Abstract
Ofloxacin is a quinolone antibiotic that is considered an efficient antibacterial drug with a broad spectrum of activity against anaerobic and aerobic bacteria and has strong antibacterial activity in vitro against many bacteria species by inhibiting their DNA-gyrase. In this study, the synthesis, physicochemical and spectroscopic characterization of Cobalt (II) metal complex with ofloxacin as primary ligand and ascorbic acid as the secondary ligand have been carried out. The complex was prepared by reflux method for four hours in methanol. The complex, with the molecular formula [Co(Ofl)(Asc)], was characterized by its color, solubility, melting point, FTIR, UV/Visible, 1H NMR, and 13C NMR spectroscopy. The color and the melting point suggest that complexation occurred. The Fourier Transform Infrared data for both the primary ligand (Ofl) and the secondary ligand (Asc) acted as tridentate ligands. Ofl coordinated to the Co(II) metal ion via the two carbonyl oxygen atoms and the oxygen atom of the hydroxyl group, whereas Asc coordinated to the metal through the carbonyl and enolic C-2 and C-3 hydroxyl groups. The electronic data suggests octahedral geometry for the complex. The ligands and the novel Co (II) complex were tested for in vitro antibacterial activity against gram-negative and gram-positive bacterial species using the filter paper disc agar diffusion method. Significant antibacterial activities were observed for the complex compared to the ligands. This research will aid in the development of more potent drugs that are resistant to organisms.
Copyright (c) Ugochukwu Onyenze, Otuokere Ifeanyi Edozie
Ugochukwu Onyenze, Otuokere Ifeanyi Edozie. (2021) Synthesis, Spectroscopic Characterization and Antibactrial Activities of Co(II) Complex of Ofloxacin Drug Mixed with Ascorbic Acid as a Secondary Ligand, BioScientific Review, Volume 3, Issue 3.
-
Views
1153 -
Downloads
75
Next Article
Article Details
Journal
Volume
Issue
Type
Language
Received At
Accepted At