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Abstract.: In this paper, we study the small oscillations of a system
formed by an elastic container with negligible density and a heavy het-
erogeneous inviscid liquid filling partially the container, in the particular
case of an alomost homogeneous liquid, i.e a liquid whose the density in
the equilibrium position is practically a linear function of the depth, that
differs very little from a constant. By means of an auxiliary problem, that
requires a careful study, we reduce the problem to a problem for a lig-
uid only. From the variational formulation of the problem, we obtain its
operatorial equations in a suitable Hilbert space. From these, we prove
the existence of a spectrum formed by a point spectrum constituted by
a countable set of positive real eigenvalues, whose the point of accumu-
lation is the infinity and an essential spectrum filling an interval, that is
physically a domain of resonance. Finally, we prove the existence and the
unicity of the solution of the associated evolution problem.
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atorial and spectral methods.

1. INTRODUCTION

The problem of the small oscillations of a heavy homogeneous inviscid liquid in an
open rigid container has been the subject, from the pionering work by Moiseyev [10], of
numerous papers that are analyzed in the books [11, 7, 12]. The same problem in the case
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of an elastic container is studied in the book [13]. In the works [1, 2], the second author
has considered the problem of the small oscillations of a heavy heterogeneous liquid and
has proved that it was not a classical vibration problem. These works have been carried
on in our papers [4, 5], where the liquid is almost-homogeneous, i.e has a density in the
equilibrium postion that is practically a linear function of the depth, that differs very little
from a constant. Recently [6], we have solved the problem of the small oscillations of an
almost-homogeneous liquid in an elastic container.

In this work, we study the case where the elastic body containing an almost homo-
geneous liquid has a negligible density, circumtance that can happen in the transport of
liquids. At first, we establish the equations of motion of the system body-liquid and the
boundary conditions. Afterwards, introducing an auxiliary problem, that requires a careful
discussion, and that is the problem of the motion of the body when the motion of the liquid
is known, we show a linear operator depending on the elasticity of the body, that permits
us to reduce the problem for the liquid only. From the variational equation of this last
problem, we deduce its operatorial equations in a suitable Hilbert space. From these, we
prove the existence of a spectrum formed by a point spectrum constituted by a countable
set of positive real eigenvalues, whose point of accumulation is the infinity, and an essential
spectrum filling an interval, that is physically a domain of resonance. Finally, we prove the
existence and the unicity of the solution of the associated evolution problem.

2. POSITION OF THE PROBLEM

We consider, in the field of the gravity, an elastic body with negligible density, that
occupies in the equilibrium position a dom#&bounded by a fixed external surfagend
an internal surface. The interior of this surface is partially filled by a heavy inviscid liquid
that occupies a domai? bounded by a partt of the internal surface and the horyzontal
free boundany". We denote by the part of the internal surface wetted by the air with
constant pressure..

FIGURE 1. Model of the system.
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We choose orthogonal axéke; zox3, Ox3 vertical directed upwards. We denote ibyhe
unit vector normal to the surfaces [Figure 1].

We are going to study the small oscillations of the system elastic body-liquid about its
equilibrium position, in the framework of the linear theory.

3. THE EQUATIONS OF THE PROBLEM

3.1. The equations of the elastic body with negligible density.

Let ﬁ’(ml, x9, x3) the (small) displacement of the particle of the body from the natural state
to the equilibrium state.

The equilibrium equations are:

aa;j(ﬁ/) . P
J
and the boundary conditions are
ﬁis =0 ; Ugj(ﬁ/)nj = —pozni ON X ; a;j(ﬁ')nj =—pmn; on o, (3.2)

wherepy is the pressure of the liquid in the equilibrium position and we have set:
ou, O

1 + ;
aZL'j 8:51

- o . 1
o () = Ndivi' 6,5 + 2’} ;(0) : e (i) = 3 (

X andy/ are the Lame’s coeﬁicients;;j(ﬁ’) ande;j(ﬁ’) are the components of the stress
tensor and the strain tensor respectively.

Letd (x1,x9, x3,t) the displacement of a particle from its equilibrium position to its posi-
tion at the instant.

We have

do; (@ + ')

n 94
8.Tj ! ’
then, taking into account (3. 1)
ol ()
=Y - i Q (i,7=1,2 .
0= (i,j =1,2.3) (3.3)
Using the first and the third conditions (3. 2 ), we have
i, =0 oy;(@)n; =0 on o, (3.4)

We remark that we can write the second condition of (3. 4)
T(Z)=0 on o, (3. 5)

T (u') being the stress vector for the directigon o.
We will write the conditions orx. in the following.

