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beginquoteAbstract. this paper devoted to study the existence of a unique solution of
the fractional Hammerstein integro-differential equations in the Banach space via the fixed
point theorems. The main purpose is based on transforming the fractional equations into
the integral equations of the Volterra type by using the differential transformation method
and the corresponding fractional calculus characteristics. Also, we obtainntoalified
operational matrix for the fractional integral and use the properties of modified block pulse
functions to get approximate solutions. In the our presented method, the fractional Ham-
merstein equations are transformed into a system of algebraic equations, where the volume
of computations are reduced by using the special nodes. Finally, we give some examples
to demonstrate the obtained results.
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1. INTRODUCTION

Fractional calculus is studied based on the generalization of integral and differential
equations to any real or even complex order. It is an extension of classical calculus and
therefore preserves many of basic properties. There are many usages for fractional cal-
culus such as control theory, dynamics, viscoelasticity and electromagnetic theory (see
[3, 5, 8]). The behavior of the solution of fractional integral and differential equations has
been extensively studied by many authors. By utilizing the theory of fixed point and the
iterative method, Zhang et al. [17] investigated several existence and unigueness results
for a new type of nonlocal multipoint boundary value problem of the Caputo fractional
integro-differential equations requiring Riemann-Liouville integral boundary conditions.
Also, several results on the existence of solutions have been investigated in the numerous
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research papers for different kinds of integral and differential equations of fractional orders
(see [1, 2, 16] and the references therein). Moreover, several numerical methods have been
presented to approximate solutions of fractional equations (see [7, 9, 10, 15] and the refer-
ences therein).

We study the analytical and numerical solutions of the following equations of the Hammer-
stein type

(“DPv) () = g(7) +/ k(r,n) E(v(n)dn, 7€0,a], m—1<B<m, (1 1)
0
with the initial condition
vI(0) =v;, j=0,1,..,m—1, 1.2)

where® D? denotes the Caputo fractional derivative dhé an increasing linear transfor-
mation on the Banach spage

In [7], Li and Sun, study the fractional differential equations using the generalized block
pulse operational matrix. The modification of block pulse functions applied to numerically
solve of the first kind Volterra integral equation in [9]. Motivated by the mentioned manu-
scripts, in this paper we established the fractional integral operational matrix based on the
e-modified block pulse functions, afterward we used the idea of converting the fractional
integro-differential equations to the fractional integral equations to analyze of the problem.
Also, by using the modified block pulse functions and the obtained operational matrix, nu-
merical solutions of the equations are studied.

The structure of this paper is as follows: In Section 2, we introduce preliminaries which
are used throughout the paper. In Section 3, we investigate the existence and uniqueness
of solution, by converting the fractional equations to the integral equations of the Volterra
type and applying the fixed point theorems. In Section 4, we first derive the operational
matrix of the modified block pulse functions for the fractional integral, then we convert the
fractional integro-differential equations into fractional integral equations. Furthermore, by
using thes-modified block pulse functions and the fractional integration operational ma-
trix, we obtain an approximate solution with high accuracy. Section 5 discusses the error
analysis of the our presented method. In Section 6, some numerical results are provided to
clarify the method. The conclusion is given in Section 7.

2. PRELIMINARIES

We give some basic concepts which are used further in this paper (for more details see
[3] and [12]).
Throughout this paper, we consider the complete metric spaed which

d(h,g) = sup |h(T) —g(7)|
7€[0,a]

forall h,g € x.
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Definition 2.1. The Riemann-Liouville fractional integral of ordeér > 0 of a function
v(7), is defined as
1 T 1
0r) = 1 [ (=0 vl ds 70, 2.3)
=15 )y ¢
wherel is the Gamma function.

We consider the definition of the Caputo derivative which is more useful in real-life
usages since it can be better able to model phenomena and be consistent with the initial
conditions of the problems.

