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Abstract. The main objective of this article is to establish integral iden-

tity relating the left side of Hermite- Hadamard type inequality. By using
this identity, we establish some new Hermite-Hadamard type integral in-
equalities for functions whose mixed partial derivatives are co-ordinated
preinvex. These consequences generalize numerous outcomes established
in previous studies for these classes of functions.
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1. INTRODUCTION

The investigation on extended convex functions has become a hot research topic in re-
centyears. The applications of various properties of extended convex functions in establish-
ing and improving numerous inequalities have attracted the attention of many researchers.
Suppose that is a finite interval of real numbers. A function: J — R is said to be
convex if,

h(€o + (1 — ) < Eh(9) + (1 — (), 1.1)
where¢ € [0, 1], forall ¢,y € J.

65



66 Humaira Kalsoom and Sabir Hussain

The most famous inequality in the literature for convex functions is known as Hadamards
inequality. This inequality was proposed in 1893 by Hadamard (see [10]). This double in-
equality is stated as:

Suppose thal is convex function offig, ¢/] C R. Then the well known Hermite-Hadamard
inequality [1] states that

P
h<¢;¢>§wi¢/¢ h(q;)d:cgw (1. 2)

forall ¢,y € J.

Hadamards inequalities play a crucial role in various branches of science, including engi-
neering, economics, astronomy, and mathematics. Thus, due to its great utility in several
areas of pure and applied mathematics, much attention has been paid, by many mathemati-
cians, to Hadamards inequality. Consequently, such inequalities were studied extensively
by many authors. Also, numerous generalizations and extensions have been reported in a
number of papers [1, 3, 4, 5, 7, 9, 13, 15], [16]-[21], [25, 26, 34] and [35]-[39] the refer-
ences cited therein.

In recent years, lot of efforts have been made by many mathematicians to generalize the
classical convexity. A significant generalization of convex functions is that of invex func-
tions introduced by Hanson in [8]. Ben-Israel and Mond [11] introduced the concept of
preinvex functions, which is a special case of invexity. Pini [30] introduced the concept of
pre-quasi-invex functions as a generalization of invex functions. Noor [28] has presented
some estimates of the right hand side of a Hermite- Hadamard type inequality in which
some preinvex functions and log-preinvex are involved.

Theorem 1.1. Leth : [¢, ¢ + u(v, ¢)] — (0,00) be a preinvex function on the interval of
the real number$2° (the interior ofQ2) and ¢, € Q° with ¢ < ¢ + u(2p, ¢). Then the
following inequality holds:

26 + (¢, ¢) (A h(¢) + h(¥)
h( . ) < M(Wb)/qs ha)de < =222 (1.9)

The following Hermite-Hadamrd type inequality for co-ordinated convex functions on
the rectangle from the plarR? was also proved in [6]:

Theorem 1.2. Leth : A := [¢, %] X [y, o] € R? — R be convex on the co-ordinates dn
with ¢ < 1 andvy < p. Then, one has the inequalities:

h o+¢ v+o
272 z
1 1 » 1 o
<! h m}v-&-@ do + h ¢+w’y dy
2 v—9¢ 4 2 Y0 & 2
< “ele (z,y)dzd
< g(z,y)dzdy
(W=d)e—7) & ~
L 1 z, z, ) z, z,
< - h(z,v)dz + h(z,0)dz + —— h(¢,y)dy + h(t, y)dy
4 Yv—9 4 @ Y—e 4 5

_ 1(8,7) + b, 1) + b, 0) + b, 0)
< . .

For several recent results on Hermite-Hadamard type inequalities for functions that sat-
isfy different kinds of convexity on the co-ordinates on the rectangle from the fRame
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refer the reader to [2, 12, 14, 23, 27, 29, 33].

The main aim of this present paper is to define preinvex functions on the co-ordinates and
to establish some Hermite-Hadamard type inequalities for functions whose mixed partial
derivatives in absolute value are preinvex on the co-ordinates. Our established results gen-
eralize those result proved in [24].

2. PRELIMINARIES

For convenience of our discussion in subsequent sections, let us reproduce some relevant
definitions and earlier results below and recall some well known results related to convexity
and preinvexity on the co-ordinates.

A modification for convex functions on\, which are also known as co-ordinated convex
functions, was introduced by Dragomir [6, 31] as follows

Definition 2.1. Let us now consider a functial : A =: [¢, 9] x [y,0] C R? — R is
convex oM if the following inequality:

h(€op+ (1= &)z, &y + (1 = w) < Eh(,7) + (1 = §h(Z, )
hold for all ¢ € [0,1] and(¢,7), (Z, @) € A.