3.2. The equations of the liquid.
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3.2.1. Equations of heterogeneous liquid.
Let p(z;) , po(z;), the pressure and the density of the liquid in the equilibrium position.
We have

. .
gradpo = —pogs, (3.6)
so that,pg andpg are functions ofcs verifying
dpo(73) _
dus = —po(x3)g

In the following, we suppose that (x3) grows with the depth, so that

po(x3) <0
Let (x;,t) the dispalcement of a particle of the liquid from its equilibrium position,
p*(z;,t), p*(z;,t) the pressure and the density of the liquid.
The equations of the motion are

p*ii = —gradp® — p*g¥;  (Euler's equation) (3.7)
divii=0 (incompressibility) in €, (3.8)
aa'ot + div(p*{z) =0 (continuity equation) (3.9

the second being obtained by integrating dibetween the time of equilibrium and the
instantt.
Taking into account of (3. 8), the equation (3. 9 ) becomes
op*
ot

- —
= —i-gradp” .
We set

p* = po(ﬂ??,) +ﬁ<xivt) +ey

p* =po(xs) +p(wit) + -
p, p being of the first order with respect to the amplitude of the oscillations.
The linearization of the continuity equation gives

o .
g (p +usz po(x3)) =0

and then, integrating like above
p = —uz(wit) py(w3).
Therefore, the linearized Euler’s equation becomes, using (3. 6 ):
po(x3)d = —grat + py(v3)gus(z:, )73 in Q. (3.10)

The kinematic condition ol is:
Up|s = Uy, - (3. 11)



Analysis of the small oscillations of a heavy almost homogeneous 103

3.2.2. The particular case of an almost homogeneous liquid.
Leth (h > 0) the height of the lowest point &f. In 2, we havezs| < h.
We suppose that the density of the liquid in the equilibrium position can be written

po(z3) = f(Bz3) ,

with f(0) > 0, f/(0) < 0, 38 being a positive constant such tht is sufficiently small in
order that(3h)?, (Bh)3, - - - are negligible with respect t6h.
Since|fz3| < Shin Q, we have

po(x3) = f(0) + B3 f'(0) + o(3h)

and the liquid is calledalmost-homogeneous §a
Changing the notations, we write

po(x3) = p (1 — Pas) + o(Bh),
wherep is a positive constant.
Then, in the equation (3. 10 ), we replaggxs) by p andp(,(z3) by —p 8 and we obtain
an approximation equation analalogous to the boussinesq equation of the theory of the
convective omotion of a fluid:

pii = —grath — pfgus Ts. (3. 12)

On the other hand, we have
po(r3) = —p g w3 + pe (3.13)
3.2.3. The dynamic conditions.

a) OnT;, postion of the free surface at the instanthe equation of which beings; =
up|r + - - -, Where the dots indicate terms of order greater than one, we must have
p* =D

and, consequently, in linear theory

Po(tp ) + (71, 22,0,t) = P
or
P|r = P GUpr (3.14)

b) Let us write the dynamic conditions afy, position ofY at the instant:

Let M a point of¥. We denote by\/, (resp.)M,) the particle of the liquid (resp. the body)
that occupies the positiol/ in the equilibrium position. 1f\/; and M are the positions
of M, andM, at the instant we have

—_— —_—
MM, =14 ; MM, =1
In linear theory, we can admit that the unit vectors normaltin 1/, andM, are equal to
the unit vectorii normal toX in M and that the pressugg of the liquid in A/, is equal to

the pressure of the liquig*(M’, t) in M’, intersection of; and the normal in\/ to X.
Then, the dynamic conditions diy are

oL+ Ty = " (M me (5,7 =1,2,3)
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FIGURE 2. Configurations ot andX;.

The second condition (3. 2) can be written:

—

oi;(W)ny = —po(M) ni,
so that
o, (W)n; = —[p*(M',t) —po(M)]n;  on X.
We have
* / * - * — -
p*(M',t) = p* (M + up i, t) = p*(M,t) + gratp™ (M) - up =7 + - - -
Sinceu,, 5, is of the first order, we can, in linear theory, replﬁ@*(M7 t) by

N .
gradhy = —pgs ,
so that we can write
p*(M',t) =p*(M,t) — p gtns n3js + -+
Finally, the dinamic conditions oR are
Jgj(ﬂ”)nj = [p(M, t) + p gns)s Un‘z] n; on X. (3. 15)
If ?t (d") andT,, (') are respectively the tangential stress vector and the normal stress for
the directionyi; the conditions (3. 15) can be written

