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Abstract.: The paper suggests conditions for preserving the shape prop-
erties of the original data using the ternary 4-point non-stationary inter-
polating subdivision scheme. Sufficient conditions with a suitable selec-
tion of the starting tension parameter are determined, which guarantee
to retain the properties of positivity, monotonicity and convexity from
the initial data to the curves generated for a limited number of iterations.
The obtained results are significantly extended in the limiting case for
maintaining such shape properties in the limit functions. The geometric
interpretation of results is depicted through different numerical exam-
ples.
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1. INTRODUCTION

Subdivision schemes offer an efficient algorithm with the intention of creating a curve
from a given polygon or a surface from a given polyhedral mesh by an iterative application
of a refinement rule. The interpolating subdivision schemes define a new set of vertices in
between the old ones, as a consequence, the limit shape passes through the original data.
Thus, interpolating schemes are capable to construct the final shape in the most predictable
manner from a given initial data.

The earlier analysis in the field of subdivision was confined to binary stationary schemes
[7, 8, 19]. In general, the availability of tension control and conic reproduction are impor-
tant attributes of the non-stationary schemes [3, 4, 11]. Smaller support and higher order
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smoothness are the special features that are attainable for just ternary schemes [3, 10] in
comparison with binary schemes [4, 8].

The notion of shape properties generally includes positivity, monotonicity and convex-
ity, and refers to the geometric behavior of the limit shapes. During the past few years, a
great interest has been revealed in literature [5, 12, 9, 15, 2] to deal with the problem of
shape preservation. In the method proposed by Dyn et al. [9], a parameter was chosen
depending on the univariate convex initial data to preserve convexity of the scheme [8].

Cai [6] suggested an efficient and easy approach to develop conditions on the initial data
for the convexity preservation of thg? ternary scheme [10]. Along the same lines, several
attempts conducted in [18, 14, 17] to investigate the monotonicity or the convexity preser-
vation of many stationary subdivision schemes. Marinov et al. [13] analyzed the properties
for the shape preservation of a 4-point non-stationary scheme by modifying the tension
parameter locally according to the geometric behavior of the control polygon. In Akram
et al. [1] analyzed the hyperbolic form of@' binary non-stationary interpolating scheme
[4] to preserve the shape properties satisfying suitable conditions on the original data. In
order to overcome the limitation of the non-stationary scheme [4] due to the lower order
smoothness, the shape preservatiowdfternary non-stationary interpolating scheme et
al. [3] is examined in this paper. Moreover, the motivation of the ternary schemes is the
higher regularity in comparison with binary schemes.

In particular, the refinement rule changes from one level to another in a non-stationary
scheme. Therefore, the aim of our work is to identify the conditions for retaining the shape
characteristics of the curves that are generated after a finite number of iterations. The
appropriate conditions are obtained for the shape preservation of the ternary non-stationary
interpolating scheme by choosing adequately and a posteriori value of initial paraineter

2. TERNARY NON-STATIONARY INTERPOLATING SUBDIVISION SCHEME

We consider a class of ternary 4-point non-stationary interpolating subdivision scheme,
defined by

k+1 fk

P _ ek k fk k ¢k k ¢k

fz;,ci+11 = agfimg oy fi +as fi +agfiia, 2.1)
i k pk kpk k sk k ¢k

J3i42 = azfiig Hosfi +Foq il +ag e,

where{(z¥, f¥)}icz, Yk € Z, is the set of control points, obtained from the given set of
initial data{(z?, f?) € R%},cz. Moreover,

1
ay = 50 (=90vk41 — 1),
k ].
o= (907k+1 + 43)
1
of = 50 (90vk+1 + 17),
1
af = 50 (=907k41 + 1),
with )

M = T B+ Brer) @2
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and the parametet;., ; satisfies the recurrence relation
Br+1 = V24 Bk, Br € [-2,00) \{-1} VkeZ;. (2.3)

2.1. Convergence and Regularity.Beccari et al. [3] investigated the convergence prop-
erties of the non-stationary scheme ( 2. 1) by showing its asymptotic equivalence to the
stationary scheme of Hassan et al. [10], foe= 1. This sufficient condition for asymp-

totic equivalence has been thoroughly studied (see section 3, [3]).

