Jenkins methodology is
represented by

(1−
ρ∑
r=1

τrB
r)(1−B)dzt = (1−

q∑
r=1

rB
r)εt , (2. 1)

where (1 −
ρ∑
r=1

τrB
r) is the autoregressive process consists of τ1, τ2, τ3, ..., τρ known

as autocorrelation parameters, (1 −
q∑
r=1

rB
r)εt is the moving average process consists

of co-efficients (1,2 ,3 , ...,q ) are known as partial autocorrelation function with order q.
Both processes contain B polynomial represented as a back shift operator. The term of
(1−B)dzt represents the part of the stationary series with the order of d ;which means the
number of times the series is integrated to make it stationary.
The Box Jenkins Methodology consists of the following phases:

i. Phase 1
Phase 1 is based on the model identification to select the appropriate model.

ii. Phase 2
In the phase 2, parameters of the selected model are estimated.

iii. Phase 3
Phase 3 comprises of diagnosis testing of the selected model.

iv. Phase 4
In this phase, forecasts are obtained from the selected model.

It is assumed that εt is the error term as a white noise series.

3. PROPOSED FUZZY AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL

Proposed Fuzzy Auto-Regressive Integrated Moving Average Model is given with fuzzy
parameters as follows:

z̃t = κ̃1zt−1 + κ̃2zt−2 + Λ + κ̃ρzt−ρ + εt − κ̃ρ+1εt−1 − ...− κ̃ρ+~εt−~ (3.1)

In (3.1), z̃t is the estimated fuzzy variable as an output variable,(κ̃1, κ̃2, κ̃ρ, κ̃ρ+1, ..., κ̃ρ+~)
are the parameters with ρ terms known as fuzzy Autocorrelation parameters and fuzzy pa-
rameters with ~ terms known as fuzzy partial autocorrelations. By explaining the time se-
ries data, they have the cause and effect associations among the observed variables. There-
fore, it is difficult to measure the degree of dependency that involved different factors.
Due to this, the impreciseness and conciseness have been occurred in parameters. This
impreciseness has been tackled by connecting parameters with ρ and ~ orders into fuzzy
parameters.

3.1. Construction of the proposed model. In order to estimate the fuzzy parameters of
the proposed FARIMA model, fuzzy least square method is used. Fuzzy least square
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method is used to determine the distance between the fuzzy value which is estimated from
the model and observed data. Fuzzy least square approach is represented as:

d(β0, β1) =

[ 1∫
0

f(ξ)d2
{{
β0, β1

}
ξ
}
dξ

] 1
2

, (3.2)

where β0 and β1 are two fuzzy numbers. Here,β0 is the trapezoidal fuzzy number with
four points such that β0 =

{
b0m, b0u, b0l, b0v

}
and β1 is another trapezoidal fuzzy number

with four points such that β1 =
{
b1m, b1u, b1l, b1v

}
.For both fuzzy numbers β0 and β1

the parameter of bm represents the left fuzzy point, bu represents the right center fuzzy
point, bl represents the left center fuzzy point and bv represents the right fuzzy point of
trapezoidal membership function.
In (3.2), f(ξ) is used as the weighting function for determining the square of distance
between two fuzzy numbers that prompt putting more significance on higher degree of the
membership function.

3.2. Parameter estimation. The parameters of the model (3.1) are estimated by using the
least square method to gain the unique solution, whereas the least square method is defined
by as the sum of squared errors distance between observed values denoted as Vt(ξ) and
estimated output denoted as St(ξ). Mathematically represented as

SSE =

ρ∑
i=1

d
[
Vt(ξ), St(ξ)

]
, (3.3)

where index t denotes the non-fuzzy time series data used in Vt(ξ) and St(ξ). Here,
St(ξ) =

{
f(bm), f(bu), f(bl), f(bv)

}
.