N
T (ﬁ/)\z =0 ; T, (ﬁ/)m = =Pz + P gN3|s Un|x . (3. 16)
Finally, the volume of the liquid remaining constant, we have
/ un|2d2 + / un‘pdl" = 0, (3 17)
z r

that is equivalent td, divi dQ = 0.
The equations (3.3), (3.4),(3.5), (3.8), (3.11), (3.12), (3. 14), (3. 15), (3. 16),
(3. 17) are the equations of the problem.
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4. THE AUXILIARY PROBLEM

4.1. We introduce the auxiliary problem:
do; (')
&vj
Ugj(ﬁ/)nj\a =0 ; u;:,\i] = Unp|x ; T, (ﬁ/)m =0,
whereu,, s, is considered as a datum.

It is the problem of the motion of the elastic body when the motion of the liquid is known.
We are going to seek in the space

=0 in Q; @, =0
(4. 18)
_

(@) {7 ez @) € ' @)]°; @y =0} .

Then,u),;; € H'/?(%), so that we suppose thays, € H'/*(%).

4.2. Let & an element oE! (€' such thatd,,|s. = u, s € H/2(%).

We will construct® in the sequel.
We introduce the spadé,, subspace d&*(€)'), defined by

Vo= {0 € ENQ) ;5 voun =0}
and we seelkd’ in the form R
i = (I)+ﬁ0 ; ’(7:06‘/0.
The problem (4. 18 ) becomes a problemigr

-
B 8‘71{1‘(0’0) . aggj(q))
8xj c%cj
;o ;= = ., — —
o (to)n; = —Uij(CI))nj onco ; T, (uo)\z =-Ty(?)x .

We are going to seek a variational formulation of this problem.

We have:

9o (iio) d0’;(®)

f/ Ji.@OidQ/:/ J7~1_}0idQ/ Yy € V.
, 8337 ’ ax]

Using the Green's formula and denotingiythe external normal unit vector to the bound-
ary of Q’, we obtain easily:

in Q' ; wgnx = 0;
O {2 (4. 19)

_/Zo—gj(ﬁ())nej@(]idz—'_A, U,gj(ﬁ(])ﬁlij(’l:)'(])dﬂl

Vg — RN (o /
:/Zaij(cb)nejvm dE_/Q, O’ij((b)ﬁij(’()o)dg .

Taking into account ofy,, s = 0 and denoting byj, s, the tangential component o,
we have

—
/ 01 (o )nejtio; dX = —/ T 4 (tio) - Vg 2.
s =



106 H. Essaouini and P. Capodanno

We obtain analogous formula by replaciiig by 3.

Carrying out in the precedent equation, we obtain the variational formulation of the
problem (4. 19):
To find @y € V; such that

‘/Q/ Ugj(ﬁ())egj(a)) dQ = — ‘/Q/ Jgj(cb)elij(%}b) de’ VU(] eV . (4 20)

Reciprocally, letiy a function oft with values inV;, and verifying (4. 20).
We have, using Green’s formula and taking into accoun,gf = 0:

ol (U, _
/ ﬁ . 1_)01' dQ/ = / U;j (ﬁo)nejl_)()i d(E + O') — / O’;j (ﬁo)e;j (170) dQ/ 5
’ 333] S0 ’

and an analogous formula by replaci@gby 3.

Sinceti and @ verify (4. 20 ), we obtain

[ PoitE) L (Vs
- 0; dQY + oij(uo)nejvold(EJro)
’ 8.73] Sd4o

ool (®) A
= / — T A —/ 0 (@ )nejvo; d(X + o) .
Q/ (‘9.% Sd4o
Taking @, € [2()]°, we have
-
_aaﬁj(ﬁo) _ 5023'((1’)

axj 895]-
Taking into account ofy,,s» = 0, we have

in [(9(9'))3]

_
/ T 4(tlo) - Uoyx ¥ +/U§j(ﬁo)nej170id0
b o

- = , = B
=— | Ti(®) vz dE — [ o;( P )nejvo; do.
b

Taking vy, = 0, we have, sincé, s is arbitrary
— — =
T(to)z = —T+(®)n
and, finally, takingvy,, is arbitrary
ol (iig)n; = —ol;()n; on o,

and we find the problem (4. 19).

The left-hand side of (4. 20 ) can be considered as a scalar prodygt in

/Sl o (to)er; (To) dQ = (i, o)y, -
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Itis well-known that the associated noifily |, is equivalent inl; to the classical norm

|||, of Z1(€Y') [7: Section 2.2.4].