Based on Riouls method [16], Zheng et al. [20] obtained tblelet regularityR(n) against

1 of the stationary scheme [10], as

R(p) = 2—logg ("), 5 <<
2—logs(9u), 15 <p<jp

The Holder regularity aj. = 15 can be obtained a&({;) = 2.0959. Hence, the holder
regularity of the non-stationary scheme ( 2. 12.i8959.
The non-stationary scheme ( 2. 1) generatédimit functions. Moreover, for the initial
tension parametet,, it holds:
o if By € [-2,2) \{—1}, theng, € [0,2) Yk > 0 and the sequencgl; }ren IS
strictly increasing
o if 5y = 2, thens, = 2 Vk > 0 and the sequendgy, } .cn converges to 2
e if By € (2,00), thengy, € (2,00) Yk > 0 and the sequencEdy }ren is strictly
decreasing

Sincevy,1 is defined in terms of tension parametgr.; through Eq.( 2. 2), thus it holds:

® Vet1 > 35 © B € (1,2)

® Vi1 =57 & Brp1 =2

® et1 < 55 € P €[0,1) U (2,00)
The following discussion is about the shape preservation of the ternary non-stationary
scheme (2. 1), which is analyzed by restricting our choice of the initial parameter
Bo € [2, 6.62149), such that the sequené@; } . is strictly decreasing and the para-

metery,1 ranges in the intervgl4s, 5-] for all & subdivision levels.

3. POSITIVITY PRESERVATION

The preservation of positivity for a subdivision scheme can be attained when the new
set of control points are positive at each subdivision level for a given positive initial data.
Using the coefficients in the refinement rule (2. 1), it may be observed that not all of them
are positive fory,11 € (&, 2%], as a consequence, the new control points after some finite
number of iterations may not preserve the positivity of initial data. However, satisfying
sufficient condition on the initial data, the positivity preservation of the subdivision scheme
(2. 1) can be guaranteed in the curves achieved after some specific number of iterations.
Firstly, some inequalities are established in Lemma 3.1 for breaking down more compli-
cated arguments of Lemma 3.2 into simple steps. The proof of this lemma is omitted as

can be directly verified.

_ . —90vn+1+43 907,41+17
Lemma 3.1. For anyn € Z4, let A\, = mm{ 0T T ? 9071 } and~,.1 €

(35- 37 then the following inequalities hold
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() (=90vn+1 — 1)An + (907341 +43) > 0
(i) (909n11 +17) A0 + (=907,41 +1) >0
(i) (90vn41 —43)A + (90741 +1) <0
(V) (90941 + DAn + (=90v,41 +1) >0
(V) (90741 — DAy = (907541 + 1) < 0for v,41 € (g5, 185 (21 — V/353)]
(Vi) (90741 — D)An = (909541 + 1) > 0for v, 41 € (155(21 F ), 5]
(Vil) (90741 — D)An — (907n41 + 17) <0 for v, 41 € (1355(21 —/353), QL:I
(viii) (=90vn4+1 + 1))\% + 16X, + (90741 +43) > 0
(IX) (90'7n+1 + ) (1807n+1 + 42))\ + (907n+1 + 17) <0
(X) (909,11 + )/\n (90741 + 43)An + 60 > 0 for v, 11 € (35, 55
(i) (907541 + 1)AZ = (907511 + 43) A, 4+ 60 < 0 for v,41 € (55, 2]
(xii) (907n41 — )A,% + (90Yn41 — 17) A — 60 < 0 for v, 41 € (55, 37
t

The level dependent positivity preserving condition can be derived in the following man-
ner:
k
Lemma 3.2. Define,p} = ff—:l and P* = maxi{pf,p%}, i € Z, k € Z,. For any
n € Z, if the initial data{(z?, f?) : i € Z} is positive, i.e.f° > 0, i € Z, such that
Bo € [2, 6.62149), Y41 € (90, 27] and

—00Y,41 + 43 907y + 17
909,41 +1 7 90v,41 — 1

then the control points generated up #toiterations by the non-stationary subdivision
scheme (2. 1) preserve the positivity of the initial data.