Definition 2.2. The Caputo derivative of ordet > 0 for a functionu(r) is defined by
1 T _g_
C s — _ \mB—1, (m)
D7v) (1) = / T v dy,
(“Dv) (1) g ), T (1) dps
wherem = [5] + 1 and[5] denotes integer part of the real numbgr

If 3 = m € Ny and the derivative/(™) (1) of orderm exists, then® D™v)(7) coin-
cides withu("™) (7). Also, this definition implies that D?v(™) (1) = ©DA*" y(7) and
¢DPz =0 (zis a constant).

Proposition 2.3. Let 3 > 0 andm = [5] + 1. If v(7) € C™]0, a], then

o)
(@) (17 D7) (r) = v(r) - g

(ii) (CDP IPv) (r) = v(r).

Lemma 2.4. Problem(1. 1)- (1. 2)is equivalent to the Volterra integral equation

o) = h(r) + / " P(r.m) E(uo(n)) di. (2. 4)

7,

where
1

P(r,m) X

R T I TCED Sl Eew ) M O
(2. 5)

Proof. First, we take the integral of fractional ordéifrom both sides of Eqg. (1. 1), then
by using Proposition 2.3 and with the change of integral order, we get

m—1 Uj i 1 T . T 1 T .
o= 3 G | =gt an+ [ [F(ﬁ) / (r — 1P k() du} E(o(n)) d
— h(r) + / " P(r.m) E(o(n)) di.
and we get the result. O

Definition 2.5. Let w denotes the class of those functions [0,00) — [0,1) which
satisfies the following condition

Y (nn) —1 implies Mn — 0. (2 6)
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In the following, we introduce the epsilon modified block pulse functions and some of
their properties [9]. We first have a brief reminder of the block pulse functions [4].

Definition 2.6. A set of block pulse functiort3(7) in the interval[0, R) is given by
O(r) = [01(7) ba(7) ... Gu(7)],
where the jth componefi§(7), (j =1, 2, ..., n) of the BPFs vecto®(7) is defined as
1, re[UshR )
0;(r) =
0, o.w.

Definition 2.7. A set of:-modified block pulse functior (1), (7 = 0,1,...,n) is usually
defined in the intervgl, R) as follows

1, 7€[0, B—¢g)=Jp,
Jo(7) =

0, o.w.

1, T€[R—¢, R)=Jp,
In(T) =

0, o.w.

1, TE[%—E, 7(‘7+;)R—5):Jj, (0 <j<n),
di(r) =

0, o.w.

Notice that ife = 0 then the dimension of matrix decreasesitand we only have:
block pulse functions. The advantages ehodified block pulse functions can be cited by
easy operation and their satisfactory approximations that these advantages are due to the
distinct properties of the block pulse functions. Without loss of generality and assuming
R =1, some of their preliminary properties are:

1. disjointness:

2. orthogonality:

1
/ V(1) Uy (1) dr =L djv,
0

3. completeness:

1 [eS)
/ Prydr =S 2 105 |2,
0 s
where )
1 1
f= 507 / $) 05(r) dr = 577 /J ey 2.7)

andA(J;) is the length of the interval;.
If we put? = % then the operational matrix of themodified block pulse functions is
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defined as follows:

[ 55 (—c (—¢ l—e (—c¢
0 L 0 l l
0 0 Lo 4
Plrt1yx(ns1) = : : A : : (2.8)
0 0 0 £ 4
L 0 0 0 0 £ ]

that the above matrix has the same characteristics and applications of the matrix defined
for the operational matrix of block pulse functions.