In the same manner, the right-hand side of (4. 20 ) can be considered as a scalar product in
EHQ):

RN (= ’ = 5
/,Uz’j(q’)fij(UO)dQ = (q)MJO)Ql(Q/) .
Obviously we have

||7IO||V0 = ”710”131(9/) Vilg € Vg .

Then, we can write the equation (4. 20) in the form

_
(1, Uo)y, = <_¢aUO)E1(Q/) Vi € Vg . (4. 21)

Using the precedent result, we see that the right hand-side of (4. 21) is a continuous anti-
linear form inV}.

Therefore, the problem (4. 21 ) has one and only one solutidf exccording to the Lax-
Milgram theorem. It is the same thing for the problem (4. 20Yjrand (4. 18) ir@(Q’)

We notice that the equation (4. 21 ) can be written
(17/’170)131(9,) =0 V’UO (S Vb

The solution’ of the auxiliary problem (4. 18 ) belongs to the orthogonalpin = Q).

4.3. This solutiond’ doesnt depend on the choiceat since® is not in the terms of the
problem (4. 18 ). We are going to take advantage of this remark for estinjhﬁnglm,).

The datumy,,5; of the auxiliary problem (4. 18 ) belongsb'/%(X) (and we have,, sz, =
un|§])

There exists an extension operat@ continuous fromH/2(¥) into H'/2(% + o) [15:
Chapter 1, section 5.2]; we write

up = Puns 5 Munllgesio) < cllunslgeg  (€>0).

Since the solution of (4. 18 ) doesnt dependanwe take for® a continuous lifting of
upiiin ZH(Y) (so that®,, s, = u), and®,, . = u,x); then, we have

.
7]

/ 1 ’
EI(Q’) S c ||un||H1/2(E+J) (C > 0)

]

~
lolly, < ||

and consequently

Ql(Q/) g CC, HU""EHH1/2(Z) .

Using (4. 21 ), we obtain

<cc”

b1y |t HH1/2(Z)
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and, finally, the estimate of the solution of the auxiliary problem (4. 18)

HG’HQI(Q,) <2cc HUNIZHHlﬂ(z) ) (4. 22)

4.4. Now, we are going to study,,(u') s that appears in the second dynamic condition
(3. 16 ) and calculate it by meansfs.

Lett € Z1(€'). For the solution of the problem, we have

9ol (T) - i .
0=— / o) e = - / o] (i Ynegit, (D) + / o (i)l (i) dSY .
o Oz (S+o0+3) o

Since
’LD‘ISZO s Tt(ﬁ/)‘azo s Tt(’lj/)|z;:0 and ﬁe:—’ﬁ:,
we have

/ ol (@)el; (@) dEY = —/Tn(ﬁ’)IE Al dS, Vi eENQ).  (423)
! ¥

ij

On the other hand, i’ € [2(Q')]° , we have in accordance with the definition of the
derivatives in the sens of the distributions

o'l () o’
= (L N o @) 2 oy
O—< oz, ,vl> //"”(“)axj dQ

/, op;(i@)e; (1) dQY =0 Vi € 2()]?

ij

Then, we have

and by density
/ ol (@), () A =0 Vi € ZH(SY) .
S ’

We particularizai’. Letwy, 5, a function belonging tdl/2(%).
We introduce the extension operatét and we set

" __ ’
W, = Pwy, 5.

We take ford’ a lifting of wglzﬁ into El(Q’) and we set

o) = / ol (@)el, (@) S

Since the difference between two liftings belongs obviousE#(Y’), the right-hand side
doesnt depend on the lifting’. Then,/ depends orw;”z.

Let us take fori’ a continuous lifting ofwy, i into =1(€). For such a lifting, we have

and, & being continuous

=0

12
El(Q’) S O‘||wnHH1/2(E+a) (O[ >O)7

) SﬂHw;mH (8>0).

Bror H/2(%)
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Since we have

)] < 1Ny |

By’
we obtain

‘Z(zﬁ')

<p HﬁlHél(Q’) . Hw;m ‘Hl/z(z) .

Sincel depends oy, ., it is an element of H'/%(%)] "
The relation (4. 23 ) can be written, singg ;; = w;, s;:

/ T ()5 - Wy dS = — (),
b

so that the normal streds, ('), can be considered as an eIemen(Hfl/z(E))/ and we
have

HTn(ﬁINEH(Hl/z(E))’ < ﬁ”ﬁ/HQl(Q/) )
then, using (4. 22):

||Tn(ﬂ/)\2”(H1/2(z))' <9 ||“n|2||H1/2(z) (6 =2cdp).