PY <\, = mm{ (3. 4)

Whenyi41 € (g5, 57, it can be obtained that, < ~, for all k < n. Precisely{~yx}ren
is an increasing sequence for the successive proceedings of iterations. In particular,

90711 + 43 11
Ap = kL RS c
B 0 1 O S {907 30

and

907441 + 17 11
Ap = A1 T2 e
B 0y — 1 LS50 27

Ultimately, subsequent levels of refinement leads to the fact{thal.cny is a decreasing
sequence. That is to say,, is the smallest finite value achieved afteiterations of the
scheme, which allows us to considgyin the positivity preserving condition to be imposed
on the initial control points.

Proof. To prove Lemma 3.2, mathematical inductionsois used.

() By hypothesis, the statement is true foe= 0, i.e, f0 >0, P° < \,, i € Z.
(i) Assume by inductive hypothesf§’ > 0 andP™ < A, i € Zforany n € Z,
then%n < pl' < \,. Therefore, itis to be verified thf'** > 0andP"*! < \,,.

By the definition of scheme (2. 1),
5> 0. (3. 5)
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Moreover, in view of Lemma 3.1(i) and (vul)f;f;l1 satisfies

m 1 1

n+1 i+1
= —90vp41 — 1) ——— + (90,41 +43)—
f3ita 60 (( Yn+1 )p?,l " (907541 )p?

+(90'Yn+1 + 17) + (—90’)/"4,_1 + 1)p?+1>

n 1
i+1
=907, -1 )\n + 90'771 +43) | —
~ 60 ((( o1 = 1) ( ! )> pr

+(907'n+1 =+ 17) + (_907n+1 =+ 1)/\n>

" 1
i+1 _ _ -
> 60 ((( 909,41 — DAn + (907541 +43)) N

+(90Vp41 + 17) + (907,41 + 1))\n>

= L ((=907ns1 + X2 + 160, + (907051 + 43))

> 0. (3.6)

Similarly, it can be verified that
I3 > (3.7)

Combining Egs.(3.5), (3. 6)and (3. 7), it follows th%;;ffrl > 0.
In order to proveP™t! < ), it is sufficient to satisfy tha§ < ptt < \,.. Precisely, it

is to be verified thag < pit’ < A, forj =0,1,2.
Taking into account Lemma 3.1 (ii) and (lii), it gives

5 = fatt = éo ((90%+1 +43) — 60X, — (90711 + 1) —;

z 1

+(907n41 + 17)p 4+ (=907n11 + 1)p}y 10}

\_/"@

n 1
< L (19011 + 43) — 60A, — (907mss +1)—
60 ,
1
+((90'Yn+1 + 17) ( 907,41 + 1) N )pz
= (9071 4 43) — 60N, — (90741 + 1)
60 An
n
+((907n+1 +17) A, + (—=90v,41 + 1)) Z;)
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fn

It (<9o%+1 $43) ~ 60X, — (90701 +1) ;-

n

+(907n+1 + 17))\71 + (_907n+1 + 1))

6{; (00740~ 43)X] + 440, — (907,11 + 1))
65 ) ((90%+1 —43)An + (907n41 + 1))

0,

which shows tha;t)}j.+1 < An.

FOf’yn+1 S (

+5(21 — v/353)], using Lemma 3.1 (iv), (v) and (ix), it gives
1
P? 107

% (((907n+1 + DAn 4 (907,11 + 1))
+( (90951 + 43)An + (9071 +17) )

( (907ms1 + 17) A + (907,41 + 43) )

+ (190941 = DAn = (90941 +1) )i (3.8)
< (((90%+1 + DAY = (1807041 +42)A,
1
H(90ns1 + 17)) = (90T 1A+ (0 + 43)
1
(90711 = DAn = (90741 +1)) A)
< g)l (((90%+1 + 1A — (180,41 +42)\,
1
H(90nst + 17)) 1 = (9071 £ 17) A + (90711 + 43)
1
#0041 = DA, = @041+ 1)) - )
4 n
i+1
- A2 1
o, ¢ )
< o

Foryns1 € (155(21 — V/353), -], using Lemma 3.1 (iv), (vi), (vii) and (ix), Eq.( 3. 8)

reduces to

< <(<90%+1 + 1A% = (1807,41 +42)\,

1
(9071 + 17)) S (90%1 + 1A+ (07011 + 43)

9
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+(907n+1 - 1)>‘?z - (907n+1 + 1))‘n)

n
< Im <((90%+1 +1)AZ = (180741 + 42)An + (90741 +17))

1
60 An

(90711 — DAL = (1807n41 + 18) Ay + (90741 + 43))

= (0091 = DAY = (90741 +17)X2

~(90%t1 = DA + (90741 +17))

= L2 = 1)((907051 = DA = (90741 +17))

< 0.