Definition 2.8. The expansion of the continuous functiofr) is written in terms of the
e-modified block pulse functions as follows:

~ Tnar = Z hid;(r) = HT®(r) = 7 (7) H, (2. 9)

whereh; is defined in2. 7 )andH =1lho h1 ... hn)T.
Proposition 2.9. With defining ®(7) = [9o(7) 91(7) ... 9.(7)]*, we have
190(7’) 0
i) &(r) o7 (1) = ;

0 Un(7) (n+1)x (nt1)

iy ®7(7) ®(7) = 1,
iiiy ®(r) ®T(r) H = Dy &(7),
iv) 87 (1) H®(7) = HT &(r),
V) [y ®(s) ds = P (),
whereDy = diag(H), H is an(n + 1) column vector withliag(H) elements, and is

the operational matrix of the-modified block pulse functions which is defineddn8).
Aaccording to (v), we can write

/h ds~/HT ) ds ~ HTP ®(r).

3. EXISTENCE AND UNIQUENESS

In this section, using the iterative method under some suitable conditions, we investigate
the existence and uniqueness theorem of nonlinear equation (1. 1), which is equivalent to
the nonlinear \olterra integral equation (2. 4 ). We define

PV = [ " P(r.m) E(o(n)) di. (3. 10)
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from Egs. (2. 4) and (3. 10 ), we have

V=H+PV), HEex. (3. 11)
Now we define the operatdr: xy — x as follows
AV=PV)+H, V,HEYy, (3. 12)
from Egs. (3. 11) and (3. 12), we obtain
AV =V.
So, we can rewrite the equation (2. 4 ) as follows
v(r) = h(7) + [ P(7,n) E(v(n)) dn = Av(7), (3. 13)

which means that every solution of (3. 13) is a solution of (1. 1) and vice versa.
Theorem 3.1. Consider the nonlinear Volterra integral equati¢® 13 )such that

() g:[0,a] — Randk : [0,a] x [0,a] — R are continuous,

(i) E: x — xis anincreasing linear transformation andr) = @ cw, T#0,
(i) Sup-fo,o Jo PA(mm) dn < 5.

Then, the integral equatiof8. 13 )has a unique fixed point € .

Proof. Consider the iterative scheme

vesr(7) = h(r) + /O " P(rin) E(os(n) dn = Ave(r), 1 =0.1....  (3.14)

wherevg € x is an appropriate initial guess. So,

hva () — Ay (7)] = | / " P(rin) E(va(n)) dy — / " P(rin) E(vsr(n)) dif

< / " \P(r.m) Ea(n) — var(n))ldn

< (/Oa P2(7,n) dn)é (/Oa E?|vg(n) — vzl(n)ldn> "

As the function¥ is increasing then
E (Jvz(1) = ve-1(7)]) < E (d(ve, v2-1))
so according to (iii), we obtain

d*(Vpy1,0z) < ( sup /Oa P3(r, n)dn) E? (d(ve,vo-1)) a < E? (d(vg,vp_1)) .

T€[0,a]
Therefore
A(Vg, Vz—1)
=7 (d(Va, Vz—1)) - d(Vg, V1), (3. 15)

A(Vgr1,0z) < E(d(g,0-1)) = AUy, Vg—1)
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and so the sequendel(v,+1,v,)} Is descending and bounded. Therefore there exists

¢ > 0 such thatim, o d(vz41,v,) = . Suppose€ > 0. Then by (3. 15), we have
d(va:quv’Ua:)
— 2D < N (d(vg, Ve1)) =1,2,...

d(vz,vx_ﬁ = ’Y( (U v 1)) €z

According to the above inequality, we concluge w becauséim, ... v (d(vg, vy—1)) =

1 wherelim, o (d(vs,v4—1)) = ¢ > 0 and this is a contradiction. SO = 0 and
thereforelim, .o, d(vy+1,v,) = 0. Now we show that{v,} is a Cauchy sequence.
Contrariwise, suppose that

lim sup d(vg,vy) > 0. (3. 16)

A, x—00

By the triangle inequality and Eqg. (3. 15 ), we have
d(vg, ) < d(Vg, Vet1) + d(Ve g1, VA1) + d(Vag1, V)