Definition 2.2. A functionh : A = [¢, 4] x [y,0] € R? — R is said to be convex on
the co-ordinatesA with ¢ < ¢ and~y <  if the partial functionsh, : [¢,¥] — R,
hy(a) = h(u,y) andh, : [y, 0] — R, hy(v) = h(z,v) are convex for allz € (¢, ) and
y€ (0.

A formal definition for co-ordinated convex functions is stated below:

Definition 2.3. A functionh : A := [¢, %] x [y, 0] € R? — R is said to be convex on the
co-ordinates o\ with v < ¢ and~ < g if the partial functions

h(§p+ (1 =§)z,07+ (1 - d)w)
< &6h(¢,7) +&(1 = 6)h(¢, w) +6(1 = E)A(Z,7) + (1 = 6)(1 — §)A(z, w)
holds for all¢, § € [0,1] and(¢,7), (2, w) € A.

(2. 4)

Ben-Israel and Mond [32], established the idea of preinvex function as a special case of
invex function.

Definition 2.4. Consider() be a closed set iR™ and leth : @ — Randu : 2 x Q — R
be continuous functions. Léte (2, then the sef) is said to be invex ap with respect to

i, 1f
o+ &y, ) €9, (2.5)

holds for allg, ¢ € Q, £ € [0, 1], thenQ is called an invex set with respect taif Q is
invex at eachp € Q. The invex sef is also called a-connected set.

Definition 2.5. The function. on the invex se® is said to be preinvex with respecttoif

h(¢ +Eu(h, 9)) < (1 = §)h(d) + Eh(Y), (2. 6)
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holds for allg, ¢ € Q, £ € [0, 1]. The functionh is said to be pre-concave if and only if
—h is preinvex.
Note that every convex function is preinvex with respect to the pfap ¢) = ¢ — ¢ but
the converse is not true.
Latif et al. [22] gave notion of preinvex functions on the co-ordinates which generalize the
classical convexity on the co-ordinates.

Definition 2.6. LetQ2; and(2; be non-empty subsets®f and lety; : 2, xQ; — R™ and
ta = Qo x Qs — R™. We sayf; x Qs is invex with respect tp; andus at (n, v) € Q1 x Q9
if for each(z, z) € Q1 x Qs and¢, § € [0, 1], we have

(n+&pa(z, ur), v+ dpz(z,v)) € Q1 x Q. 2.7)

Q1 x Qs is said to be invex set with respect g and us if Q1 x Qs is invex at each
(77, V) € Q1 x Q.

Definition 2.7. Let Q; x Qs be an invex set with respect tgq : Q; x Q; — R™ and
o Qo x Q9 — R™. A functionh : Q1 x Qs — R is said to be preinvex if for every
(z,2),(n,v) € Q1 x Qs and¢ € [0, 1], we have

h(n+ &§pa(z,n), v+ Epa(z,v)) < (1= §)h(z, z) + Eh(n, v). (2.8)

Definition 2.8. Let Q; x Q9 be an invex set with respect tg : Q; x Q; — R™ and
o Qo X Qo — R™. Afunctionh : ; x Qs — R is said to preinvex on the co-ordinates
if the partial functionsh,, : 1 — R, hy(n) = h(n,y) andh, : Q1 — R, h,(v) = h(z,v)
are preinvex with respect te; and u» respectively for ally € Q, andx € Q;.

Remark 2.9. If pi(x,n) = x —nandus(y,v) = y — v thenh will be a convex function
on the co-ordinates.

Definition 2.10. Let Q; x 5 be an invex set with respect tq : ©; x 2; — R™ and
e Qo x Qo — R™, Afunctionh : 7 x Qs — R is said to preinvex on the co-ordinates
Q1 x Q9, then

h(n + &pa(z,m), v + Spa(z,v))
where(n, v), (z,z) € 1 X Qa.
Remark 2.11. Every convex function on the co-ordinates is preinvex on the co-ordinates

but the converse in not true. For example the funcfién, v) = —|n||v| is not convex on
the co-ordinates but it is a preinvex function with respect to the functions

n-z n>0,2>0 and 1n<0,z<0,
pi(n,z) =4 . _
Z =1, otherwise.
- v —w, v>0,w>0 and v <0,w <0,
,UQ(Vaw)Z _ .
w — v, otherwise.
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3. A KEY LEMMA

In this section, we present an identity associated with mixed partial differentiable func-
tion on co-ordinates, which plays an important role in establishing our main results.