From (3.2), each fuzzy parameter can be converted to the autoregressive integrated mov-
ing average in the form of functions shown as:

f(bm) = εt +

ρ∑
i=1

bmzt−i −
~∑
j=1

bmεt−j , (3.4)

f(bu) = εt +

ρ∑
i=1

buzt−i −
~∑
j=1

buεt−j , (3.5)

f(bl) = εt +

ρ∑
i=1

blzt−i −
~∑
j=1

blεt−j , (3.6)

f(bv) = εt +

ρ∑
i=1

bvzt−i −
~∑
j=1

bvεt−j , (3.7)

Now, St(ξ) with zeta-cut interval for trapezoidal number can be represented as:

St(ξ) =
[{
f(bu)− f(bm)

}
ξ + f(bm), f(bv)− ξ

{
f(bv)− f(bl)

}]
. (3.8)

In the same way, observed value is V (ξ) expressed on St =
[
W1,W2

]
such as

W1 =
{
f(bu)− f(bm)

}
ξ + f(bm), W2 = f(bv)− ξ

{
f(bv)− f(bl)

}
where W1 and W2 represent the lower bound and upper bound, respectively. Note that
observed value is equal to Vt(ξ) =

[
W1,W2

]
.
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Consider (3.8) and weighting functions in sum of squared error equation(SSE) given by

SSE =

ρ∑
i=1

1∫
0

f(ξ)
[
W1−

{[
f(bu)−f(bm)

]
ξ+f(bm)

}]2
+
[
W2−

{
f(bv)+ξ

[
f(bv)−f(bl)

]}]2
dξ .

(3.9)
Using (3.9)for finding the partial derivation with respect to bm, bu, bl and bv , we obtain the
simplified form of equations by putting the condition f(ξ) = ξ,

∣∣zt−i − εt−j∣∣ = yij as
follows:

ρ∑
i=1

2

1∫
0

ξ(ξ − 1)yij
[
W1 −

{
f(bu)− f(bm)

}
ξ + f(bm)

]
dξ = 0 , (3.10)

ρ∑
i=1

2

1∫
0

ξ2yij
[
−W1 +

{
f(bu)− f(bm)

}
ξ − f(bm)

]
dξ = 0 , (3.11)

ρ∑
i=1

2

1∫
0

ξyij
[
−W2 + f(bv)− ξ

{
f(bv)− f(bl)

}]
dξ = 0 , (3.12)

ρ∑
i=1

2

1∫
0

ξ(ξ − 1)yij
[
W2 − f(bv) + ξ

{
f(bv)− f(bl)

}]
dξ = 0 , (3.13)

Solving the integrals and replacing the values in (3.10) - (3.13), we obtain the following
equations:

bm0

ρ∑
i=1

yi0yij + bm1

ρ∑
i=1

yi1yij + ...+ bm~

ρ∑
i=1

yi~yij =

ρ∑
i=1

piyij . (3.14)

bu0

ρ∑
i=1

yi0yij + bu1

ρ∑
i=1

yi1yij + ...+ bu~

ρ∑
i=1

yi~yij =

ρ∑
i=1

qiyij . (3.15)

bl0

ρ∑
i=1

yi0yij + bl1

ρ∑
i=1

yi1yij + ...+ bl~

ρ∑
i=1

yi~yij =

ρ∑
i=1

riyij . (3.16)

bv0

ρ∑
i=1

yi0yij + bv1

ρ∑
i=1

yi1yij + ...+ bv~

ρ∑
i=1

yi~yij =

ρ∑
i=1

kiyij . (3.17)

where yi0 = 1 and j = 0, 1, 2, ..., ~. Representing these equations in the matrix form:

Bm = P, Bu = Q, Bl = R, Bv = K ,

where

m =
{
bm0

, bm1
, ..., bmn

}T
, P = (

ρ∑
i=1

Pt−1yt−1 + ...)T

u =
{
bu0 , bu1 , ..., bun

}T
, Q = (

ρ∑
i=1

Qt−1yt−1 + ...)T

l =
{
bl0 , bl1 , ..., bln

}T
, R = (

ρ∑
i=1

Rt−1yt−1 + ...)T
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v =
{
bv0 , bv1 , ..., bvn

}T
, K = (

ρ∑
i=1

Kt−1yt−1 + ...)T

Here, B = Y TY and

 1 · · · y1~
...