< d(Ug, Vzp41) + (7 (d(vg, va)) d(vg, v2)) + d(Vag1,Vx),
hence
d(vg,vx) [1 =7 (d(ve, vA))] < d(Vgy Veg1) + d(Vagr, V).
Thus, we have
d(vg, v)) < (1 =5 (d(vg, v2)) " [d(Va, Vag1) + d(vagt, V)] -
Sincelimsup,, , ., d(vz,vx) > 0andlim, .o d(vet1,vs) = 0, then
limsup (1 — v(d(vm,w\)))_l = +00,

A, x—00

from the above equation, we conclulie sup,, ,, .., v (d(vs,vx)) = 1 and sincey € w,
we obtain

lim sup d(v,,vy) = 0.

A, x—00

This contradicts with (3. 16 ), shows,. } is a Cauchy sequence jy and{v,} is a con-
vergent sequence iy, that is

Jveyx, lim v, =w.
Tr— 00

Now by taking the limit of both sides of (3. 14 ), we have

o) = Jim veaa(r) = tim (4r)+ [ Pl0) (v dn)

r—00 r— 00

T— 00

— h(r) + / " P(r) EClim v, (n)) dn

= h(T) —l—/o P(r,n) E(v(n)) dn = Av(T).

Thus, there exists a solutiane x such thativ = v. It is clear that the fixed point df is
unique. a
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4. IMPLEMENTATION OF THE FRACTIONAL HAMMERSTEIN EQUATIONS

In this section, we first describe how to obtain the operational matrix of modified block
pulse functions for the fractional integral, and then explain how to implement the method
for the numerical approximation of the solution of the fractional integro- differential equa-
tions.

Ford,(7), applying definitions of the Riemann-Liouville fractional integral of ordes 0
and convolution product, we have

oy = g | 070500 du = gl 00

IN) INE))
due to the definition of the-modified block pulse functions, we have
Tﬁ
T(B+1) 5 T E [O, 6—5),
I%9q(1 ) (4. 17)
7-1"((7-67_;,_[1—"_)6)7 TE [E — &, R)a
0 ) [0 ]é - 8)
8 (r—jt+e)? . 7 1) —
I°9( By ;o TEl—e (JHDL—¢), (4. 18)
rats9 GG r [+ 1) - <, ),
wherej =1,...,n— 1, and
€0, R—e),
159, ( Rre)f (4. 19)
T €
F(ﬁ+1) ; T€[R—¢, R).
Set(1°®)(1) ~ . So, we have

(I°90) () =~ qooYo(T +ZQOJ T) + qonVn(T),

SO
R n—1
/ I%90(7) dr ~ (L= £)go0 + £ Y _ qoj + £qon,
0 ,
Jj=1
according to (4. 17 ) can be written
- £)?
QOO - F(/@ + 2) )
. _e)BHL (i) BHL g \BH1 . B+1 .
q; = ((G+1)e=¢) (Jé)z. r(ﬂ%) )P HG=1Y . =1, ., n—1,
RPH1 _(R—44¢)PT! —(R—e)P T 4 (R—0)PT!
qon = e T(F12) ’

now ford;(r), (¢ =1, ..., n— 1), according to (4. 18 ) can be written
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qij = p(éiiz)[(j — i+ )P 2 )T 4 (j—i - 1)AFY], j=di+1, ., n—1,
Gin = gy [(R—il+e) ™ —(R—(i+1)l+e) ! = (R—il) "' +(R—(i+1)0)+1],
eventually ford,,(7), accordingto (4. 19), we have

qno =0,

Gn; =0, Jj=1, .., n—1,

— Eg
qnn - F(ﬁ+2) .