Thus,p37 < A for 1 € (g5, 27
Foryn+1 € (g5, 35, considering Lemma 3.1 (x), it can be written as

n A
B -wAL - B ((90%+1 Do = 000 +17)An
i—1

+(60 — (90541 + 43)>\n)p? + (909541 + 1)>\np?+1p?)

< J(;O ((90%+1 DAZ — (907,41 +17) A

+((90%+1 + A2 = (907n41 + 43)An + 60) p$> 3. 9)

< 2 (0090 = 02 = (907,00 4 171,

+((90%+1 + 1AL = (90741 +43)A, + 60) An

W
= T (903 4 1A 410, — (901 13))
£
= I = 1) ((907s1 + Do+ (907,41 — 43))
= 0.

The latter relation holds by the definition &f,.
Forv,+1 € (30, 27] using Lemma 3.1 (xi) and (xii), Eq.( 3. 9) satisfies

n n fit

1
+((90%+1 + DAL = (907541 +43) A, + 60) A)
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- 6(JJCZ)\ <(90%+1 — 1A} = 16A7 — (907541 + 43) A, + 60)
£
B 601)\ (n = 1)((907”“ — A2+ (90741 — 17)An — 60)
< 0.
Hence,pgal2 < A forvga € (g5, 97
Similarly, it can be verified that;! > § forj =0,1,2.
Since, P+t = max; {p}' ", pTIH}, thereforeP™+* < \,,. 0

In Lemma 3.2, the derived condition of positivity holds for some finite number of iterations
which may not satisfy for the limiting case. Hence, Theorem 3.3 is given for preserving the
positivity of the limit functions, whem — oc.
Since, the recurrence relation in Eq.( 2. 3) satisfies

lim ﬂn+1 = 2.

Therefore, from Eq.( 2. 2), it gives

I -
i, 1 = g7

Moreover,lim,, o, A, = 6—71 in Eq.( 3. 4) and on that account the proof of Theorem 3.3
can be verified using the same arguments of Lemma 3.2.

Theorem 3.3. Let the initial data{ (z?, f°) : i € Z} be positive, such thal, € [2, 6.62149)
and 61
P < =
then the limit function of the non-stationary subdivision scheme (2. 1) preserves positivity.

Therefore, under appropriate condition on the initial data, one can always maintain pos-
itivity with this scheme for any:-th subdivision level by choosing adequately the value of
fo such thaty, 11 € (g5, 37| The value of\, atn-th level, defined in Eq.( 3. 4), is cal-
culated by first evaluating the parametgys ; and~, . for then-th level of refinement.
In order to have a geometric interpretation of positivity preserving condition suggested in
this section, some numerical results of the required parameters for the first four iterations
are inferred. For instance, selecting the value of initial paranmi&gter 6, the results of

Bn+1, Ynt+1 and A, for the first four subdivision levels are given in Table 1. In Figure 1

Table 1: the results of3,11, V.11 and A, for the first four subdivision levels, when
By = 6.

First level| Second level Third level | Forth level
On+1 | 2.82843 2.19737 2.04875 2.01215
Ynt1 | 0.012438| 0.02723 0.03420 | 0.03630
An | 19.76015| 11.75066 9.66399 8.94069
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5 Be=— - == o
—n
X:0.3333 X: 0.6667
Y:-0.02694 Y:-0.02694

0.2 L L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2

@)

Figure 1: The control polygons obtained after first iteration for two different positive initial
data.

(a) and (b), the refined polygons after one application of refinement rule are obtained for
two different positive initial control polygons. In fact, the initial data taken in Figure 1 (a)
does not satisfy the required conditidt? < 19.76015 for 5, = 6. As a consequence,

the highlighted control points attained after first iteration are not positive in the refined
polygon shown by a red solid line. However, satisfying sufficient condition of positivity
(P° < 19.76015), the positive sequence of control points after first iteration are generated
in Figure 2.

The limit function depicted in Figure 3, using the non-stationary scheme ( 2. 1), clearly
preserves positivity where the initial data is configured under the additional constraints of
Lemma 3.3.
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Figure 2: The limit function of the non-stationary scheme ( 2. 1) shown along with the
initial control polygon by preserving positivity.