Consequently, there exists a continuous linear opeffafoom H/2(%) into (Hl/Q(Z))/
such that

Tunps = ~Tn(@)5 - (4. 24)
This operator depends obviously on the elasticity of the body; it has properties of symmetry
and positivity.
Indeed, let us consider, beside the problem (4. 18 ) the same problé%é(ﬁl(ﬁ’).
We have, using (4. 23 ) and (4. 24)

// O—gj(ﬁ/)egj(g/) Q' = <fun\2771n\2> .
Inverting the roles ofi’ anda’, we have
[ ot @) a9 = (T, uais)

The hermitian symmetry df follows from the classical symmetry of the left-hand side.
Settinga’ = @, we obtain

<fun\27un|2> :/ U;j(ﬁ/)egj(ﬁ/) Q' = ||ﬁ/||.2|21(§2’) :
QI

Using a trace theorem, we have

Uois] oy < C sy ¥ €2'@) (€ >0).

HY/2(S
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so that, sincer, s, = u,x, we obtain

<j:un|2aun\2> > c—? Hun\EHi{U%E) :

4.5. The second dynamic condition (3. 16 ) can be written

Pz = fun|2 + PIN3|x Un|s - (4 25)
So, we obtain a problem for the liquid only:

pu=—grath — p Bgusz T3 in
dvi=0 in Q
Pir = p gunr

(4. 26)

Pz = Tup s + pgnss uys
This problem being solved, the auxiliary problem (4. 18) -that we solved-givés the
motion of the elastic body.
5. VARIATIONAL FORMULATION OF THE PROBLEM OF THE MOTION OF THE LIQUID

5.1. We introduce the field of the kinematically admissible displacemeits), @ suffi-
ciently smooth i, diva = 0in Q.
We have

/pfé-ng:—/gr—aéb-E[dQ—pﬁg/ usliz dQ.
Q Q Q

The Green'’s formula gives

/ grath - 4dQ = / [div(pa) — pdiv(@)] dQ
Q Q

= /p\szn\zdz"*‘/p\rﬁnwdn
) r

Using the last condition (4. 26 ), we obtain the variational equation:

/ pit - 7 dQ + / PG| AT +/ (f“”\g T Pgnss “”|E> 2 4
i g . (5. 27)

+ pﬁg/ U31:Lg dQ=0
Q
for each admissiblé.

Reciprocally, letii a function oft with values in the set of admissible displacements and
verifying (5. 27). Let us prove that is solution of the problem (4. 26).

We take a virtual displacement, still denoted ﬁ_iiybut does not verify dii = 0. In-
troducing the associated multiplieg, we replace the equation (5. 27 ) by the equivalent
equation
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/ U - Gd0 + / PGl 1l r AT + / (fun‘g + pgngs Un|z) U5, AT

@ r o UE (5. 28)

erﬂg/ U3a3d9+/ V0d|V1~:dQ:O
Q Q

for all new admissibléi.
We have

—_— =

/ vodivadQ = / [div(uoi)—graduoﬂ] a0
Q Q

_ _ — =
= / Volpﬂn‘p dr + / VO‘Z’LNLH‘E d¥ — /Q gradz/o -1 d§2
I ¥

The variational equation (5. 28 ) becomes
5 — - > =
/ (pu — gradyg + pﬂgugmg) -udQ + / (Vo‘r + pgun‘p) “ Uy dI’
Q r

+ / (l/o|p + j—\'unm +pgnas un|g) ’I:Ln|g dX=0
by
Taking € [2(2)]®, we obtain

T . = ¢ 3
/ (pu — gradyy + pﬂgU3x3> udQ=0 , Vue[2(Q)
Q
and then

/

pii — gr—aauo + pBgusis =0 in ([@(Q)]g) .
Takingu,r anda,, s, arbitrary, we have

voir + pgunr =0 5 voir + Ty s + pgngs tys = 0.

Settingry = —p we find again the equations (4. 26 ).

5.2. We are going to seekin the the space
{a e 22(Q) L 2] dvi=0 in Q}

ieJQ) L

closed subspace d#?(Q), equipped with the norm of?(2), in the form
i=5+0
with

def

RS Jo(Q) {’176 32(9), divd = 0; UnloQ = O}

UeGra)® {ﬁ = gradb; @ € H'(Q); /

$dQ = 0; A@:o}
Q
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By virtue of the orthogonal decomposition.i?(Q2) [7: Section 2.1.10]
J(Q) = Jo(©) & Gr(Q).