Finally, we obtain

(t—eFf & & &3 e et &n
0 0 Py Py o Py G
0 0 P Py G
1
Qnt1)x(nt1) = T(G+2) 0 0 0 0 Py
0 0 0 0 - £ (o
0 0 0 0 0 b

where
&= 1 (k1)) — (k) — (kt—e)PH 4+ ((k—1)0)+Y], k=1, ..., n—1,
&n=1[ROTI —(R—l+e) T — (R—e)T + (R— ()P,
e = [(k+ 1) — 2B+ 4 (k= 18], k=1, .., n—1—1,

Go=L(R—kl+e)P —(R— (k+ 1)l +¢&)’T! — (R — k£)°T!
+(R—(k+1)0)P*], k=1, .., n—-1

Q is called thes-modified operational matrix for the fractional integral. In (4. 20), if
6 = 1 then matrix@ is equal to matrixP. Therefore, the matrix) is a generalization of
thee-modified operational matrix for integratiap.
Note that, ifg(7) is a continuous function, according to the above description, we can write

(I°g)(1) = I°GT®(1) =~ GTQ ®(7). (4. 21)
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Here we solve the fractional Hammerstein integro-differential equations (1. 1)-(1. 2) by
usingeMBPFs. According to Proposition 2.3, problem (1. 1) can be rewritten as follows:

vmzwvﬂﬂwﬂ+ﬂé%@meme 4. 22)

wheregy (1) = Z;”:_Ol < /. We first assumé(v(n)) = w(n), then we have

wlr) = Blao(r) + Po(r)+ 1° [ ktrn) wlonydn) (@. 29
now from (2. 9), we consider the following approximations
w(r) » WT(r) = o7 () W,
g(1) =~ GTo(r) = o7 (1) G, (4. 24)
k(r,m) = @1 (1)K @(n),

whereW, G and®(7) are(n + 1 x 1) column vectors and is a matrix which is defined
as follows

1 1,1 o
kij = W /0 /0 k(t, n) ¥:i(7) 9,(n) dr dn, i, 7=0, ...n.

By putting the above approximations in the Eq. (4. 23 ) and using Proposition 2.9 and Eq.
(4. 21), we have

WTe(7) = B(go(7) + GTQ ®(7) + BTQ &(1)),

whereB = K Dy P andB is an(n + 1 x 1)— matrix which elements are the same to the
diagonal entries of matrix B.
Now, using the following nodes

tr +tr+1
T = ————,
2
wheret = [0, & —¢ 28 _ - | R—¢, R], we have
WTd(r,) = E(go(r) + GTQ &(1,) + BTQ ®(7,.)), r=1, 2, ..., n+1. (4.25)

Now Eqg. (4. 25) gives a system of algebraic equations, so we find unknown (n+1)-vector
W. By substitutingE'(v(n)) = w(n), in Eq. (4. 22) and applying the relationship (4. 21)
and Proposition 2.9, we have

0(7) = go(7) + GTQ ®(1) + BTQ ®(7).
Therefore, we can obtain the solution of equation (1. 1) as follows:

=
o(r) ~o(r) = = 30, (7),
§=0

&

wheree; = %] =0,1,...,k—1andy,, (7) are the approximate solutionsofr) which
are respectively expanded in termssgMBPFs. To calculate the error bounda¥BPFs
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according to Theorem 2 in [9] can be written

_ 1 ~ .
lo(r) =o(7)llee < ¢ max Jlo(7) =Ty (e, 5 =0, 1, ooy k1.
5. ERRORANALYSIS

In this section, the error analysis of approximate solution by:MBPFs is studied. In
. L 1
the following theorems, for simplicity, we assurke= 1 and] = —.
n

Theorem 5.1. If o(7) = Y°7_;v;9;(7) andv; =
then:

@i)o= fol (v(r) — Z;L:O v;9;(7))?dr, achieves its minimum value.

(i) {v(r)} approaches () point wise.

(i) fy v2(r)dr = Y2320 o2 1052

Proof. The proof is like similar theorem which was proved by Jiang and Schaufelberger
(1992) but intervals of integrations have to redefindag = 0,1, ..., n. O

1
m fo v(T)Y(r)dr, i =0,1,...,n

Theorem 5.2. Supposev(r) is continuous inJ, differentiable in(0,1), and there is a
numberM such thatv’(7)| < M for everyr € J. Then

[v(b) = v(a)| < M|b—al,
forall a,b € J.