4. MONOTONICITY PRESERVATION

Divided differences of first order are defined By = 3*(fF., — fF), i€ Z, k € Z.
Divided difference of first order for the non-stationary scheme (2. 1) can be expressed as

Dyt = o ((90%+1 +1)DE, + 18D} + (=909%41 + 1)DL, ), (4. 10)
1

DIty = o5(—2Dk, +24Df —2Dk,,), (4. 11)
1

Dith = o (290941 + )DL, + 18D + (90341 + )DL, ). (4. 12)

In order to analyze the monotonicity preserving property of the scheme (2. 1), sufficient
condition on the initial data is derived in the Theorem 4.2. Firstly, some inequalities are
provided in Lemma 4.1 with the attempt to shorten the proof of Lemma 4.2. The proof of
this lemma can be easily verified by the direct calculations.

Lemma 4.1. For anyn € Z,, lety,,1 € (%,2%
inequalities hold
@) (90yp41 +a+2>0
(i) 2a— (90v,11—1) >0
(i) 2a+ (90vp41+1) >0
(V) (90741 — Dar—2 < 0for y41 € (&5, 2]
) (907n+1 - 1)04 —2>0fory,4+1 € (%, %7]
(Vi) (=907vn+1 + 1)a + 18 + (907,41 +1) > 0
(Vi) (907541 — 1)a? 4+ (907,41 — 21)a +2 < 0 for v,,41 € (&
(
(

| anda = 3, then the following

¥
’ 27
247 ]
776

]

S\Ho\w

(Viii)) (90741 + 1)a® — 18a + (907,41 — 1) < 0 for v,11 € (55,
(iX) (90Yn+1+ 1)a? — 18a 4 (907n41 — 1) > 0for v, 41 € (S5,

o
~

585
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() (90711 — 1)a? = 18a + (907p41 — 1) < 0 for v,,41 € (25, £+ ]

k
Lemma 4.2. Taking, ¢* = % and Q% = maxi{qf,ﬁ}, i € Z, k € Z,. For any

n € Z,, if the initial data{(a;?,fio) . i € Z} is strictly monotonic increasing, i.e.,
DY >0, i € Z, such thatd, € [2, 6.62149), ¥, 41 € (o5, 5-] and

Q0<a:§, (4. 13)

then the control points generated up toiterations by the non-stationary subdivision
scheme (2. 1) preserve monotonicity of the initial data.

Proof. To prove Lemma 4.2, induction onis used.

() By hypothesis, the statement is true foe= 0, i.e, D >0, Q° < o, i € Z.
(i) Foranyn € Z., assume thab? > 0 andQ" < «, i € Z, thent < ¢! < a.
Therefore, our goal is to show tha!'*! > 0 andQ"*! < a.

From Eq.(4. 10), considering Lemma 4.1 (vi), it follows that

D» 1
i—1
Dr 1
> (90741 4+ 1)= 4 18 4 (=907511 + D)
20 «
Dy 2
= = ((—90%+1 +1)a? + 18a + (907,41 + 1))
> 0. (4. 14)
Using Eq.( 4. 11)D5;) satisfies
D 2
Dyttt = L - 12427
3i+1 20 ( q;q;l + q’L )
> = (24 - 4a>
0. (4. 15)

Similarly, by the same discussion as in Eq.( 4. 14), it can be verifiecl)g‘@ﬂ2 satisfies

Dty > 0. (4. 16)
Hence, combining Egs.( 4. 14), (4. 15) and (4. 16 ) lead®td" > 0.
In order to proveQ"*! < q, itis to be verified tha% < qf“ < «. Therefore, the result

consists in satisfying < qg;; <aforj=0,1,2.
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Foryn+1 € (g5. 315, taking into account Lemma 4.1 (i) and (iv), it follows that

n+1 n+1
D3y —aDs,

1

n

D7
d (24 — 18a — ((90%“ +1a+ 2)

n

20 a1

+((90741 = Da - 2)q?)

12)5 (24 —18a — ((907n+1 +1)a+ 2)é
1

+((90741 — D)o —2) a)

2132(718@%22@74)

~Toa @D~ 5)

0.