. . .
...

1 · · · yp~

 and matrixB is the positive definite with the rank

of (n + 1). Note that if matrix B = Y TY , then inverse of matrix B, which can be easily
determined, consists of unique solution. Then, problem can be written as follows:

m = B−1P, u = B−1Q, l = B−1R, v = B−1K

3.3. Construction of fuzzy membership function. Constructing the membership func-
tion plays an important role in the fuzzy method.Various techniques are used to create
the fuzzy membership functions such as observations investigations and functions. Fuzzy
membership function was first presented by Zadeh [7] based on fuzzy number. In this
study, trapezoidal function is used for creating the fuzzy membership function.

Trapezoidal fuzzy membership function consists of four parameters. These four pa-
rameters determine the figure of membership function giving the four corners point of z
coordinate. Trapezoidal fuzzy membership function is described by the mathematical for-
mula given by

Trapezoidal(z;m,u, l, v) =


1− m−z

u−m , m ≤ z ≤ u
1, u ≤ z ≤ l
1− z−v

v−l , l ≤ z ≤ v

where m represents the left point parameter, u represents the left center point parameter, l
represents the right center point parameter, v represents the right point parameter.

3.4. Construction of linguistic categories of Zeta interval. In this study, five categories
of linguistic term are constructed. These categories consist of following steps:

Step 1: Arrange the observations in data set in the ascending order.

Step 2: Calculating the average distance and standard deviation of the arranged data.
The average distance is given by

AverageDistance(AD) =
1

t− 1

t−1∑
r=1

∣∣∣yp(r) − yp(r+1)

∣∣∣ ,
where yp(r) ≤ yp(r+1). Here, p is permutation. The standard deviation of average distance
is calculated as follows:

σAD =

√√√√1

t

t−1∑
r=1

(yr −AD)2 .

Step 3: Outliers are eliminated by using the following condition:

AD − σAD ≤ yr ≤ AD + σAD ,

where the observations, which are greater and equal to the left side condition and less and
equal to the right side condition, are included; whereas, the observations, which do not
satisfy the conditions, are outliers and outliers are not included in dataset.

Step 4: Revised average distance is computed from the remaining sorted dataset.
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Step 5: The universe of discourse is defined as follows:

Universeofdiscourse =
[
lower bound , upper bound

]
,

where Lower bound =
[
ymin − ADR

]
and Upper bound =

[
ymax − ADR

]
, ymin and

ymax are the minimum and maximum values in the dataset.
Step 6: Construct the fuzzification interval approach as follows:

uB =


y−b1
b2−b1 , b1 ≤ y ≤ b2
1, b2 ≤ y ≤ b3
b4−y
b4−b3 , b3 ≤ y ≤ b4
0, otherwise .

where b1 is equal to ADR, b2 is equal to (b1 +ADR), b3 is equal to (b2 +ADR) and b4 is
equal to (b3 +ADR),
uξ =

[
b1 − ADR(1 − ξ), b4 + ADR(1 − ξ)

]
. In interval formulation, first trapezoidal

consists of b1, b2, b3, b4. They are used in (3.10) - (3.13) to estimate the lower and upper
bounds.

4. APPLICATION

In this section, ARIMA and Proposed FARIMA are performed to forecast the Attock
Cement Pakistan Limited Stock Series.

4.1. ARIMA model. Attock Cement Pakistan Limited Stock Data used in this article cov-
ers the period of the years from 2005 to 2012. Figure1 depicts the original pattern of the
series to have general overview of the movement of the time series during the time period.