In the following, we will use the Weyl's decompositions [7: Section 2.1.10]
L) = Jo(Q) © G(Q),

whereG(£2) is the space of the potential fields and
G(Q) = Gr(2) ® Go(),

where

(%an{@ﬁ&;quaQﬁ
We write the Euler’s equation ( 3. 12) in the form

LR 1l— - -
v+ U = —;graCb — BgvsTs — BgUsTs.

Let P, the orthogonal projector fron¥’?(Q2) into Jo(£2); we have

U = —BgPy(vsis) — BgPo(Uss) (5. 29)
Now, we set
P54,
with

Fe @ ; UeGnQ).
SinceJy () andG, () are orthogobal inZ?(£2), we have

On the other hand, sineg, 5, = 0, we haveu, 5o = U,joq t00 Uy, 90 = Uman ; so that
the variational equation ( 5. 27 ) takes the form

/p (55+ﬁ0) dQ+pg/ Un‘rﬁn“ﬂ dF+<T\Un‘g,Un‘g>
Q r

5. 30
+ ,Og/E nzjs Unjs ﬁn|2 dy + ,oﬁg/Q (v3 + Us) (’l:)g + ﬁg) dQ=0 ( )
But, we have
ﬁg/Q (v3 + Us) B3 dQ = /Q [BgPo(vsi's) + BgPo(Uss)] - & dS.
Using (5. 29) , we obtain
/pﬁ-ﬁayuw/(@W&Mdr+<ﬁ%mjzm>
Q r (5. 31)

+PQ/ 1315 Unjs; Upjs d2+pﬁg/ (v3+ Us) - UsdQ = 0.
b)) Q
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At least if p is sufficiently smallT is strongly positive, so that

R ) 1/2
<<TUn|EvUn|E> +P9/ n3i» |Un\2| dz)
P

defines a norm that is equivalent|{o/,, s, ||H1/2(2).

We denote this norm b}j|U, s ||| and the associated scalar product[w‘z, Un‘z} )
Then, we introduce the space
U: U =gradd, ® € H'(Q) = {@ e H'(0); / dA(09) = 0};
V = sur
divU = A® = 0; U,p € L*(T); Ups € HY/3(S)
equipped with the hilbertian norm defined by

112 12 9 )
191, = [ 11" a2+ el + sl

and the spacg, completion ofl” for the norm associated to the scalar product

(ﬁ,U) - / pU - U dQ

X Q

The "intermediate” variational equation ( 5. 31 ) that contains the unkneyrcan be
written:

(Tj, U)X+[Un\z»ﬁn\z} +P9/ Un|1"[}n,\1" dF+P59/ﬂ(U3+U3)5’3 A=0; YV UeV.
T

(5. 32)
The equations (5. 29 ) and (5. 32) are the the equations of the motion of the liquid .

5.3. We are going to introduce a few operators.
We set
BgPy (v3¥3) = A1,
where Ay, is a non negative, selfadjoint, bounded operator fefytf2) into Jy(€2). Itis
known [2, 5] that this operator has a spectrum that coincides with its essential spectrum,
that is the clowsed interval, 3¢], so that|| A1 || = Gg.
We set still B
BgPo (UsTs) = A12U,
A5 being a bounded operator frogninto Jy(2).
Then, the equation (5. 29 ) can be written

T4+ A+ AU = 0. (5. 33)
Now, we have

| Bovaaan < cx il [F], 2 o
Q

so that we can set )
/ 69’03[73 dQ) = (A21’U, U)
Q X



114 H. Essaouini and P. Capodanno

whereA,; is a bounded operator fromy () into x.
It is easy to see that,; and A, are mutually adjoint; indeed, we have

(Aﬂzz ﬁ)X - /Qﬁgvgffg an = (a,AuU')JO(Q).

Finally, we can set
59 [ Ualidf = (40.0) .
Q X

Ao being a non negative, self-adjoint, bounded operator, fydmnto .
Then, the variational equation (5. 32 ) takes the form

(0.0) + (Vs Onis] + / Unjr Ungr AU+ p (A1 + A0,0) =0 ¥ U €V,
i : * (5. 34)

6. THE OPERATORIAL EQUATIONS OF THE PROBLEM
At first, we have the equation (5. 33)

U-l— A1117+ Algl_j = 0
We are going to obtain another operatorial equation from the variational equation (5. 34).

6.1. We set

a ((7, 5) _ {Unm,(}nm} +pg/F Upir Uy dT.