Proof. See [13]. O

Theorem 5.3. Assume that,

(i) v(7) is continuous and differentiable [n_n—l, 1+ %], with bounded derivative; that is,
[W'(7)] < M, ,

(i) o, (1) wheree; = % 1 =0,1,...,k — 1 are correspondingly MBPF&:z) =BPFs,

MBPFg¢1), ..., MBPFge,_1), expansions of(T) base omn + 1 e MBPFs over interval

[0, 1),

(i) o(r) = 1 45 0, (7).

Then ) )
lo(7) = Ve, (T)ll = O( ), lo(r) =o()| = O(—)-

Proof. We define the error betweer{r) and its BPFs expansion as follows:

e(r) = |v(r) = v(7)]|

wheret (1) = Z;‘;Ol v;9;(7). Now, over every subinterval;, we have

(1) = Jo(r) — gty () = Jo(r) — vyl 7 e gy =[2,102),
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1 it . .
7 flj v(T)dr. Using the mean value theorem and using Theorem 5.2, we

wherev; =
have:

i1 i1
B

lesl = [ emar = [ jotr) = wdr = Llu(e) - vl

1 M?
< SMEJE < —, ¢&ned; (5. 26)
This leads to
2
1 1 [n—1 1 [n—1 1
||e(7')|\2:/ eQ(T)drz/ S e(r) dT:/ S e3(r) dT+2Z/ e (T)es(r)dr.
0 0 \j=0 0 \j=0 j<i 70

Since fori £ 5, Jin Jj = &, then

n—1 1 n—1
lel? =3 ([ étrvar) = e P (5. 27)

j=0 0 j=0
Substituting (5. 26 ) into (5. 27 ), we have

A{Q
le@I” < =,
1
hence|le(7)| = O(ﬁ)'
Now to prove the next part of the theorem, according to the previous part, the error when
v(7) is represented in a seriesa¥IBPFs is
ej () = v(r) —vj, TEJ]‘:[%—E,$—E),

where "

1 n

1 1 —= —c
v(T)¥;(T)dr = / v(T)dr.
A(J5) /0 ’ A(Jj) Ji e
Now, using Trapezoidal rule for integral, we have
L g+t
v =5 <v(n ) +v( " 5)) +E,

where E is the error of integration. Supposeis so large that’(r) over intervalJ; is
approximately equal to a constant value. we usedgine 7 instead ofu(7) over interval
Jj,j=1,..,n—1.SoE = 0 and we can write

Yoo (-t i —si>|

v; =

ej(r) =1 —vj| = |7 - o7
2% +1. k-1 1
= — < —
Im = 2n )+(2kn)|_2kn’
for Jy we have
S (L) 1 k-1 1

— _ ==Y \n /| = _ < —,
eo(r) = I 2% Bl Ty



Analytical and Numerical Investigation of the Hammerstein Fractional Equations

L 1
Similarly, for J,, we havee, (1) < T Now, forj = 0,1,...,n — 1 we have
n

M? M?
2 _ 2 —
lesl? = | ej(T)dT_/Jj T <

.Ij

This leads to
n—1 1 n—1 2 2
M M
el =3 ([ dtrvar) = sl =gy = g
=0 =0

S . 1
So, the error estimation faMBPFs is||e(7)| = O(k—), wheren shows the number of
n
BPFs and: times of modifications. O

Lepik in [6] has introduced some methods to estimate the error when the exact solution
is not available.

6. NUMERICAL RESULTS

We consider some examples which are reviewed by the program written in the Matlab.
The numerical results are shown in Table® 3 thatn represents the number of MBPFs
andk indicates the number of modifications.