FIGURE 1. Time series plot of Attock Cement stock index (2005-2012)

Figure 1 is the plot of the data against the time period. The graph shows irregular
patterns of upward and downward trends at all levels indicating that the series does not
scatter horizontally around the constant mean. Therefore, the Augmented Dickey Fuller
(ADF) Unit Root Test is carried out to test if the stock price is stationary.

TABLE 1. ADF Unit Root test of original stock index series

Series Series Prob. First Differenced Series Lag Prob.
Stock 0 0.3090 ∆Stock 2 0.0000

From Table 1, we observe that Stock series is non-stationary at level; whereas, after the
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first differenced, we see that the differenced series is stationary. Therefore, Stock series is
a I(1) series. Note that the error terms of the models are white noise series and lags are
determined using Schwarz Bayesian Information Criterion.

After the first differenced of the series, we get the ACF and partial ACF graphs in Figure
2.

FIGURE 2. ACF and PACF graphs of first differenced stock index series

From Figure 2, we think the period is 3 or 4. Therefore, we try some seasonal ARIMA
models such as ARIMA (0,1,0) (1, 0, 0)3, ARIMA (0,1,0) (2, 0, 0)3, ARIMA (0,1,0) (0, 0, 1)3,
ARIMA (0,1,0) (0, 0, 2)3 models. We also consider the same models for period 4. How-
ever, for all of these models, we cannot obtain the error term as a white noise series.
Therefore, we decide to use different criteria, such as Akaike Information Criterion (AIC),
Schwarz Bayesian Information Criterion (BIC) and Hannan-Quinn Criterion (HQ), to find
the best model for the data. In Table 2, we see that ARIMA (4,1,3) is the best model ac-
cording toAIC and HQ criteria as the smallest values of these criteria are in this model.
BIC criterion selects ARIMA (0,1,0) for the best model. As it is only a differenced model,
we do not take care of BIC for this data.

TABLE 2. Model selection based on various criteria

Models AIC BIC HQ
(4,1,3) 7.178597 7.258246 7.209936
(4,1,4) 7.182774 7.271273 7.217595
(4,1,1) 7.186098 7.248047 7.210472
(1,1,4) 7.189021 7.250970 7.213395
(4,1,2) 7.190354 7.261153 7.218211
(2,1,4) 7.193254 7.264054 7.221111
(3,1,4) 7.197518 7.277167 7.228857
(0,1,4) 7.202806 7.255905 7.223698
(4,1,0) 7.203440 7.256540 7.224333
(3,1,3) 7.203795 7.274594 7.231651
(0,1,3) 7.204640 7.248889 7.222050
(3,1,1) 7.205572 7.258671 7.226464
(1,1,3) 7.205572 7.258671 7.226464
(2,1,3) 7.206024 7.267974 7.230399
(3,1,0) 7.206972 7.251221 7.224382
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TABLE 2. Model selection based on various criteria

Models AIC BIC HQ
(3,1,2) 7.209798 7.271747 7.234172
(2,1,1) 7.211605 7.255855 7.229016
(2,1,2) 7.212325 7.265425 7.233218
(1,1,2) 7.214051 7.258301 7.231461
(0,1,0) 7.220807 7.238507 7.227771
(0,1,1) 7.224769 7.251318 7.235215
(1,1,0) 7.224797 7.25147 7.235243
(0,1,2) 7.225925 7.261324 7.239853
(2,1,0) 7.226429 7.261828 7.240357

Next step is to diagnose the selected model through testing the errors at each lagif the
errors have the white noise series properties. For this reason, Figure 3 is given.

FIGURE 3. Correlogram of residuals for selected model

From Figure 3, it is clearly seen that all probability values for all lags are bigger than
0.05 which means that the errors of the selected model are white noise.