It is an hermitian sesquilinear form dn x V.
We can prove that

1) a(-,-) is continuous and coercive I x V.
2) the embeddind” € yx, obviously dense and continuous, is compact.

We omit the proof that is strictly identical to the proof of the Lemma 8.3 in [14: Section
2.8].
We denote byA the unbounded operator gfassociated to the form(-, -) and to the pair

(V. x)-
6.2. The variational equation (5. 34 ) can be written
(ﬁ,ﬁ) —&—a([iﬁ) +p(A2117+A22(7,[7) =0 VU eV
X X
It is well-known [9] that this equation is equivalent to the operatorial equation
ﬁ+Aﬁ+p(A2117+ A22ﬁ) =0, VeV (6. 35)

The equation (5. 33 ) and (6. 35) are the operatorial equations of the problem.
We can eliminate the unbounded operatdoy setting

Al/QU = (70 € X.
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We obtain the operatorial equations with bounded coefficients
1;}‘4— A v+ A12A71/2(70 =0 (6 36)

Ay + pA~ V2 A+ (IX n pA—1/2A22A—1/2) by,=0  (6.37)

v e Jo(Q), ﬁo € X.

Aq1 and 1, are not compact , bul=!, A;,A7Y2 A=Y2 A5 and A7/2 A5 A71/2 are
compact.

7. EXISTENCE OF THE SPECTRUM

We consider the precedent equations, (6. 36 ) being multiplied by

We set ;
X = (17; ﬁo) € Hy d:efJO(Q)@Xv
Pl ) 0 pA1L P1412A*1/2
Q= ; B=
0 A1 pA_1/2A21 I+ pA—1/2A22A—1/2

The equations can be written
QX + BX = 0; (7. 38)
@ and B are bounded and self-adjoird; is positive definite.
Using the definition of thed;;; we have easily

(BX, X)u, :Pﬂg/ |vs + Us|* dQ2 +a<(7,[7) >0
Q

KerB is the set of theX = (7,0)", with 7 € .J5(Q2), v3 = 0, so thatB is not negative.
By direct calculations, we obtain

(@ + BYX. X) 5, = ol + (4710 To) -+ 0y [ Joa+ s d0+a (0,0).
Q
But we have
Goll2 = [AV20|2 = (AT, 0) =a(0,0),
IGoll; = 14201, = (AT.0) = (0.0)

so that

(@ + B)X, X) y, > min(p, 1)|| X[[3,-
Q@ + B, being selfadjoint and strongly positive, has an inverse having the same properties.
We seek the solutions of the equation (7. 38 ) dependingastording to the lave*t,
A € C. We have

(M¥Q+B)X=0 , Xe€H,.

A =1, A = —1 are not eigenvalues, becau@et B is strongly positive.
A = 0 is an eigenvalue with infinity multiplicity, the eigenspace beingKer
We write the equation in the form

(M(Q+B)+(1-X)B)X =0.
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Setting
Q+B)*X=keHy, ; ¢=Q+B)’BQ+B)",
we obtain the equation
)\2
17
¢, being a not negative, selfadjoint operator, has a real spectrum that is located on the

positive real half-axis.
Therefore, we must have

Cr = Kk € Hy. (7. 39)

2

A2 -1
and then)\? real with A% > 1 or A2 < 0.
We must dismiss\? > 1 since(A\?Q + B) strongly positive.
We must have\? real negative, oA = +iw, w real.
The spectrum of the problem exists and is located on the imaginary axis, symmetrical with
respec to the origin.

real positive

8. STUDY OF THE SPECTRUM OF THE PROBLEM

Using the precedent result, we seek the solutions of the equations (5. 33), (6. 35) and
(6. 36), (6. 37 ) depending arto the lawe™?, w real.
We obtain:

W = AT+ A ATV?0, (8. 40)
WEATy = pA~ V2 Ay 5 4 (IX + pA*l/Z’AmA*l/?) 0,  (8.41)

or, settingy = w2
T =vAnT+ vA A2, (8. 42)

ANy = vpA~Y2 Agi 7+ v (IX n pA*l/QAQQA*/?) Ty (8. 43)

8.1. The spectrum in the domain® > 3¢
We have

v| < (Bg)~"
Since||A11]| = Bg, the operator ;) — vA1; has an inverseZ(v) that is holomorphic in
the domainv| < (Bg)~! and the equation (8. 42 ) can be written

7= vR(v) A1 A7V2T,.
Carrying out in the equation (8. 43 ), we obtain

Q)To & [12pA=12 Ay, (1) Ay A~V2 + v (IX + pA*1/2A22A*1/2) - Aﬂ Ty = 0.
(8. 44)
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Q(v) is a holomorphic self-adjoint operatorial function in the domaih< (3g)~'; we
have:

Q(0) = —A~! compact, negative definite
Q'(0) = I, + pA~Y/2 A5, A=1/2 strongly positive

Consequently [7: Section 1.6.10], for eagl) < ¢ < (Bg)~*, in the intervall0, ¢[, there
exists a denumerable infinity of eigenvalugsv, — 0 whenk — +oo . The correspond-
ing eigenelement{ ﬁOk} form a Riesz basis in a subspaceyofvith finite defect.