(4. 17)

Fory,11 € (35, 3=, considering Lemma 4.1 (i),(v) and (vii), Eq.( 4. 17 ) reduces to

n+1 n+1
D3y — aDs, <

Thus,qg{Irl < «for (

1
: 90
In view of Lemma 4.1

n+1 n+1
Dy —aDgly

1

n
?

20

«

1
(24 ~18a — ((90%+1 Fl)a+ 2)

+((907n 11 = 1)a - 2)a>

n
3
20«

n

20
0.

((90%+1 —1)a® — 2002 + (907,41 + 23)a — 2)

(a—1) ((90%+1 —1)a2 + (907,41 — 21)a + 2)

(it) and (ii),

Dr 1
o (18 — 2o+ (Qa — (90941 — 1)) o

+(2a + (90v, 41 + 1))qf>

D
= (18 ~ 2o+ (2a (9071 — 1))a

+(2a + (90vn4+1 + 1))a>

D
: (4a2 — 220+ 18)

% (o)

0.
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Thus,q;fiﬁ_l1 < .

Fory,+1 € (g, =], considering Lemma 4.1 (viii), it can be obtained that

n

D; a
Dyt —aDith, = = ((90%+1 +1) — 18+ (907,41 — 1)

n
i—

20 1

+(18 = 00311+ 1)al = (90701~ Vi)

n

D’L 2
< % (90741 + 1) — 18a + (90vp4+1 — 1)

1 n
+(18 — (90vp41 + D)ov — (90y41 — 1)@)%’ )

n

D
= i ((9O'yn+1 +1) = 18a + (907,41 — 1)a?

—((9ovn+1 +1)a® — 18a + (907,41 — 1)) 2) (4. 18)

n

D!
< 26 ((90%+1 + 1) — 18 + (909,41 — 1)a?

— (907,11 + 1)a? + 18a — (907,41 — 1))
Dy,
= —_ 2 —_ ]_
10 (a”—1)
< 0.

Fory,+1 € (245, 5], in view of Lemma 4.1 (ix) and (x), Eq.( 4. 18 ) takes the form

n

D7
Dyt —aDit, < ((90%+1 +1) — 18a + (907,41 — 1)a?

20

1
_((90’7n+1 -+ 1)0[2 — 18a + (90’Yn+1 — 1))042>

D

= =5 ((907n+1 —1)a* — 1803 + 18a — (907,41 — 1))
Dn

= 5 -1 ((90%+1 ~1)a? — 18a + (907,41 — 1))

< 0.

n+1 1 1 H '
HeJ:wlce,q:fiJr2 < afor y,41 € (%, 2—7] In the same manner, it can be verified that
quﬂ > = forj=0,1,2.
Since,Q "t = max; {¢", qn%}, thusQ"*! < a. O

Since the condition established in Eq.( 4. 13) for preserving monotonicity is independent
of n. Therefore, the condition developed for a finitsubdivision levels also holds for the

limit function. For the case of monotonicity preservation the condition attained in Lemma
4.2 is quite satisfactory, which allows the user to construct different shapes preserving the
monotonicity of initial sequence. In this context, the refined polygon after first iteration are
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25
2 -7
15+

1ok p—u—u
,

Figure 3: The control polygons obtained after first iteration for two different monotonic
increasing initial data.

obtained in Figure 3(a) and (b) f@f = 6. In Figure 3(a), the monotonic increasing initial
data is taken in such a way that « % In this caseD} defined by two indicated vertices

is not positive in the refined polygon. Alternatively, imposing sufficient condifd8n< %

on the initial data, the monotonic increasing refined polygon is constructed in Figure 3(b).
The initial data is considered in Figure 4 satisfying the additional condition of Theorem
4.2. Moreover, the monotonic increasing limit function produced by the non- stationary
scheme (2. 1) is depicted.

5. CONVEXITY PRESERVATION

Define the divided differences of second orderdby= 3%*(fF | — 2fF + fF ), i €
Z, kel
Divided difference of second order for the non-stationary scheme ( 2. 1) can be expressed
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Figure 4: The limit function of the non-stationary scheme ( 2. 1) shown along with the
initial control polygon by preserving monotonicity.

as,
B = (90 + D + )+ (-18010 +18)d) ), (5. 19)
sl = i((90“Yk+1+3)d +(90’7k+1—3)dt+1> (5. 20)
&, = 230((90%+1 3)d + (90711 + 3)d! +1) (5. 21)

Firstly, Lemma 5.1 is proposed for a straightforward proof of Lemma 5.2. The proof of this
lemma can be easily verified by the direct substitutions.