4.2. FARIMA model. The optimal Proposed Fuzzy Auto-Regressive Integrated Moving
Average Model with fuzzy parametersis given as follows:

z̃t = κ̃1zt−1 + κ̃2zt−2 + Λ + κ̃ρzt−ρ + εt − κ̃ρ+1εt−1 − ...− κ̃ρ+~εt−~

In this model, possibilities of success are categories in to five linguistic terms; each lin-
guistic term is represented by the degree of trapezoidal fuzzy number as

Ṽverylowk
=
[
14.22− 16.22(1− ξ)51.60 + 16.22(1− ξ)

]
(4.1)

Ṽlowk
=
[
41.44− 16.22(1− ξ)81.17 + 16.22(1− ξ)

]
(4.2)

Ṽaveragek =
[
64.8− 16.22(1− ξ)113.54 + 16.22(1− ξ)

]
(4.3)

Ṽhighk
=
[
97.36− 16.22(1− ξ)145.98 + 16.22(1− ξ)

]
(4.4)
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Ṽveryhighk
=
[
129.76− 16.22(1− ξ)178.42 + 16.22(1− ξ)

]
(4.5)

We solve the integrals of equations (3.10) - (3.13) and put the intervals performed in Matlab
with the coefficient values in the model. Then,trapezoidals are computed along with the
defuzzification values obtained from SOM method in Matlab. These values are given in
Table 3.

TABLE 3. Trapozoidal fuzzy numbers and defuzzification by using
SOM method

Fuzzy Set m u l v Smallest value of maximum method
B1 -3.6641 -2.2175 34.4170 137.6678 0.0359
B2 -3.6536 -2.2070 34.2681 137.0724 0.0464
B3 -3.3501 -1.9540 30.3398 121.3594 0.0499
B4 -3.5027 -2.2975 35.6587 142.6348 -0.0021
B5 -3.3587 -1.9613 30.4413 121.7654 0.0413
B6 -3.4793 -2.0625 32.0113 128.0452 0.0207
B7 -3.8814 -2.3987 37.2287 148.914 0.0186
B8 -0.1006 1.9613 30.4413 121.7654 1.9994
B9 0.3225 5.5368 33.3946 133.5787 5.455
B10 0.3211 5.815 33.2502 133.0009 5.055
B11 0.2843 4.2638 29.4390 117.7546 4.2843
B12 0.3341 6.0113 34.5894 138.398 6.0341
B13 0.2852 4.2781 29.5375 118.1486 4.2852
B14 0.2999 4.4987 31.0606 124.2419 4.4999
B15 0.3488 7.319 36.1225 144.4914 7.4588
B16 0.2852 7.2781 29.5275 118.1486 7.1652
B17 11.1106 33.3308 61.3880 122.7760 33.4106
B18 11.0625 13.1866 61.1225 122.2450 13.2625
B19 9.8637 29.3822 54.1158 108.2317 29.4637
B20 11.5122 16.5331 63.6029 127.2057 16.567
B21 9.8249 21.3807 54.2964 108.5938 21.431
B22 10.3326 31.0011 57.0971 114.1943 31.0326
B23 12.0915 36.0535 66.403 132.8062 36.0915
B24 9.8249 24.5805 54.2969 108.5938 24.405
B25 28.5243 42.7865 52.6686 105.3372 42.8243
B26 28.4009 42.6014 52.4408 104.8815 42.7009
B27 25.1453 37.7179 46.4293 92.8587 37.7453
B28 29.5535 44.3302 54.5688 109.1377 44.4000
B29 25.2294 37.8441 46.5847 93.1693 37.9294
B30 26.5304 39.7958 48.9872 97.9743 39.8304
B31 30.8546 46.2819 56.9713 113.9427 46.3546
B32 25.2294 37.8441 46.5847 93.1693 37.9294
B33 51.6005 77.4008 98.9176 177.8352 77.5005
B34 51.3773 77.0660 98.4897 196.9795 77.0773
B35 45.4878 68.2317 87.1996 174.3992 68.2870
B36 53.4622 80.1937 102.4865 204.9730 80.2622
B37 46.6400 68.4600 87.4913 174.9827 68.5400
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TABLE 3. Trapozoidal fuzzy numbers and defuzzification by using
SOM method

