Abstract
One of the major concerns in structural engineering is the development of new design concepts to improve structural performance and safety from the damaging effects of destructive earthquakes and winds. With the intent to achieve cost-effective seismic-resistant constructions the structures must be constructed to dissipate a large amount of seismic energy. Supplemental damping strategies are useful for improving the seismic response of structures to natural and manmade hazards. Passive energy dissipation devices, when integrated into a structure, dissipate a part of the input energy, thereby reducing energy dissipation requirement on primary structural members and reducing probable structural damage. The purpose of this research is to study the performance of building structure by using passive energy dissipation devices. Different types of devices used in this study are hysteretic dampers, friction dampers viscous and visco-elastic dampers. The finite element modeling technique is used to observe the behavior of structure with dampers. Three prototype concrete buildings (3, 5 and 10 Story) with same configuration are analyzed with damper using time history analysis. The buildings are analyzed with different types of dampers and by using different variation of their properties along the height of the building and the responses of buildings are observed in terms of, displacements, base shear and floor accelerations. It is found that the viscous and visco-elastic dampers are more effective for 3 & 5 storey buildings while friction and hysteresis dampers are effective for 10 storeys.

Asif Hameed, Asad-ullah Qazi, Ali Murtaza Rasool. (2014) Seismic Performance of Low to Medium Rise Reinforced Concrete Buildings using Passive Energy Dissipation Devices, Pakistan Journal of Engineering and Applied Sciences, Volume 14, Issue 1.
  • Views 2100
  • Downloads 163

Article Details

Volume
Issue
Type
Language