21-2707n 4 1+/15(31—8527, 11154072, ;)

Lemmab.1. Foranyn € Z, lety,, = pTE R T—

[&, 5], then the following inequalities hold

(I) (*180"}/”4_1 + 2)Vn (71807n+1 + 18) >0
(“) (907n+1 - 1)’/?1 + (90’Yn+1 - 3) >0
(iii) (—907n+1 +3)vn + (—907m11 +1) <0
(V) —(907,11 + 3)v2 — (270741 — 21)vp, — (180711 —2) < 0

In the same fashion, the sufficient condition of convexity is developed for the finite
subdivision levels.

andy, 41 €

Lemma 5.2. Taking, r¥ = ;;1, and R* = maz;{r¥, k} k > 0, k € Z. For any

n € Z., if the initial data{(z4° ,fo) : 1 € Z} is strictly convex i.ed? >0, i€ Z,such
that By € [2, 2.26297], yn41 € |55, 57] and

21 — 270711 + \/15(31 — 8529, 11 + 54042, )
4(=1+ 907541) ’

R <, = (5. 22)
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then the control points generated up toiterations by the non-stationary subdivision
scheme (2. 1) preserve convexity of the initial data.

Sinceviy1 € [g, 37, thus {7 }ren is an increasing sequence for the successive
progress of iterations. Correspondingly, < v, Yk < n. This indicatesy,, is the
smallest finite value attained afteriterations of the scheme, thus the initial data must

satisfy the condition including,,.

Proof. We use the induction method ernto prove Lemma 5.2.
() By hypothesis, the result holds for= 0, i.e., d) >0, R® <, i € Z.
(i) Foranyn € Z,, assume thad? > 0 andR" < v, i € Z, thenl% <1l < vp.
Therefore, it is to be verified thaf' ™! > 0 andR"+! < v,,. !
From Eq.(5. 19), in view of Lemma 5.1 (ij;" satisfies

dg;rl = 32d§ ((—90’Yn+1 + l)TA 1 + (—180vp+1 + 18) + (=907, 41 + 1)7":’)
> 3;5 ((1807n+1 +2)vy, + (—1807y,41 + 18))
> 0. (5. 23)
From Egs.(5. 20) and (5. 21),

d3t > 0and djfh, >0 (5. 24)

Combining Egs.( 5. 23) and (5. 24 ), leadsifo’ > 0.
Taking into account Lemma 5.1 (i),

3d? Un,
dith —vpdytt = 26 ((180%“ — 18)vy, + (907541 + 3) + (907,41 — 1)Tn 5

+((907n+1 - 1)Vn + (90777,4-1 - 3))7';”

3dr
20

((1807n+1 —18)vp + (907,41 + 3) + (90v, 41 — 1)v2

+((907n+1 - 1)Vn + (907n+1 - 3))”71)
3dn

= S (180941 = 202 + (270741 — 21)0 + (907011 +3))

= 3 g0y - 1)
21 — 27071 — \/15(31 — 852941 + 54072, )
4(=1+907,11) >
21 = 270941 + \/15(31 — 8527041 + 54072..)
4(=1+907,11) )

VUp —

Un

<
.
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The latter relation holds by the definition of, which shows that-gfl < Up.
Since,

: . 3d7
Ayt —vadith = 20 ((90%+1 = 3)( = vari') + (907n41 + 3)(r}" — Vn))
< 0.

Thus,rg;_f1 < Up.
Using Lemma 5.1 (iii) and (iv), it gives

n—+1 n+1 3d?+1 1
dyiis — Vndgiiy = 20 ((—90%+1 +3)vn + (=907n41 + 1)) o
+(—1807n41 + 18) — (909,11 + 3)vn + (—90v,41 + l)rfﬂ)
37,

1
20 (((—90%“ +3)vp + (—907v,41 + 1)) —-

n

1
+(=180Yn41 + 18) = (90vn41 + 3)vm + (—907n41 + 1)>
3diy, )

20w ( — (909n41 + 3)v;, — (2707541 — 21w — (1807541 — 2))

< 0.