Example 6.1. Consider the following equation with the exact solutigfr) = sin 7 for
B=2andr € [0, 1]

(DPv)(1) = 73 (= 14" ") —sin T—/ Peosne’Mdn, 1<B<2, v0)=0, '(0)=1.
0

In Table1 and Table2, we show the approximate solutions foe= 20 and the error bound
for n = 20 andn = 40 . In the following,p,, as the empirical convergence rate symbol, is
calculated by the following formula,

sty

T T oe(2)
Table 1. Approximate solutions of Example 6.1 with MBPFs
T n=20 Exact solution
k=1 k=2 k=3
0.2 0.198037 0.198324 0.198415 0.198669
0.4 0.387194 0.388248 0.388590 0.389418
0.6 0.559925 0.562202 0.562947 0.564642
0.8 0.709352 0.713258 0.714544 0.717356
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Table 2. Error bound and convergence rate for Example 6.1

n =20 n =40
k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4
0.008004 0.004097 0.002173 0.001217 0.003896 0.001972 0.001017 0.000542
Pn - - - - 1.038727 1.054908 1.095368 1.166964

Example 6.2. Consider

(D3v)(7) = g(r) + [y Tno(m) dn.  0<7<1, v(0)=0,
where
g(r) = @ BesselJ[0, /7] — 7(—2(—6 4+ 7)y/T cos /T + 6(—2 + 7) sin/7),

the exact solution is(7) = sin(y/7), where BesselJ[n, 2|, obtained the first kind
Bessel function. In Tabl& we show the error bound for = 20 andn = 40.

Table 3. Error bound and convergence rate for Example 6.2

n =20 n =40
k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4
0.023972 0.012486 0.007234 0.005261 0.012281 0.006141 0.003455 0.002383
Pn - - - - 0.964922 1.02377 1.06611 1.14256

Example 6.3. Consider the integro-differential equation

(DPv) (1) — fOT ellv(n))?dn=1, 0<7<1, 3<pB<4,
where

v(0) =2’ (0) = v"(0) ="(0) = 1.

The exact solution of this example for= 4 is v(r) = e”. The numerical results for
8 = 3.25 are presented in Tablé. This Table shows that the obtained results by the
proposed method are similar @1, 14]

Table 4. Approximate solutions of Example 6.3 for= 3.25 in agreement with [11, 14]
Exact solution n =40 n =120

T for g =4 k=2 k=6 k=2 k=6 [11] [14]

0.1 1.105171 1.105254 1.105244 1.105241 1.105238 1.106551 1.105258
0.2 1.221403 1.222095 1.222046 1.222039 1.222023 1.223932 1.221892
0.3 1.349859 1.352329 1.352204 1.352191 1.352150 1.353200 1.352313
0.4 1.491825 1.498007 1.497756 1.497735 1.497652 1.495601 1.496762
0.5 1.648721 1.661461 1.661022 1.660989 1.660845 1.652553 1.663409
0.6 1.822119 1.845392 1.844687 1.844638 1.844405 1.825655 1.843799
0.7 2.013753 2.052996 2.051921 2.051849 2.051494 2.016687 2.044381
0.8 2.225541 2.288135 2.286555 2.286453 2.285931 2.227634 2.227591
0.9 2.459603 2.555594 2.553329 2.553184 2.552435 2.460691 2.526496
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7. CONCLUSION

In this article, using the iterative method under some suitable conditions, we studied
the behavior of the solution of fractional equations of the Hammerstein type in the Banach
space. Applying the-modified functions and the fractional integration operational matrix,
we obtained an approximate solution with high accuracy, whose convergence speed is faster
than the BPF-based method. The results show that with a relatively small value selection of
k, we have obtained the good accuracy for finding the approximate solution of the fractional
integro-differential equations. In future work, we can investigate the stability of the solution
for fractional equations of the Hammerstein type using the techniques of noncompactness
measures in an infinite interval.
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