Fuzzy Set m u l v Smallest value of maximum method
B38 47.9938 71.9906 92.0035 184.0070 71.9938
B39 55.8160 83.7240 106.9987 213.9973 83.8160
B40 45.6400 68.4600 87.4913 174.9827 68.5400
B41 55.6815 64.9614 96.8700 193.5040 64.9815
B42 55.4070 64.6804 96.4510 192.6670 64.7070
B43 49.0854 57.2660 85.3945 170.5810 57.2854
B44 57.6905 67.3052 100.3650 200.4855 67.3905
B45 49.2496 57.4575 85.6802 171.1517 57.5496
B46 51.7895 60.4208 90.0990 179.9785 60.4895
B47 60.2304 70.2085 104.7838 209.3123 70.2304
B48 49.2496 57.4575 85.6802 171.1517 57.5496
B49 66.4842 91.4666 99.7263 182.9332 91.5000
B50 66.1966 91.0710 99.2949 182.1420 97.1000
B51 58.6083 80.6313 87.9125 161.2625 80.7000
B52 68.8829 83.3244 94.7667 189.5334 83.4000
B53 58.8044 80.9010 88.2066 161.8020 80.9044
B54 61.8371 85.0733 92.7556 170.466 90.7000
B55 71.9156 94.8734 98.9390 197.8780 94.9156
B56 58.8044 78.2066 80.9010 161.802 78.3000
B57 83.9393 92.9110 125.9090 165.4781 92.9393
B58 83.5763 92.5092 125.3644 164.7623 92.5763
B59 73.9957 81.9046 110.9935 145.852 81.9957
B60 86.9678 96.2632 130.4517 171.4485 96.2678
B61 74.2432 82.178 111.3649 146.3632 82.2432
B62 78.0722 86.4168 117.1083 153.9115 86.4722
B63 90.7968 100.5014 136.1951 178.9968 100.5968
B64 74.2432 82.1786 111.3649 146.3632 82.2432
B65 99.1160 148.6740 172.5324 263.6888 148.793
B66 98.6872 148.0308 171.7861 262.5481 148.1419
B67 87.3744 131.0617 152.0938 232.4515 131.172
B68 102.6920 154.0380 178.7572 273.2025 154.149
B69 87.6668 131.5002 152.6026 233.2292 131.611
B70 92.1880 138.2820 160.4274 259.5894 138.394
B71 107.2132 160.8198 186.6274 258.4666 160.921
B72 87.6668 131.5002 152.6026 228.8378 131.611
B73 103.2051 154.8077 170.1576 268.9553 154.918
B74 102.7587 154.1380 179.4254 229.6034 154.249
B75 90.9792 136.4688 160.1489 228.8378 136.579
B76 106.9236 160.3930 186.2505 268.9553 160.410
B77 91.2836 136.9253 180.6448 229.6034 136.103
B78 95.9913 143.9870 168.3495 241.4447 143.108
B79 111.6364 167.4547 193.9552 280.7966 167.665
B80 91.2836 136.9253 160.6448 229.6034 136.103
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TABLE 3. Trapozoidal fuzzy numbers and defuzzification by using
SOM method