Lemma 3.1. LetQ; x € be non-empty subsets®&F and lety; : Q; x ©; — R and
2 : Q9 x Q9 — R. Suppose that : ; x Q» — R be a mixed partial differentiable

function such thataf?;—a’g € L[ + i (), 9)] x [y + duz(o,v)]) with u1 (), ¢) # 0 and
u2(0,7) # 0, whereg, ¢ € Q; and~, ¢ € Q5. Then the following equality holds:

r , 1 p+p1(,9)  py+p2(ey) " dud
(@97, 0)(h) = m(w,(b)uz(g,v)é /7 (. y)dydz
h <2¢+u21(¢,¢)7 27+u;(9m)>
1 41 (Y, ) 2y + N?(Q» ,y))
p (v, @) / h (I’ 2 e
o1 v 96 4 (4, ¢) >
uz(g,v)/ h( 2 )y (3-9)
1 1 82
= Oale) [ [ (D) 56+ € (0.0 + bua(e.) s
where,
&0, (&0) €0,3] x [0, 3],
5(6_1)7 (575) € [07 l] X (l,l]a
K ’5 — 2 2
(5 ) 6(5 - 1)7 (675) € (%7 1] X [07 %]7
(g_l)(6_1)7 (5,(5)6(%,1] X(%,l]
Proof. Since

w1, )20,y //K 8§86 h(¢ + Epa (v, @),y + dpa(o,y))dodE

h(¢ + Epr(, @),y + dpalo,v))dédE

= p1 (Y, @) u2(0,y / 8585

i, O)paey / /s 8585 B+ & (0, 6),7 + dpia(0,7) b

+ pa (2, P)palo,y / / 8¢ 8565 h(p + Epi (1, d), v + dpalo,))dddE

0?2
+ 1 (Y, ) palo, vy / / d—1)( 8565 h(¢ 4 Epr (¥, ¢), v + duz(0,v))dodE

=Ji+Jo+ J3+ J4.
3. 10)
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Now by integration by parts, we have
Z3 'z 3 9? "
J1 = p1(, ¢ uz(e, ) 3 587h(¢+ﬁli1(w7¢),’v+5#2(9’7))0&5 dg
0 0 £06
27 + p2(0,7)
2

p 20tm¢) 2+ pa(ey) 23

! L2y d
1 3 3 3 . ¢+ & (2, b), 3
1
2

Z 1 Z 17
P , 1z
T 22X (o) do+ B PR+ € (0. 0).7 + dua(e, ).

o 2
(3.11)

=

If we make use of the substitutions= ¢ + &u1 (¢, ¢) andy = v + du2(0,7), (£,0) €
[0,1] x [0,1],in (3. 11), we observe that
z

_l, 2+m@9) 2v+peen) 1 v R 2v + pa(o, ) e
4 2 ’ 2 2u1(vh, ) 20+ (w.0) ’ 2
z z z
L po2Em@d) g L " ‘ h(z, y)dydz
2p2(e,y) 2rtuzle) 2 VT LW, dma(e, ) 20y (0.0)  2ytug(ey) »y)ayaz.

Similarly, by integration by parts, we also have that

z
sp= iy BAMED) Zytpalen) 1T 2y +pae)
2T 2 ’ 2 i (6, 4) 2etmee) D 2 :
z , z z ,
- 1 %2@7) . 2 + p1 () ) ) v 1 ¥ 2w+u§(g ) o) dde
2u2(e:7) 2 ' (%, ) uale,y) 2etup(w.d) ’ '
Z 204p (.0
oLy 204t m¥,9) 2y +pa(e7) 1 “%)h 2 + p2(0,7)
3= - s - r, — dx
4 2 2 2p1 (P, ) o 2
o1 fe 2+ m@d) 1 2 2lni 2, (o, iy
2p2(0,y)  2rtuzley) 2 VT W dma () s 2rtpg(en) e
and
Z 2¢+pq (b,9)
Joo Lty 20+ m(w. ) 2y + p2(e,7) 1 SR w21 H2(07)
4= = s - r, ——— dz
4 2 2 2p1 (Y, @) o 2
z , z p6) Z ,
1 2w+u%(e ) 26 + 11 (v, B) 1 2¢+u§(1/ $) Z 2v+pz(e)
YY) h ———————y dy+ —————— h(z,y)dydz.
2u2(0,7) o 2 p1(Y, P)p2(e,7) o o
Substitution of theJy, Js, J3 andJy in ( 3. 10). We get our desired identity. O

4. MAIN RESULTS

We are in a condition to establish the integral inequalities of Hermite-Hadamard type
for functions whose mixed partial derivatives are co-ordinated preinvex