Thus,rg,;_l2 < Up.
Using the same arguments, it can be verified tl@‘ﬁfj > %n forj =0,1,2.
Since,R"*! = max; {r’**, w%}’ thereforeR™"*! < v,,. O

Lemma 5.2 discusses the convexity preserving property of the scheme (2. 1) for a
specificn number of iterations, which does not hold for the limit function. Therefore,
Theorem 5.3 is given to derive the condition for the convexity preservation of the limit
functions by using the fact théim,, .. v, = % for the limiting case.

Theorem 5.3. Suppose that the initial datf(=?, f°) : i € Z} is strictly convex, such that
Bo € [2, 2.26297] and
19
R < —
S
then the limit function of the non-stationary subdivision scheme ( 2. 1) preserves convexity.

Remark 5.4. The non-stationary scheme (2. 1) converges to its stationary counterpart

[10] for u = %. Thus, the condition in the limiting case is same as the result attained in

[6] about the convexity of stationary schefh@].

Remark 5.5. Following the technique of Lemma 5.2 far; € (g5, &), it can be easily
checked that the non-stationary subdivision scheme (2. 1) preserves the convexity of initial
data, only when,, = 1. In this case, the conditions are much restrictive for preserving
convexity in the limit functions. They only cover a very particular case, when the initial
data satisfycl’zrl = d¥ for all i, which means that the data coming from parabolas only

K3
satisfy it.
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In many practical applications, a good approximation of the final limit shape can be
attained just after a few numbers of iterations. The technique of utilizing the condition
for preserving convexity up to a limited number of iterations is satisfactory in many curve
designs. Therefore, for a suitable choicedpfsuch thaty,, ., € [, 5], the convexity of
this scheme can be preserved umtth subdivision level by satisfying sufficient condition
on the initial data.

In order to work out,, up to first four subdivision levels, the results are given in Table 2

by choosing the initial parametgp = 2.26.

Table 2: the results off5,,11, Yn+1 and v, for the first four subdivision levels, when
Bo = 2.26.

First level| Second level Third level | Forth level
On+1 | 2.06398 2.01593 2.00398 2.00099
Yni1 | 0.03337 | 0.036072 0.03679 | 0.03698
Uy, 2.35647 1.67743 1.45642 1.38477

To elaborate the effectiveness of condition developed for convexity in Lemma 5.2, the poly-
gons after first subdivision level are obtained for two different strictly convex initial data.

It can be observed in Table 2 as depicteddgr= 2.26, the conditionR? < 2.35647 must

be satisfied with the initial data in order to generate convex sequence of control points after
first level of refinement. Figure 5(a) displays the refined control polygon obtained by an ini-
tial data without the fulfillment of the above mentioned condition. Thjislefined by three
indicated vertices is not positive in the refined polygon, which exposes the occurrence of
an inflection point in this polygon. When the initial data is aligned under the required addi-
tional condition, new set of verticd40, 0.5), (0.3333, 0.1999), (0.6667, 0.04986), (1,

0), (1.333, 0.02147), (1.667, 0.1431), (2, 0.5)} that are attained after first iteration gen-
erate strictly convex refined polygon, as revealed in Figure 5(b).

The initial data is considered under the condition of Theorem 5.3 in Figure 6. Moreover,
the strictly convex limit function generated by the non-stationary scheme (2. 1) is de-
picted.

In Figure 7, construction of a car model is illustrated along with the initial control points
using the non-stationary scheme ( 2. 1). For instance, it is always required for several
parts on the top surface of the car models to be smoothly shaped. The least amount of folds
in the covering will result in the unpleasant appearance of the car. To control unwanted
oscillations, the top of car is obtained through a strictly convex data points as shown by the
red solid line.

6. CONCLUSION

The preservation of shape properties is analyzed in the curves generated by the ternary
4-point non-stationary interpolating scheme. The conditions on the initial data are ob-
tained for some suitable choice of initial parametgre [2, 6.62149), such thaty,; €

(35:37] » Vk € Z. A level dependant proposal of shape preserving conditions is the most
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Figure 5: The control polygons obtained after first iteration for two different strictly convex
initial data.

significant feature, which makes it possible to preserve the shape properties of initial se-
guence in the curves generated after desired number of iterations. The results are also
generalized in the limiting case using the fact that,, . v,11 = 2% Experimental
results reveal that the allocation of initial data under the derived conditions is sufficient
criteria for the preservation of shape properties in the generated subdivision curves.
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