Fuzzy Set m u l v Smallest value of maximum method
B81 114.0078 171.0117 175.1517 248.8885 171.123
B82 113.5146 170.2719 174.3940 247.8119 170.382
B83 100.5021 150.7532 154.4028 219.4046 150.802
B84 118.1211 177.1817 181.4710 257.8683 177.219
B85 100.8384 157.2576 154.9193 220.1386 157.338
B86 106.0389 159.0583 163.9090 237.4917 159.168
B87 123.3216 184.9824 189.4607 269.2214 184.102
B88 100.8384 151.2576 154.9193 220.1388 151.368
B89 131.4629 197.2351 217.3832 231.3316 197.362
B90 130.8943 196.3819 216.4435 230.3310 196.494
B91 115.8895 173.8701 191.1093 203.9275 173.989
B92 136.2060 204.3512 225.2208 239.6779 204.4060
B93 116.2772 174.4518 192.2900 204.6098 174.577
B94 122.2740 183.4488 202.1992 215.2302 183.574
B95 142.2028 213.3482 234.5900 250.2302 213.4028
B96 116.2772 174.4518 192.2900 204.6098 174.587
B97 165.3560 248.0340 270.6423 329.6745 248.145
B98 164.6408 246.9612 269.4716 328.2485 246.103
B99 145.7676 218.6513 238.5814 290.6205 218.7676
B100 171.3220 256.9830 280.4070 341.5690 256.104
B101 146.2552 219.3828 239.3776 291.5928 219.4155
B102 153.7980 254.1678 251.7250 306.6310 254.2980
B103 178.8648 253.0683 292.7524 356.6072 253.1648
B104 146.2552 224.0584 239.3796 291.5928 224.1552
B105 169.4452 263.3380 264.5127 325.5854 263.4452
B106 168.7122 224.8080 263.3380 324.1770 224.919
B107 149.3723 236.4020 233.1779 287.0157 236.5723
B108 175.5587 274.9320 274.0562 337.3323 274.1058
B109 149.8720 224.8080 233.9580 287.9760 224.9190
B110 157.6013 236.4020 246.0238 302.8277 236.5013
B111 183.2880 274.9320 286.1220 352.7840 274.1088
B112 149.8720 224.8080 233.9580 287.9760 224.9720
B113 180.2478 270.3718 246.0238 314.7827 270.4847
B114 179.4682 269.2022 286.1220 313.4277 269.3682
B115 158.8952 238.3429 233.9580 277.4928 238.479
B116 186.511 280.1266 279.4554 326.1399 280.2000
B117 159.4268 239.1403 278.2465 278.4212 239.2600
B118 167.6489 251.4734 246.3504 292.7801 251.5489
B119 194.9732 292.4597 302.2854 340.4988 292.5732
B120 159.4268 239.1403 247.1746 278.4212 239.2600
B121 197.7030 296.5545 352.1038 399.0476 296.6430
B122 196.8478 295.2717 350.5807 397.3214 295.665
B123 174.2826 261.4239 310.3927 354.7754 261.534
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TABLE 3. Trapozoidal fuzzy numbers and defuzzification by using
SOM method

Fuzzy Set m u l v Smallest value of maximum method
B124 204.8360 307.2540 364.0875 413.4450 307.365
B125 174.8657 262.2985 311.4312 352.9523 262.310
B126 183.8840 275.8260 327.4925 371.1550 275.914
B127 213.8543 320.7815 380.8688 431.6477 320.854
B128 174.8657 262.2985 311.4312 352.9523 262.310
B129 231.2787 346.9181 370.7674 35210.38 346.1065
B130 230.2787 345.4175 350.5807 369.1636 345.5300
B131 203.8809 305.8213 310.3927 326.8454 305.980
B132 239.6231 359.4347 364.8075 384.1444 359.5231
B133 204.5630 306.8445 327.4925 327.9389 306.9630
B134 215.1129 322.6693 380.8688 344.8516 322.778
B135 250.1730 375.2595 380.8688 401.0571 375.3600
B136 204.5630 306.8445 311.4312 327.9389 306.946
B137 235.3597 353.0396 375.8351 391.5813 353.1
B138 234.3417 351.5125 374.2093 389.8875 351.6500
B139 207.4784 311.2177 331.3127 345.1936 311.34
B140 243.8514 365.7771 389.3950 405.7093 365.8000
B141 208.1726 312.2589 332.4212 346.3485 312.36900
B142 218.9086 328.3629 349.5650 364.2107 328.4000
B143 254.5874 381.8811 406.5388 423.5715 381.9600
B144 208.1726 312.2589 332.4212 346.3485 312.3900
B145 246.1648 369.2473 383.6573 390.9506 369.3100
B146 245.1000 367.6500 381.9978 389.2596 367.7000
B147 217.0036 325.5053 338.2083 344.6377 325.6300
B148 255.0036 382.5695 397.4995 405.0559 382.6000
B149 217.7296 326.5943 339.3398 345.7907 326.6300
B150 228.9585 343.4377 356.8405 363.6241 343.548
B151 266.2752 399.4729 415.0002 422.8893 399.5752
B152 217.7296 326.5943 339.3398 345.7907 326.6300
B153 262.6176 395.4263 400.3699 406.2086 395.5917
B154 262.4772 393.7159 398.6381 404.4516 393.8677
B155 232.3888 348.5832 352.9411 358.0882 348.6288
B156 273.1287 404.6931 414.8150 420.8644 404.728
B157 233.1663 349.7494 354.1219 359.2862 349.8000
B158 245.1913 367.7869 372.3850 377.8156 367.8000
B159 285.1537 427.7306 433.0781 439.3938 427.8537
B160 233.1663 349.7494 354.1219 359.2862 349.8400