Theorem 4.1. LetQ; x Q» be an open invex subsets®f with respect to the functions
JIA QD xQ —R and,ug Qo x 0y — R, Suppose that : Q1 x Q5 — R be a mixed par-

tial differentiable function such tha%;5 € L([¢p+Eur(y,P)] x [y + dua(o,v)]) with
w1 (v, ¢) # 0andus(o,v) # 0, whereg, v € Q1 and~y, g € Q. If ‘0%2 is preinvex on
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the co-ordinates of; x 24, then the following inequality holds:

9’h(,y) 9%h(4,0) %h(¢,7) 9%h(¥,0)
pa (2, @) pa(0,7) 960¢ ‘+ pso¢ | T | o0e ‘+ 960¢
r | <
T(6,9. 7, 0) ()] < P2 ]
(4. 12)

Proof. From Lemma 3.1, we have

T (¢, 1,7, 0)(h)]|
1 1
<mlonaten [ [ |K<s,5>|\

62
mgh(as + &1 (Y, @),y + opa(o, 7))' dodg.

(4. 13)
We know thaq%@ is preinvex on the co-ordinates 6h x £, we have
0? 9*h(¢,7)
h ) <ES |5t
’6585 (@ + & (v, 0),v+ uz(g,v))‘é ‘ 950¢ ‘
9*h(9, 0) 9*h(1,7) 9*h(¢, o)
1-06) | —=—=—=|+61—- — 1-6(1-96)|—=—2|. (4. 14
+e-0)| 2580 s - 9| THED - 9u - 0| S50 @g
If we put (4. 14) into (4. 13), we have
T8, %, v: @) (h)] .
Z1Za *h(s,7) 9*h(s,0)
< pa (e, d)uz2(e, ) . |K (g, 6) &6 9508 +€&(1-9) 2508
#
92h(1,~) *h(v, o)
T -8~ T 00 -0 e dddg
<Gz,z, ” 2 2 2
375 o 9%h d
—m@omater 0 Pes s T2 pea—g) 0D 0 - o)
# zZ.2z b
*h (4, 0) 371 9°h(¢,7) 9*h(¢, 0)
+ (1 =81 -9) D30€ dédg + . %5(6—1) £6 950¢ +£(1-9) 900¢
# Z.,Z "
*h(,7) *h(¢, 0) 1T 3 *h($,7)
TOO-O e HA-00-0) THEs et A1) & oo
#
9*h(¢, 0) *h(h,7) 9*h(4h, 0)
+E1-0) T J'r'é(l—f) asor . H1-O0 -8 =5t dsds
Z1%a 9h(,7) 9h(9, 0) 9, 7)
+ , %@—1)(5—1) €6 —gsoe TE1-0) Tp #6190 —en
#
*h (1, 0)
+(1 -89 -9) 960€ dsde .
(4. 15)
Evaluating each integral in (4. 15) and simplifying, we get (4. 12). O

Theorem 4.2. Let); x Q, be an open invex subsets®f with respect to the functions
p1 Q1 x Q1 — Randus : 29 x Qe — R. Suppose that : Q; x 25 — R be a mixed par-

tial differentiable function such thafg% € L([¢+ (2, ¢)] x [y + Sualo,v)]) with



72 Humaira Kalsoom and Sabir Hussain

w1 (1, @) # 0anduz(o,vy) # 0, whereg, ) € Ql and-~, o € Qo. If ‘asag is preinvex on
the co-ordinates of2; x Qq,7r,¢ > 1 andi + 5 = 1, then the following inequality holds:

IT(),,7, 0)(h)]

?n(e) |1 190 |7 | |02h(w ) |T | 9*h(v.0) |
w1 (v, ¢)M2( v) aéag ‘ + a&agg + aaag’y ‘ + aéagg
4(r + 1) 4
(4. 16)
Proof. From Lemma 3.1, we have
1 1 82
<[ B+ €, 0),7 + (o) | dode. (4.17)
o Jo 060E
Now using the well-known Hider’s inequality for double integrals, we obtain
4 lz 1
w1 (2, d)pa (e, ) . \ 358{
z 1Z 1 12,2, g a !%
< pi (Y, @)pz(e, ) . |K(€,0)|" dodg 250" dsd¢ .
(4. 18)

We know that‘ 0‘968}‘5 is preinvex on the co-ordinates 6n x €25, we have

1 1 82 e
/ / ’Mh(¢+§m(¢,¢),c+5uz(@,7)) dodg
P*h(g,7) " Pho:0) |
/ / [55 mae | 09| zsae
Ph(w,)|" (v 0) |
+6(1-¢) 950¢ + (1 =81 -9) Taf 1d5df.

