Abstract
Concrete is probably the most extensively used construction material in the world. However,
environmental concerns regarding rapid consumption of natural resources and CO2 emission during
cement manufacturing process have brought pressure to reduce cement consumption by the use of
cement replacement materials (CRMs). The utilization of calcined clay (metakaolin) and silica fume in
concrete has received considerable attention in recent years. Brick powder has not got much
popularity with respect to strength enhancement but it is effective to reduce drying shrinkage. The
following study has been focused to determine the performance of locally available metakaolin, silica
fume and brick powder as CRMs in concrete. This study focuses on compressive strength, drying
shrinkage and sulfate attack properties of the concrete. Concrete cubes were used for compressive
strength determination and mortar prisms for determination of drying-shrinkage and sulfate attack.
5%, 10% and 15% replacement of cement was used for all these three CRMs. Three mixtures with
water-binder ratios of 0.63, 0.54 and 0.47 were prepared with a slump of 75-100mm. The sulfate
attack was determined by immersing mortar prisms in 2, 5 and 10% solution of magnesium sulfate.
The results revealed that silica fume concrete at optimum replacement level of 15% gave highest
compressive strength. The lowest drying shrinkage was experienced in case of mortar prisms
constituting brick powder. However, very low expansion was observed in SF and MK pastes and also
found mutually comparable to each other.
Muhammad Burhan Sharif, Abdullah Anjum, Muhammad Akram Tahir, Muhammad Yousaf. (2013) Performance of Pozzolanic Concrete Using Different Mineral Admixtures, Pakistan Journal of Engineering and Applied Sciences, Volume 12, Issue 1.
-
Views
2033 -
Downloads
153
Article Details
Volume
Issue
Type
Language