In order to find the fuzzy relationship, dataset is arranged according to the years order
with fuzzy set value.
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TABLE 4. Actual prices of Attock Cement Industry with fuzzy set

Year Prices Fuzy Set
2005 5.55 B9

2006 6.055 B12

2007 7.16 B15

2008 7.45 B16

2009 13.71 B18

2010 16.8 B20

2011 21.41 B21

2012 167.75 B79

Now fuzzy relationship is designed from fuzzified dataset given in Table 4. If the time
series variable F (t − 1) is fuzzified as B9 in 2005 and F (t) as B12 in 2006, then B9 is
related toB12.In the same way, for all of the years, fuzzy relationship is formed as in Table
5. Note that there is no fuzzy relationship that consists of more than one set that can be
merged into one group.

TABLE 5. Fuzzy relationships

Year Relationship Fuzzy Relationship
2005 −→ 2006 B9 → B12

2006 −→ 2007 B12 → B15

2007 −→ 2008 B15 → B16

2008 −→ 2009 B16 → B18

2009 −→ 2010 B18 → B20

2010 −→ 2011 B20 → B21

2011 −→ 2012 B21 → B79

The forecast value for 2006 is obtained using the fuzzified interval midpoint value of
2005.The fuzzy relationship group of 2005 is B9 → B12. According to this case, the
highest degree of B12 interval is u12 =

[
6.0113 34.5894

]
so the forecast value of 2006

is the midpoint of u12 which is 20.30035. In the same way, all the forecasted prices are
obtained in Figure 4.

FIGURE 4. Forecasted prices
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To compare the proposed model with ARIMA model, values of several statistics for the
models are given in Table 6. From Table 6, it is clear that the proposed model fits better
than ARIMA model to Stock Index in Pakistan.

TABLE 6. Comparison of models

Evaluation Criteria ARIMA FARIMA
Mean Square Error (MSE) 6978.4964 294.8119

Mean Absolute Percentage Error (MAPE) 114.9294 1.3994
Root Mean Square Error (RMSE) 83.5373 17.1700
Mean Absolute Deviation (MAD) 83.0082 16.5507

5. CONCLUSION

In application, we see that the mean squared error, mean absolute percentage error,
mean absolute deviation, root mean squared error of the proposed fuzzy autoregressive
integrated moving average are quite small as compared to the autoregressive integrated
moving average model. This indicates that proposed FARIMA forecasts better and per-
forms better than ARIMA. In addition to application, there are some more advantages of
FARIMA with respect to ARIMA as follows:

• To perform ARIMA, there should be at least 50 observations, whereas FARIMA
can also work well with small number of observations.
• ARIMA provides confidence intervals, whereas FARIMA gives possibility inter-

vals of parameters.
• ARIMA uses information of previous function, whereas FARIMA uses informa-

tion of fuzzy functions.
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