After some calculations,

/01/01§6d5d€/01/01§(15)d5d5/01/015(15)d5d§
=/01/01(1—§>(1—6>d6d5=i.

(4. 19)
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Also, we notice that

/01 /01 |K(§,5)d6d£rz/j/Oéfrérdéngr/oé[lgr(l_a)rdédg

Lo i 11 ) ) 4 1\ 20+
//0 §(1-¢) d5d€+/é/%(1£) (1-96) d5d§(r+1)2<2) .
(4. 20)

Using (4. 19) and (4. 20) into ( 4. 18), we obtain

1 1 82
[ 1RG0 | (o + €1 (,0) 7+ Gnater )| asa

q q q

2*h(¢,7)
D6OE

9*h(¢,y) ”h(¢,0) +
D6DE D6DE

1
o 4(r+1)% 4

This completes the proof of the theorem. O

2’h(¥,0)
DODE

a9 3
] . (4.21)

Remark 4.3. Since2” > r 4+ 1if r > 1 and accordingly
1 1

1

< R
4 2(r+1)r
and hence we have that the following inequality
1 11 1 1 1
—<-.=< T - = =
16 44 20r4+1)7 2(r+1)r  4(r+1)7

and as a consequence we get an improvement of the constant in Theorem 4.2.

Theorem 4.4. Let; x Q, be an open invex subsets®f with respect to the functions
p1 Q1 x Q1 — Randus : 29 x Qe — R. Suppose that : Q; x 25 — R be a mixed par-
tial differentiable function such thaé% € L([¢+ Eur(, ¢)] x [y + Sualo,)]) with
w1 (¥, ¢) # 0andus(o,v) # 0, whereg, v € Qy andy, o € Qs. If ‘%Bhg‘q is preinvex on
the co-ordinates of; x ©; andq > 1, then the following inequality holds:

IT(),,7, 0)(h)]

Q=

e T | |8%h(s.0) |7 | |8%h(w ) |T | | 8%h(w,0)|?
_ (¥, 9)a(e.7) { oo | T |"asoe | T |Tovoe | t| o008 ]
= 16 4

(4. 22)

Proof. From Lemma 3.1, we have
IT(. 10,7, 0)(h)| < pa (¥, d)pa(0,7)

1 1 82
<[] €0 g6 + (.00 + sl asae. .29

0
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By the power mean inequality, we have

z,z, o2
. |K(&,0)] 9308 (¢ + Ep1 (W, ), v + dp2(o,v)) dédE

< ke ayasa T 2121|K(€ 5) ))qdédé!%

- 0o o / ) ’ 060¢

_ 1p S VIR0 5apeh(6 -+ €m0, ¢)77+5u2(a7v))qd5d€!%- (4. 24)
16 0 aaag

Using the facq%gf\q is preinvex on the co-ordinates én x -, we have

02 T o5 PR
9*h(¢,0)|" O*h(1,7) | *h(1, 0) |
+f(15)‘668€ +5(1—£)Ta§ +(1*§)(175)Ta£
and hence, we obtain
1 1 82 q
|/ S0+ € (0.6).7 + Gale, )| dBde
Oh(d,7)|* &h(¢,0) |
/ / K (&, 9)] [55 D6OE +el=9) ‘ D6DE
2h(eh,~) | h(y, ) |
+5(1—5)Ta§ +(1—§)(1—5)Ta§
1 [ n(p,)|" | |9%h(e,0)|" | |9*h(w,7)|" | |9*h(¥, 0) q]
T 64 || 09d0¢ 260E D60E D60E '
Therefore (4. 24 ) becomes
2 q 2 q 2 q 2 q %
w1 (¥, d)ua(o,) 2 g(gggﬁ) 2 g{s(gg,g) 2 gélapg) g gé(gg’g)
- 16 4
(4. 25)
Substituting (4. 25) into (4. 23 ), we obtain (4. 22). O

Remark 4.5. If we takesu1 (¢, ¢) = ¥ — ¢ andus(o,y) = o—in Theorem 4.1-Theorem
4.4, thenh will be a convex functions on the co-ordinates and we recapture all those results
proved in[24].

5. CONCLUSIONS

This paper has presented some new results of the Hermite-Hadamard integral inequal-
ities type for functions whose mixed partial derivatives are co-ordinated preinvex. In ad-
dition, the obtained results in this paper would be useful for generalization of inequalities
that were proved in previous work.
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