For our problem, there is a denumerable infinity of positive real eigenvaliies z/k_l/Q
having the infinity as point of accumulation.

8.2. The spectrum in the domaif: < w? < g
The equation (8. 41 ) can be written

(IX A2 Ay A2 w%zrl) Uo = —pA~Y2 4517,

Sincew? < g and| A2 < Bg, the coefficient of/ is a strongly positive, a self-adjoint,
bounded operator g is sufficiently small. Then it has an inverse with the same properties
and we have

Uo = —p (IX pATY2 A0 ATY2 w2A_1)_1 A~V2 45,5,
Carrying out in the equation (8. 40 ), we obtain
Ap T — N (W7 = w27, v € Jo(Q)
with
N (W?) = pAjp A=12 (IX +pATY2 A0 ATY2 wQA_l)il A™V2 45,
A (w?) is an analytical function of,? in the domainv? < g and, for each.?, it is a
compact selfadjoint operator.

We are going tu use a methode indicated in [7: Section 6.5.7].
Setting

///(w2) = A11 - JV(M2)7 (8 45)
we have the equation
(///(wz) - UJ2]J0(Q)) =0, e J()(Q)

Letw? in [0, Bg]. By virtue of a well-known Weyl's theorem [7: Section 1.1.19, p 24], we
have

Oess (%(w%)) = Uess(All) = [07ﬂg]
Letw3 an arbitrary element of .., (.# (w?)). By virtue of another Weyl's theorem, there
exists a sequencgr, }, depending onv? andw? such thats,, — 0 weakly in Jo(€2) ;
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J(i)l?g;) [Tl 70 > 0; (A (WF) = w315 (02)) Tn — 0N Jo ().
Choosingu? = w?, there exists a sequen{@n}, depending ow? only, such that

> 0; (M (WF) — wiy)) n — 0 i Jo(Q).
Jo(£2)

=
/UTL

o, — Oweakly infy(Q); ]ir(lg‘z :
Jo

Thereforew? belongs to the essential spectrum of the problem (8. 45).
w? being arbitrary in0, Bg], this interval is the essential spectrum of the problem.
Physically the interva]0, 3¢] is a "domain of resonance”.

9. EXISTENCE AND UNICITY OF THE SOLUTION OF THE ASSOCIATED EVOLUTION
PROBLEM

From the equation (5. 33 ), we deduce
v,0 Ant+ AU, 0 =0 Vo€ Jo(Q).
p(v,v)JO(Q)+p( 11U + 12U’D>JU(Q) 0 RS JO( )
Adding to the variational equation (5. 34 ), we obtain

p(7.7) JO<Q>+(&’ 5);“‘ (0.0)+ (4n7+ 410.5) a (s 420.0) =0

9. 46)

Jo (22

for eachu € Jy(f2) and eacl € V.
We introduce the spaces

VOZJ()(Q)@V N H():Jo(Q)@X.

The imbeding/y C Hy is dense and continuous, but not compact.
Let C the operator fromt, onto H, defined by

PLi) 0

We set
N\t
(= (2.0) e
a (Q C) =p [(Anv + AU, U) @
Then, the equation (9. 46 ) can be written

(CX,Q)m, +a(¢,{) =0, VeV (9. 47)

Let \¢ a positive real number; we have

a(¢,€) + Moll¢ I, = pBg / v + Usl* dS2 +a (0,0 + 20 1130y + 10112 -
Sincea (-, -) is coercive inV x V, we have
a(¢,¢) = Noll#]3 0y + CollU[3 = XoliClF, » (Co>0),
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so thata(., .) is V- coercive with respect tél.
Consequently, we can apply a known theorem [3; pp 664-670]:
If the initial data verify

0 2.0 t . 0 - 0 t
Go=(@%@°) e 5 b= (E°00) €M,
the evolution problem has one and only one solutjon suth that

C(t) € L*((0,T);Vo) 5 () € L ((0,T); Vo),
whereT' is an arbitrary positive constant.
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